

Version
This is the Accepted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Li, F., Fu, X., Klette, G., & Klette, R. (2013). A fast algorithm for liver surgery
planning. In Discrete Geometry for Computer Imagery, Lecture Notes in Computer
Science Vol. 7749 (pp. 228-240). Seville. doi:10.1007/978-3-642-37067-0_20

Copyright

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-
642-37067-0_20

Items in ResearchSpace are protected by copyright, with all rights reserved, unless
otherwise indicated. Previously published items are made available in accordance
with the copyright policy of the publisher.

http://www.springer.com/gp/open-access/authors-rights/self-archiving-
policy/2124

http://www.sherpa.ac.uk/romeo/issn/0302-9743/

https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1007/978-3-642-37067-0_20
http://dx.doi.org/10.1007/978-3-642-37067-0_20
http://dx.doi.org/10.1007/978-3-642-37067-0_20
http://www.springer.com/gp/open-access/authors-rights/self-archiving-policy/2124
http://www.springer.com/gp/open-access/authors-rights/self-archiving-policy/2124
http://www.sherpa.ac.uk/romeo/issn/0302-9743/
https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm
https://researchspace.auckland.ac.nz/

A Fast Algorithm for Liver Surgery Planning

Fajie Li1, Xinbo Fu2, Gisela Klette3, and Reinhard Klette4

1 College of Computer Science and Technology
Huaqiao University, Xiamen, Fujian, China

2 Xiamen ZhiYe Software Engineering Company Limited, Xiamen, Fujian, China
3 School of Computing & Mathematical Sciences, Auckland

University of Technology Private Bag 92006, Auckland 1142, New Zealand
4 Computer Science Department, The University of Auckland

Private Bag 92019, Auckland 1142, New Zealand
li.fajie@hqu.edu.cn

Abstract. Assume that a simplified liver model consists of some vein cells and
liver cells. Such a liver model contains two kinds of components, the vein com-
ponent and the liver components, each of them consists of cells which are 26-
connected. The vein component has a tree-shape topology. Suppose that the vein
component has already been cut into two parts, and one of them is diseased. Liver
surgery planning systems need to design an algorithm to decompose the liver
components into two kinds of subsets, one (usually just one component) that has
been affected by the diseased vein component while the other one is still healthy.
So far, existing algorithms depend heavily on surgeons’ personal expertise to de-
tect the diseased liver component which needs to be removed. We propose an
efficient algorithm for computing the diseased liver component which is based on
the diseased vein component, and not on surgeons’ personal manipulations.

1 Introduction and Related Work

In 2000 it was estimated that liver cancer remains the fifth most common malignancy in
men and the eighth in women worldwide, and the number of new cases is 564,000 per
year [1]. Liver resection is an often cure for primary liver cancer. The literature reports
many liver resection surgical techniques. For example, see [7, 10].

Existing liver surgery planning usually requires surgeons’ personal expertise to in-
teract during surgery. For example, the planning stage proposed in [10] needs branch
labelling which is the most time-consuming step in the planning procedure and usually
involves some trial and error on the user’s part. Mint Liver, a novel 3D image analysis
software for liver resection, has to be used by experienced hepatic surgeons for design-
ing the new transection plan. The preoperative planning in [13] calculates the vascular
perfusion area using an algorithm based on direction and diameter of the portal vein
branch. Reference [8] proposes a probabilistic atlas for liver surgery planning, and [3]
discusses a deformable cutting plane for virtual resection where 3D interaction tech-
niques are used to specify and to modify the clip geometry by medical doctors. The
system of [5] relies on the surgeon’s capacity to perform a mental alignment between
the resection map and the operating field. The squared Euclidean distance transform was
applied in [12] for approximately computing the liver part which should be removed.

2 Fajie Li, Xinbo Fu, Gisela Klette, and Reinhard Klette

In this paper, we apply basic ideas of digital geometry [4] to propose an algorithm
for computing the diseased part of a liver. Our algorithm is both time-efficient5 and
“accurate”. The problem to be solved is as follows: Let Sl be the set of cells in the
given 3D input image classified to be liver cells. Set Sh contains all cells classified to
be healthy vein cells. Set Sd contains all the detected diseased vein cells. We have to
calculate that part of the liver which is affected by diseased vein cells.

