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Robustness of Point Feature Detection
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Abstract. This paper evaluates 2D feature detection methods with re-
spect to invariance and efficiency properties. The studied feature detec-
tion methods are as follows: Speeded Up Robust Features, Scale Invariant
Feature Transform, Binary Robust Invariant Scalable Keypoints, Ori-
ented Binary Robust Independent Elementary Features, Features from
Accelerated Segment Test, Maximally Stable Extremal Regions, Binary
Robust Independent Elementary Features, and Fast Retina Keypoint. A
long video sequence of traffic scenes is used for testing these feature de-
tection methods. A brute-force matcher and Random Sample Consensus
are used in order to analyse how robust these feature detection methods
are with respect to scale, rotation, blurring, or brightness changes. After
identifying matches in subsequent frames, RANSAC is used for removing
inconsistent matches; remaining matches are taken as correct matches.
This is the essence of our proposed evaluation technique. All the exper-
iments use a proposed repeatability measure, defined as the ratio of the
numbers of correct matches, and of all keypoints.

1 Introduction

A diversity of 2D or 3D feature or keypoint detection methods has been proposed
in computer vision in recent years. For a 2008 review on 2D feature detectors,
see [15], and for current evaluations of 3D keypoint detectors, see [14, 16].

The different methods have their own advantages and disadvantages. This pa-
per focuses on 2D feature detection methods which are implemented in OpenCV
(version 2.4.4) [11]. We test the robustness of these feature detection methods
with respect to rotation, Illumination changes, scaling, and blur.

Our motivation for this test arose when we had to decide for 2D or 3D
feature detectors for accurate ego-motion analysis in a driver-assistance context,
and for unifications of partially 3D-reconstructed surfaces (during different runs)
obtained from recorded stereo street views. Because of the existence of the above
cited 3D evaluations, we only focus on the 2D case in this paper.

Figure 1 illustrates video data as recorded in a driver-assistance context. Due
to the limited length of this paper, we only use the illustrated video sequence (of
400 stereo frames, recorded at 25 Hz) for the reported tests in this paper. Due
to actually occurring changes in recorded videos (with respect to brightness or
blurring), and due to changes in pose of recorded objects (mainly with respect to
scale, but also with respect to rotation), we are interested in 2D keypoints which



Fig. 1. Sample of an image of the discussed video sequence (top, the black pixels at the
border are due to rectification of the stereo frames), with four images after processing,
illustrating blurring (middle, left), rotation (middle, right), brightness changes (bottom,
left), and scaling (bottom, right). The used sequence of 400 stereo frames is in Set 4 of
EISATS [5], and called “Cyclist”; 640× 480 images are recorded with 10 bit per pixel.

can be robustly tracked in the presence of variations in brightness, blurring,
scaling, or rotation. Basically, the provided features for those keypoints should
allow to do such a robust tracking.

The rest of the paper is structured as follows: Section 2 gives a brief in-
troduction for the used feature detectors. Section 3 discusses the design of our
experiments. Section 4 informs about our experimental results. Section 5 con-
cludes the paper.

2 Used Feature Detectors

We briefly introduce the used keypoint detectors, together with features for those
keypoints.

SIFT. The scale-invariant feature detector (SIFT) was published in 1999;
see [7]. It consists of four major stages: scale-space extrema detection, keypoint
localization, orientation assignment, and keypoint description. The first stage
uses difference-of-Gaussians (DoG) to identify potential interest points, which
were invariant to scale and orientation. DoG is used instead of the Laplacian
to improve computation speed. In the keypoint localization step, the operator
rejects low contrast points and eliminates edge response. The Hessian matrix
is used to compute the principal curvatures and to eliminate keypoints that
have a ratio between both principal curvatures that is greater than a threshold.



An orientation histogram is formed from gradient orientations of sample points
within a region around the keypoint (defined by the scale of the keypoint) in
order to get an orientation assignment. It was suggested that best results are
achieved with an 4× 4 array of histograms, with eight orientation bins in each.
Thus, the SIFT descriptor is a vector of 4 · 4 · 8 = 128 dimensions.

MSER. The detection of maximally stable extremal regions (MSER) was pub-
lished in 2002; see [10]. It is used as a method of blob detection in images, for
example to find correspondences between image elements from two images with
different viewpoints. A new set of image elements, that are put into correspon-
dence, are called extremal regions that have two important properties. The set
is closed under (1) continuous transformations of image coordinates (i.e. affine
transformations, warping, or skewing), and (2) monotonic transformations of
image intensities. However, the approach is known to be sensitive to natural
lighting effects such as change of day light, or moving shadows.