The accurate solution for this problem is defined by the maximum subset A ⊆ Sl

such that A “is affected” (still to be defined) by the set Sd of diseased cells. This is an
optimization problem. It is solved in this paper by computing exactly three sets Sab

,
Sah

, and Sad
such that Sl = Sab

∪ Sah
∪ Sad

where Sab
is “affected” by both Sh and

Sd, and Sai
is “affected” by Si only, for i = d, h.

Existing algorithms compute only approximately the liver part which should be
removed; so far there is no exact specification of the part which should be removed.
Sab

can be understood as being a set of boundary cells “between” healthy liver cells
and the diseased vein cells. Sab

∪Sad
is finally the set of all liver cells which should be

removed.
The paper is structured as follows: In Section 2 we define some notions and nota-

tions which are used in our algorithms. In Section 3 we describe and explain the algo-
rithms whose time complexities are analysed in Section 4. We show some experimental
results in Section 5 and conclude the paper in Section 6.

2 Basics

Image data are given in a regular 3D grid of grid constant θ0 > 0. We only consider
finite sets in this paper. We identify a (grid) cell with its centroid, which is a grid point.
In this section we discuss the 2D case (i.e. one slice of the 3D data) only; generalization
to 3D is straightforward. We also consider a multi-grid approach by varying the given
grid constant. Let θ > 0 be an arbitrary grid constant. Let de(p, q) be the Euclidean
distance between two points p and q in the plane (e.g. centroids of cells). Given two
sets A and B in the plane, define dmin(A,B) = min{de(p, q) : p ∈ A ∧ q ∈ B}. In
particular, dmin(A,B) is denoted by dmin(p,B) if A contains only a single point p.
Define dmax(A,B) = max{de(p, q) : p ∈ A ∧ q ∈ B}.

We consider healthy vein cells (type-h), diseased vein cells (type-d), and liver cells
(type-l), each cell being one voxel. Considering the 2D case only in this section, a cell
is a pixel. Let Si be the set of type-i cells, for i = d, h, l. Let S be the union of those
three sets. See Fig. 1 on the left. Cells can be uniquely either of type-d, type-h, type-l,
or of no assigned type at all (i.e. background cells).

Thus, the three types define sets Sd, Sh, and Sl of cells in the plane which are
pairwise disjoint. We say that set Sl is only affected by Sh if for each pixel pl ∈ Sl,
dmin(pl, Sh) < dmin(pl, Sd); analogously, we can also have that set Sl is only af-
fected by Sd. We say that Sl is affected by both Sh and Sd if for each pixel pl ∈ Sl,
dmin(pl, Sh) = dmin(pl, Sd).

5 For example, [10] reports about an average labelling time of about 17 minutes, depending on
the data set.

A Fast Algorithm for Liver Surgery Planning 3

Fig. 1. Left: A set S of labelled cells for original grid constant θ0, with h for type-h, d for type-d,
and l for type-l. Right: Cells for grid constant θ = θ0 × 3.

Let Ω be the rectangle of minimum size which contains all the cells of size θ0 × θ0
of the given set S. For a positive integer m, let θ = θ0 ·m. We analyse Ω by using grid
constant θ. See Fig. 1, right, for an example. Set Ω is subdivided into larger θ × θ cells
(supercells) which contain several θ0× θ0 cells. Case m = 1 is possible and defines the
original constant θ0.

At constant θ, set S can be described by an (undirected weighted) θ-graph G =
[V,E] based on 8-adjacency. Each vertex in V corresponds to one θ × θ cell which
contains at least one of the labelled θ0 × θ0 cells of set S. Two vertices v1 and v2 in
V define an edge e = {v1, v2} iff the corresponding cells C1 and C2 are 8-adjacent.
Such a graph structure is used in Procedures 1 and 2, and in the main algorithm in
Subsection 3.2. See Fig. 2 for an example.

We use standard adjacency definitions of digital geometry to specify four different
types of adjacency sets. Consider grid constant θ. For a cell C, L∞-distances i ≥ 0
define layers N(C, 1, i) of θ × θ cells around this cell. In general, we have 8 × i cells
in set N(C, 1, i), as already discussed in [11]. The four corner cells in N(C, 1, i) have
a Euclidean distance

√
2× θ × i to cell C. We call N(C, 1, i) the first adjacency set of

supercell C with radius i (i.e. cells near to C but not including C and layers of radius
j < i, thus not a neighbourhood in the sense of topology which would include C).

Fig. 2. Illustration of the θ-graph corresponding to Fig. 1, right. Weights are either θ or θ
√
2.

4 Fajie Li, Xinbo Fu, Gisela Klette, and Reinhard Klette

θ

Fig. 3. Left: adjacency set of a type-sldoh supercell C, containing twenty grey cells. Right: adja-
cency set N(C, 3, 5, 2) of a type-sl supercell C, shown by grey cells.

We call N(C, 2, i) = ∪ij=1N(C, 1, j) the second adjacency set of supercell C
with radius i (also not including supercell C). Furthermore, we also use adjacency
sets defined by the Euclidean metric L2; let N(C, 3, r) be the set of all cells C ′ with
dmax(C

′, C) ≤ r. We callN(C, 3, r) the third adjacency set of supercell C with radius
r (not including supercell C). So far, this is all very basic digital geometry and just
listed here for specifying the used notation.

For our particular application context, we define that an type-sldoh cell is one su-
percell (i.e. with edge length θ0 · m) that contains at least one type-l cell (with edge
length θ0) but also at least one type-h or type-d cell. A type-sl cell is one supercell that
contains type-l cells only. For example, the θ× θ cell in Fig. 1 (right), corresponding to
vertex v1 in Fig. 2, is of type-sldoh because it contains five type-h cells and two type-l
cells; the cell in Fig. 1 (right), corresponding to v9, is of type-sl because it contains
seven cells which are all of type-l. The following adjacency set definitions for type-
sldoh or type-sl cells are motivated by the particular application, and they have been
heuristically derived from the given (extensive) image data. Those adjacency sets can
be modified without affecting the basic ideas of the algorithms. Assume grid constant
θ. The adjacency set of a type-sldoh supercell C is defined by N(C, 3, 2 ×

√
2 × θ).

See Fig. 3, left. We make use of this in Lines 1–8 of Procedure 1 as shown in Fig. 6. For
defining the adjacency set of a type-sl supercell C, let m and n be two non-negative
integers with n < m. Set

N(C, 4,m, n) = N(C, 3,m(
√
2× θ)) \N(C, 2, n)

is the fourth adjacency set of supercell C. Figure 3, right, illustrates a set N(C, 4, 5, 2).
We make use of this in Lines 1–9 of Procedure 2.

Definitions given in this section can be generalized for the 3D case, and we do not
specify them here because those generalizations are straightforward.

3 Algorithms

Assume that we have a number of slices of 2D images from a CT -scan. Each 2D image
contains θ0 × θ0 cells of type-d, type-h, type-l, or “other” cells (that is, background

A Fast Algorithm for Liver Surgery Planning 5

cells). Each type-h cell represents a healthy vein cell. Each type-d cell represents a
diseased vein cell. Each type-l cell represents a liver cell. Our goal is to classify type-l
cells pl ∈ Sl depending on the value dmin(pl, Sh) and dmin(pl, Sd).

In this section, we describe a naive brute-force algorithm (Algorithm 1), its im-
proved version (Algorithm 2), and then a more efficient main algorithm (Algorithm 3).
These three algorithms are used to classify type-l cells based on type-d and type-h cells.
As usual, Si is the set of type-i cells, for i = d, h, l.

3.1 A Brute-Force Algorithm and Its Improved Version

The idea of Algorithm 1 is simple. We scan through the set Sl of all type-l cells. For each
cell pl ∈ Sl, we decide to which subset (Sab

, Sad
or Sah

) cell pl belongs to by simply
testing the values of dmin(pl, Si), for i = d, h: If dmin(pl, Sh) < dmin(pl, Sd), then
let pl be in Sah

; else, if dmin(pl, Sh) > dmin(pl, Sd), then let pl be in Sad
; otherwise

let pl be in Sab
. The pseudocode is given in Fig. 4.

Algorithm 1 (A brute-force algorithm for separating type-l cells)
Input: Three sets Sd, Sh, and Sl such that Si contains type-i cells, where i = d, h, l.
Output: Three sets Sab

, Sad
and Sah

such that Sl = Sab
∪ Sad

∪ Sah
, where Sab

is
affected by both Sd and Sh, and Sai is affected by Si only, for i = d, h.
Pseudocode: See Fig. 4.
1: Let Sab = Sad = Sah = ∅.
2: for each pl ∈ Sl do
3: Go through Sh for computing dmin(pl, Sh).
4: Go through Sd for computing dmin(pl, Sd).
5: if dmin(pl, Sd) = dmin(pl, Sh) then
6: Sab = Sab ∪ {pl}
7: else
8: if dmin(pl, Sd) < dmin(pl, Sh) then
9: Sad = Sad ∪ {pl}

10: else
11: Sah = Sah ∪ {pl}
12: end if
13: end if
14: end for
15: Return Sab , Sad , and Sah .