SURF. The detector of speeded up robust features (SURF) was presented
in 2006; see [2]. SIFT and SURF algorithms employ slightly different ways for
detecting features. SIFT builds an image pyramid, filters each layer with Gaus-
sians of increasing sigma values, and takes the differences. SURF is inspired by
the SIFT detector, but designed with emphasis on speed, being SIFT’s main
weakness. SURF is often said to be “a few times faster than SIFT with no per-
formance drop”. The detector uses a Haar-wavelet approximation of the blob
detector based on the Hessian determinant. Haar-wavelet approximations can
be efficiently computed at different scales using integral images. Due to the use
of integral images, SURF filters the stack using a box-filter approximation of
second-order Gaussian partial derivatives, since integral images allow the com-
putation of rectangular box filters in near-constant time. Accurate localization
of features requires interpolation.

FAST. The detection of features from accelerated segment test FAST was also
published in 2006; see [12]. It performs two tests. At first, candidate points are
being detected by applying a segment test to every image pixel. Let Ip denote
the brightness of the investigated pixel p. The test is passed, if n pixels on a
Bresenham circle, with the radius r around the pixel p, are darker than Ip − t
(dark pixels), or brighter than Ip + t (bright pixels), where t is a threshold value.
The authors use a circle with r = 3, and r = 9 for best results. The ordering of
questions used to classify a pixel is learned by using the ID3 algorithm, which
speeds this step up significantly. As the first test produces many adjacent re-
sponses around the interest point, an additional criterion is applied to perform
a non-maximum suppression. This allows for precise feature localization. The
cornerness measure used at this step is as follows:

Mc = max(
∑

x∈Sbright

|Ip→x − Ip| − t,
∑

x∈Sdark

|Ip − Ip→x| − t) (1)

where Ip→x denotes the pixels on the Bresenham circle. Because the second test
is only performed for a fraction of image points that passed the first test, the
processing time remains short.



BRIEF. Binary robust independent elementary features (BRIEF) have been
suggested in 2010; see [3]. This is is a general-purpose feature point descriptor
that can be combined with arbitrary detectors. It uses binary strings for efficiency
reasons. The descriptor is highly discriminative even when using relatively few
bits and can be computed using simple intensity difference tests. It is robust to
typical classes of photometric and geometric image transformations. Similarity
between descriptions can be evaluated using the Hamming distance, which is
very efficient to compute, instead of using the usual L2-norm. BRIEF is targeting
real-time applications leaving them with a large portion of available CPU power
for subsequent tasks but also allows running feature point matching algorithms
on computationally weak devices such as mobile phones.

BRISK. The detector of binary robust invariant scalable keypoints (BRISK)
is a method for keypoint detection, description and matching, published in 2011;
see [6]. In this paper, a comprehensive evaluation on benchmark datasets reveals
BRISK’s adaptive, high-quality performance compared to state-of-the-art algo-
rithms, albeit at a dramatically lower computational cost (an order of magnitude
faster than SURF in many cases). The key to speed lies in the application of a
novel scale-space FAST-based detector in combination with the assembly of a
bit-string descriptor from intensity comparisons retrieved by dedicated sampling
of each keypoint neighbourhood.

ORB. The detection of oriented binary robust independent elementary fea-
tures (ORB) was also published in 2011; see [13]. It is a standard for oriented
FAST and rotated BRIEF. The algorithm uses FAST in pyramids to detect sta-
ble keypoints, selects the strongest features using FAST or a Harris response,
finds their orientation using first-order moments, and computes the descriptors
using BRIEF (where the coordinates of random-point pairs (or k-tuples) are
rotated according to the measured direction).

FREAK. The fast retina keypoint (FREAK) detection was published in 2012;
see [1]. The algorithm proposes a novel keypoint descriptor inspired by the hu-
man visual system, and, more precisely, the retina. A cascade of binary strings
is computed by efficiently comparing image intensities over a retinal sampling
pattern. It is commonly stated that FREAKs are in general faster to compute
with lower memory load and also “more robust” than SIFT, SURF, or BRISK,
and that they are competitive alternatives to existing keypoints, in particular
for embedded applications.

In the brief descriptions above we also mentioned “common believe” about
the performance of those detectors, and we are now aiming at quantifying such
statements by experiments on extensive data. For providing repeatable data, we
use a data set available online on [5].