Fig. 4. A brute-force algorithm for separating type-l cells (pseudocode of Algorithm 1).

The idea of Algorithm 2 is also simple. We may not have to go through each grid
point in Sd. If there exists a cell pd such that de(pl, pd) < dmin(pl, Sh) then let pl be
in Sad

, and break both this for-loop and the outer for-loop, and test the next cell after
pl in Sl. The pseudocode of Algorithm 2 is modified from the code of Algorithm 1 by
inserting a few lines after Line 3 in Fig. 4. It is described in Fig. 5.

Algorithm 2 (An improved version of Algorithm 1)
Input and output are the same as for Algorithm 1 but for set cardinalities assume that
|Sh| ≤ |Sd|.
Pseudocode: See Fig. 5.

6 Fajie Li, Xinbo Fu, Gisela Klette, and Reinhard Klette

1: Lines 1–3 from Fig. 4.
2: for each pd ∈ Sd do
3: if de(pl, pd) < dmin(pl, Sh) then
4: Sad = Sad ∪ {pl}
5: Break both this for-loop and the outer for-loop.
6: end if
7: end for
8: Exactly copy Lines 4–15 from Fig. 4, but remove Line 7.

Fig. 5. An improved version of Algorithm 1 for separating type-l cells: Simply insert Lines 3–6
in the code of Algorithm 2 after Line 3 in the code of Algorithm 1. Note that the ‘outer for-loop’
refers to the outer loop as specified in Algorithm 1.

3.2 Algorithm in 2D

Algorithm 3, our main algorithm, is based on Algorithm 2 and Procedures 1 and 2.
Procedure 1 is used to compute relevant adjacent cells within the adjacency set of a type-
sldoh supercell. The procedure is shown in Fig. 6. The word relevant means here that
each returned supercell is both in the adjacency set of the given type-sldoh supercell as
well as of the corresponding supercell of the θ-graph, for grid constant θ ≥ θ0.

Procedure 1 (Compute relevant supercells in adjacency set of a type-sldoh supercell)
Input: A θ-graph G = [V,E], and a type-sldoh supercell represented by vertex v ∈ V .
Output: Return a subsetNv of V such that dmin(v

′, v) ≤ θ, for each supercell v′ ∈ Nv .
Pseudocode: See Fig. 6.

1: Let Ni be the sets of supercells of the first two adjacency sets of supercell v, where i = 1, 2.
2: Let N ′

2 = ∅.
3: for each supercell u ∈ N2 do
4: if dmin(u, v) ≤ θ then
5: N ′

2 = N ′
2 ∪ {u}

6: end if
7: end for
8: Let N = N1 ∪N ′

2.
9: Let Nv = ∅.

10: for each supercell u ∈ N do
11: if u ∈ V then
12: Nv = Nv ∪ {u}
13: end if
14: end for
15: Return Nv .

Fig. 6. Computation of relevant cells adjacent to a type-sldoh supercell v (Procedure 1).

The following Procedure 2 is used to compute relevant supercells in the adjacency
set of a type-sl supercell. The word relevant means here that the returned supercells are
both in the adjacency set of the type-sl supercell and the supercells of the θ-graph. The
pseudocode is shown in Fig. 7.

Procedure 2 (Compute relevant supercells in the adjacency set of a type-sl supercell)
Input: A θ-graph G = [V,E], a type-sl supercell v ∈ G. Assume that there exist type-d
or type-h cells.

A Fast Algorithm for Liver Surgery Planning 7

1: i = 1
2: while there is not any type-d or type-h cell contained in a supercell in N(v, 1, i)

(i.e., the first adjacency set with distance i of the supercell v) do
3: i = i+ 1
4: end while
5: Take any corner supercell u in N(v, 1, i).
6: Let Rv = dmax(u, v).
7: Compute N(v, 3, Rv) (i.e., the third adjacency set of the supercell v with radius Rv).
8: Compute N(v, 2, i) (i.e., the second adjacency set of the supercell v with radius i).
9: Let N4 = N(v, 3, Rv)\N(v, 2, i).

10: Let Nv = ∅.
11: for each supercell u ∈ N4 do
12: if u ∈ V then
13: Nv = Nv ∪ {u}
14: end if
15: end for
16: Return Nv .

Fig. 7. Computation of relevant supercells adjacent to a type-sl supercell v (Procedure 2).

Output: Return a subset Nv of V such that, for each supercell v′ ∈ Nv , we have that
de(v

′, v) ≤ Rv , where Rv is the radius of N(v, 3, Rv).
Pseudocode: See Fig. 7.

The imaged part of the liver is defined by all type−l cells. Its veins consists of type-i
cells, where i = d, h.

The main idea of the following main algorithm (Algorithm 3) is to decompose the
liver into some supercells so as to reuse the improved version of the above brute-force
algorithm (i.e., Algorithm 2) “locally” by removing unnecessary type-i cells (where
i = d, h) which are “too far” from the current supercell (thus, also “too far” from any
type-l cells contained in the current supercell).

Algorithm 3 (Main Algorithm)
Input: A set S containing type-i cells, where i = d, h, l, and a parameter m > 0 (for
example, m = 20).
Output: Three sets Sab

, Sad
, and Sah

such that Sl = Sab
∪ Sad

∪ Sah
, where Sab

is
affected by both Sd and Sh, and S3i is affected by Si only, for i = d, h.
Pseudocode: See Fig. 8.

Regarding a proof of the correctness of Algorithm 3, at first, the set of liver cells
(i.e. of their centroids) can be assumed to be digitally convex (i.e. the Gauss digitization
of a convex polyhedron). Thus we can define affected by using dmin as in Section 2,
based on the Euclidean distance de.

For each supercell C, if C is of type-sldoh supercell then, for any two original
(i.e., before digitization in Line 3) cells p1 and p2 contained in C, for their distance
we have that de(p1, p2) <

√
2 · θ0. Thus, we can only consider type-i cells inside of

N(C, 3,
√
2 ·θ) for separating type-l cells in C, for i = d, h. In short, the candidate sets

are reduced from Sd and Sh to Sd ∩N(C, 3,
√
2 · θ) and Sh ∩N(C, 3,

√
2 · θ).

For each supercell C, if C is of type-sl then for any two original cells p1 and p2
contained in C and the corner supercell C ′ (See Fig. 9 for an illustration of C and

8 Fajie Li, Xinbo Fu, Gisela Klette, and Reinhard Klette

1: Let θ = m× θ0.
2: Let Ω be the smallest isothetic circumscribing rectangle that contains all cells of set S.
3: Digitize Ω using grid constant θ and label a supercell C to be “active” if C contains type-i

cells, where i = d, h, l.
4: Construct the h-graph G = [V,E] as follows: Let V be all “active” supercells. For any two

supercells C1 and C2 in V , define an edge e = {C1, C2} if C1 and C2 are 8-adjacent.
5: Let Sab = Sad = Sah = ∅.
6: for each supercell v ∈ V do
7: if v is a type-sldoh supercell then
8: LetG and v be the input for Procedure 1 for computing relevant adjacent supercellsNv

for the type-sldoh supercell v.
9: Let Sd = Sh = ∅.

10: Let Sl be the set of all cells in v.
11: for each supercell u ∈ Nv ∪ {v} do
12: for each cell p ∈ u do
13: if p is type-d cell then
14: Sd = Sd ∪ {p}
15: else
16: if p is type-h cell then
17: Sh = Sh ∪ {p}
18: end if
19: end if
20: end for
21: end for
22: Let Sd, Sh and Sl be the input for Algorithm 2 for computing three sets Sab(v), Sad(v)

and Sal(v) such that Sl = Sab(v)∪Sad(v)∪Sal(v), where Sab(v) is affected by both
Sd and Sh, and S3i(v) is affected by Si only, for i = d, h.

23: S3i = S3i ∪ S3i(v), where i = d, h, l.
24: else
25: if v is a type-sl supercell then
26: Let G and v be the input for Procedure 2 for computing relevant adjacent supercells

Nv for the type-sl supercell v.
27: Exactly copy Lines 9–23 into here.
28: end if
29: end if
30: end for
31: Return the three sets Sab , Sad , and Sal .

Fig. 8. Pseudocode of the main algorithm: m is a parameter and can be adjusted depending on
the size and distribution of the input data set S.