3 Experiment Design

We are interested in comparative evaluations of efficiency (the time used for a
measurement of feature points and description extraction time), rotation invari-
ance (how the feature detection method depends on feature direction), scaling



invariance (how the feature detection method depends on feature size), blur in-
variance (how the feature detection method is robust against blur), and illumina-
tion invariance (how the feature detection method is robust against illumination
changes).

All the reported quality tests work in a similar way: For a given sequence (our
set of source images), we apply the defined workflow identically on each image,
and take finally the average of calculated data for the whole image sequence.
Here we report for experiments on the sequence “Cyclist”, see Fig 1, which is
a “typical” day-time sequence with respect to occurring diversities in shown
objects and lighting variations.

For any image in the sequence, the following steps are done for each of the
tested eight feature detectors:

1. Read the source image Is as a greyscale image.
2. Use the feature detector to detect the keypoints and extract descriptors Ds

from Is; get the number Ks of keypoints.
3. Transform the source image for the different invariance test scenarios:

– For testing rotation invariance, rotate Is around its centre in steps of 1
degree; we obtain 360 transformed images.

– For testing scaling invariance, resize Is in scaling steps of 0.01, from
0.25× size to 2× size, thus calculating 175 scaled images.

– For testing illumination invariance, we change the overall image bright-
ness by adding a scalar to every pixel value of Is; the scalar changes from
-127 to 127 in stepsize 1, thus generating 255 transformed images.

– For testing blurring invariance, we Gaussian blur Is by using 20 different
kernel sizes between 3 to 41, thus calculating 20 blurred versions of Is.

4. For each of those transformed images It, we use the feature detector again
to detect the keypoints and extract descriptors Dt; in particular we note the
number Kt of keypoints.

5. We use the two sets of descriptors Ds and Dt and a brute-force descrip-
tor matcher to find matching image keypoints between source image and
transformed image.

6. There are inconsistent matches. We use Random Sample Consensus (RANSAC)
to remove those; all the remaining are considered to be correct matches. We
note the number Kcm of correct matches.

The repeatability measure r(Is, It) is defined as being the ratio between the
number of correct matches between the two sets of image keypoints (for source
and transformed image) and the number of keypoints detected in the source
image:

r(Is, It) =
Kcm

Ks

Obtained measure values are then averaged for all the selected frames of the used
test sequence. Here we report about results for 90 randomly selected images
from this sequence. For the feature detectors we used the default parameters
implemented in OpenCV.



Fig. 2. Repeatability values for the tested 360 rotations.

Fig. 3. Repeatability values for the tested 20 blurrings.

Fig. 4. Repeatability values for the tested 175 scalings.

4 Experimental Results

The following four graphs in Figs. 2 to 5 summarize our experimental results.
The y-axis is always for values r(Is,It). The x-axis for the blur graph is a number
which indicates the kernel size (2× number +1) of the used Gauss function.



Fig. 5. Repeatability values for the tested 255 brightness variations.

Method Ave. time per frame Ave. time per keypoint No. of keypoints

SIFT 254.1 0.55 726
SURF 401.3 0.40 1,313
ORB 9.6 0.02 500
BRISK 8.5 0.06 258
SURF+BRIEF 101.1 0.10 1,259
MSER+BRIEF 55.1 0.52 116
FAST+BRIEF 4.3 0.01 1,451
FAST+SURF 51.9 0.05 1,590
SURF+FREAK 96.3 0.19 847

Table 1. Averages are for the detectors on all the 90 source images, and the numbers
of keypoints are for the image shown in Fig. 1.

Fig. 6. Averaged time per keypoint for the four generated sets of transformed images,
averaged over all the selected 90 frames. The up-axis shows the time used in millisec-
onds.

When naming a feature detection method ’A+B’ then this means that we use
feature detector ’A’ and feature descriptor ’B’. For the brightness variations note
that the brightness mean for all the used 90 source images equals 108.

Table 1 summarizes time measurements on original images, and illustrates
numbers of detected keypoints for the image shown in Fig. 1. The measured
computation times per keypoint in all the generated test images are summarized
in Fig. 6.



5 Conclusions

This paper compared the performance of eight feature detection methods. The
performed tests show that SIFT has the best robustness with respect to rotation
and scale changes, but its time issue has been confirmed again. FAST and BRIEF
provide better results for increased brightness, and ORB better for decrease
brightness. ORB also shows good performance on blurred images. Many more
comments are possible for the given graphs, but the reader may see for himself.
The results also show that claimed invariances are only valid to some limited
degree, and further research on improving invariance properties appears to be
justified.
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