C ′.), we have that dmax(p1, p2) ≤ RC . Note that the radius RC = dmax(C
′, C) is

defined in Line 6 in Procedure 2. Thus, we can only consider type-i cells inside of
NC for separating the type-l cells in C, where i = d, h (NC is the subset returned by
Procedure 2).

In short, the candidate sets are reduced from S1 and S2 to S1 ∩ N(C, 3,
√
2 × θ)

and S2 ∩N(C, 3,
√
2× θ), respectively. See Fig. 9 for an illustration of RC and NC .

A Fast Algorithm for Liver Surgery Planning 9

Fig. 9. Illustration for the correctness proof of Algorithm 3.

Fig. 10. Left, top: The liver model. Right, top: The vein component which has a tree shape topol-
ogy, and the tumour. Left, bottom: The cells in the vein component and the tumour. Right, bottom:
A liver usually consists of eight parts shown in eight colours. Only the red part on the right is the
diseased part, as detected by our algorithm, and it should be removed. It seems there are some
green cells between red cells. This may disappear if we change the angle of view.

3.3 Algorithm in 3D

The limited space does not allow a full description. However, the algorithms are very
straightforward extensions of the 2D case: copy from Subsection 3.2 and replace

√
2 by√

3. Figure 10 shows some experimental results of our main algorithm in 3D.

10 Fajie Li, Xinbo Fu, Gisela Klette, and Reinhard Klette

4 Time Complexity

Regarding the time complexity of Algorithms 1 and 2, and of Procedures 1 and 2, we
have the following:

Lemma 1. Algorithm 1 takes |S3| · (|S1|+ |S2|) operations.

Lemma 2. Algorithm 2 takes at most |S3| · (|S1|+ |S2|) operations.

Lemma 3. Procedure 1 takes O(|N |) operations, where N is defined as in Line 8 of
Procedure 1.

It is N = N(v, 3,
√
2 × θ) in the 2D case, and N = N(v, 3,

√
3 × θ) in the 3D case.

For any integer parameter m ≥ 1 it is |N | = 20 in the 2D case, and |N | = 80 in the 3D
case.

Lemma 4. Procedure 2 takesO(|N(v, 3, Rv)|) operations, whereRv is defined in Line
6 of Procedure 2.

Regarding the time complexity of the main algorithm (Algorithm 3), the main compu-
tations occur in Lines 8, 22, and 26.

By Lemma 3, the computation in Line 8 takes O(n × |N |) operations, where n is
the number of supercells.

By Lemma 4, the computation in Line 26 takes O(n × nmax) operations, nmax is
the maximal value of all |N(v, 3,MRv

)|’s, and Rv is defined in Line 6 in Procedure 2.
By Lemma 2, the computation in Line 22 takes O(c2i × (n × |N | + n × nmax)

operations, where c2i is the maximum number of cells in a supercell, i = 2 for the 2D
case, and i = 3 for the 3D case. By the definition of supercells, we have that c2i = mi,
for i = 2, 3. Thus, the computation in Line 22 takes O(mi × n × (|N | + nmax))
operations, where i is 2 or 3 for the 2D or 3D case, respectively. Recall that |N | = 20
in the 2D case and |N | = 80 in the 3D case. Thus, we have the following

Theorem 1. The runtime of Algorithm 3 is in O(mi × n × nmax), where nmax is the
maximum value of all |N(v, 3,MRv)|’s, Rv is defined in Line 6 in Procedure 2, and
i = 2 for the 2D case, and i = 3 for the 3D case.

Exact Euclidean Distance Transform takes O(mi × ni) operations [2, 6]. Thus, the
main algorithm (Algorithm 3) may be faster or slower than the exact Euclidean Distance
Transform depending on the value of nmax which depends on the distribution of input
type-i cells, for i = d, h, l.

5 Experimental Results

Our experiments used a liver model of 107 cells within a cuboid which is 324 pixels
long, 243 pixel wide, and 129 pixels high. This kind of constant is typical for a current
CT scan of a liver. Each voxel is not perfectly cubic, having side length 0.683 in two
directions and 1.0 in the third. We used a PC with 2.50 GHz CPU and 3.0 Gb RAM.

A Fast Algorithm for Liver Surgery Planning 11

m Time m Time m Time m Time m Time
0 53 0 167 0 69 0 53 0 49

10 24 10 36 10 12 10 36 10 33
20 24 20 23 20 14 20 37 20 32
40 38 40 41 40 23 40 57 40 50

Table 1. The results of five experiments are shown from left to right, organized in columns.
Parameter m is applied in Line 1 of Algorithm 3, and the time is in seconds for a 3D voxel data
set of dimensions 324× 243× 129.

Fig. 11. The diseased liver volumes (i.e., sets V in Table 2) in the i-th experiment, from left to
right and top to bottom. Note that the tumour was not included in set V in Experiments 1, 3 and
4. This is because the diseased vein S2 in Table 2 is only simulated in the experiments.

i V S2 S1 i V1 S2 S1

1 87.491 105 2120 4 251.6717 182 1487
2 350.4517 525 1700 5 232.631 153 1516
3 242.179 331 1894

Table 2. By i we denote the index of an experiment. V is the volume of the diseased liver, S2 are
the cells inside the volume of the diseased vein, and S1 are the cells inside of the volume of the
healthy vein.

Table 1 shows the relationship between parameter m as applied in Line 1 of Algo-
rithm 3 and the running time. Times for m = 0 are the running times of the improved

12 Fajie Li, Xinbo Fu, Gisela Klette, and Reinhard Klette

brute-force algorithm (Algorithm 2). The experiments indicate that Algorithm 3 is bet-
ter than Algorithm 2 for m = 10 and = 20. The algorithm appears to be inefficient if
m is either to small or to large.

Table 2 shows diseased volumes in five experiments. See Fig. 11 for sets V as
mentioned in the table.

6 Conclusions

We presented a simple and time-efficient algorithm for separating liver cells using basic
ideas of digital geometry. In contrast to existing liver-surgery planning algorithms, our
algorithm is not only independent of a surgeons’ personal interactive manipulations, but
also outputs the exact solution. The paper introduced an important existing problem to
the digital geometry community.

Acknowledgements: The authors thank all three anonymous reviewers for very valu-
able comments which have been taken into account for the final paper.

References

1. Bosch, F. X., Ribes, J., Diaz, M., Cléries, R.: Primary liver cancer: worldwide incidence and
trends. Gastroenterology, 127:S5–S16 (2004)

2. Cao, T.-T., Tang, K., Mohamed, A., Tan, T.-S.: Parallel banding algorithm to compute exact
distance transform with the GPU. In: Symp. Interactive 3D Graphics, pp. 83–90 (2010)

3. Konrad-Verse, O., Preim, B., Littmann, A.: Virtual resection with a deformable cutting plane.
In: Simulation und Visualisierung, pp. 203–214 (2004)

4. Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)
5. Lamata, P., Lamata, F., Sojar, V., Makowski, P., Massoptier, L., Casciaro, S., Ali, W., Stüdeli,

T., Declerck, J., Jackov Elle, O., Edwin, B.: Use of the resection map system as guidance
during hepatectomy. Surg. Endosc., 24:2327–2337 (2010)

6. Maurer, C. R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact Euclidean
distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Analysis
Machine Intelligence, 25:265–270 (2003)

7. Meinzer, H.-P., Thorn, M., Cordenas, C. E.: Computerized planning of liver surgery – an
overview. Computers & Graphics, 26:569–576 (2002)

8. Park, H., Bland, P. H., Meyer, C. R.: Construction of an abdominal probabilistic atlas and its
application in segmentation. IEEE Trans. Medical Imaging, 22:483–492 (2003)

9. Pianka, F., Baumhauer, M., Stein, D., Radeleff, B., Schmied, B. M., Meinzer, H.-P., Müller,
S. A.: Liver tissue sparing resection using a novel planning tool. Langenbecks Arch Surg.,
396:201–208 (2011)

10. Reitinger, B., Bornik, A., Beichel, R., Schmalstieg, D.: Liver surgery planning using virtual
reality. IEEE Computer Graphics Applications, 26:36–47 (2006)

11. Rosenfeld, A., Pfaltz, J. L.: Distance functions on digital pictures. Pattern Recognition, 1:33–
61 (1968)

12. Shevchenko, N., Seidl, B., Schwaiger, J., Markert, M., Lueth, T. C.: MiMed Liver: A plan-
ning system for liver surgery. In: Int. Conf. IEEE EMBS, pp. 1882–1885 (2010)

13. Yamanaka, J., Saito, S., Fujimoto, J.: Impact of preoperative planning using virtual segmen-
tal volumetry on liver resection for hepatocellular carcinoma. World J. Surg., 31:1249–1255
(2007)

