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Multi-run 3D Streetside Reconstruction
from a Vehicle

Yi Zeng and Reinhard Klette

The .enpeda.. Project, Department of Computer Science
The University of Auckland, New Zealand

Abstract. Accurate 3D modellers of real-world scenes are important
tools for visualizing or understanding outside environments. The paper
considers a camera-based 3D reconstruction system where stereo cam-
eras are mounted on a mobile platform, recording images while moving
through the scene. Due to the limited viewing angle of the cameras,
resulting reconstructions often result in missing (e.g. while occluded)
components of the scene. In this paper, we propose a stereo-based 3D
reconstruction framework for merging multiple runs of reconstructions
when driving in different directions through a real-world scene.

1 Introduction

Current large-scale camera-based reconstruction techniques can be subdivided
into aerial reconstruction or ground-level reconstruction techniques. Although
a large amount of user interaction is needed, the resulting model is often of
high quality and visually compelling. There are various commercial products
available in the market, demonstrating high quality, such as 3D RealityMaps [1],
for example. However, reconstruction methods using aerial images only cannot
produce models with photo-realistic details at ground level. There is an extensive
literature on ground-level reconstruction; see, for example, [5,9,17]. In both
aerial and ground-level reconstructions, cameras capture input images as they
travel through the scene. Standard cameras only have limited viewing angles.
Thus, a large number of blind spots of the scene exist, resulting in incomplete
3D models, and this is inevitable for a single run reconstruction (i.e. when moving
cameras on a “nearly straight” path, without any significant variations in the
path). A single run has a defined direction, being the vector from start and end
point of the run.

In this paper, we propose a stereo-based reconstruction framework for auto-
matically merging reconstruction results from multiple single runs in different
directions. For each single run, we perform binocular stereo analysis on pairs of
left and right images. We use the left image and the generated disparity map for
a bundle-adjustment-based visual odometry algorithm. Then, applying the esti-
mated changes in camera poses, a 3D point cloud of the scene is accumulated
frame by frame. Finally, we triangulate the 3D point cloud using an a-shape
algorithm to generate a surface model. Up to this stage we apply basically exist-
ing techniques. The novelty of this paper is mainly in the merging step, and we



Fig. 1. From top to bottom: original image of a used stereo frame sequence, and colour-
coded disparity maps using OpenCV (May 2013) block matching or iSGM.

detail the case where two surface models are merged generated from single runs
in opposite directions. Input data are recorded stereo sequences from a mobile
platform. In this paper we discuss greyscale sequences recorded at Tamaki cam-
pus, The University of Auckland, at a resolution of 960 x 320 at 25 Hz, with 10
bit per pixel. Each recorded sequence consists of about 1,800 stereo frames. For
an example of an input image, see the top of Fig. 1.

The quality of the used stereo matcher has crucial impact on the accuracy of
our 3D reconstruction. We decided for iterative semi-global matching (iISGM),
see [8], mainly due to its performance at ECCV 2012 [7]. A comparison with the
block-matching stereo procedure in OpenCV (see Fig. 1, middle) illustrates the
achieved improvement by using iISGM.

The rest of the paper is structured as follows. In Section 2, we estimate
the ego-motion of the vehicle using some kind of bundle adjustment. Section 3
discusses alpha-shape, as used for the surface reconstruction algorithm applied
in the system. Finally, the merging step is discussed in Section 4, also showing
experimental results. Section 5 concludes the paper.

2 Visual Odometry

Visual Odometry [13], the estimation of position and direction of the camera, is
achieved by analysing consecutive images in the recorded sequence. The quality
of our reconstructed 3D scene is directly related to the result of visual odome-
try. Drift in visual odometry [10] often leads to a twist in the 3D model. The
basic algorithm is usually: (1) Detect feature points in the image. (2) Track the
features across consecutive frames. (3) Calculate the camera’s motion based on
the tracked features. In this paper, since we focus on quality, an algorithm [15]
based on Bundle Adjustment (BA) is used for visual odometry.

We tested a basic algorithm for comparison. 2-dimensional (2D) feature
points are detected and tracked across the left sequence only. The speeded-up ro-
bust feature detector (SURF), see [2], is used to extract feature points in the first
frame. We chose SURF over the Harris corner detector [6] (which is a common



choice in visual odometry) because corner points may not be evenly distributed
depending on the geometry of the scene. The Lucas-Kanade [12] algorithm is
used to track these detected features in the subsequent frame. Tracked feature
points serve then as input, and are again tracked in the following frame, and so
on. Since the same set of feature points is tracked, the total number of features
decays over frames. When the total number of features drops below a threshold
7 then a new set of features is detected using again the SURF detector. After
calculating a relative transformation between Frames ¢t — 1 and ¢, the global pose
of the cameras at time t is obtained by keeping a global accumulator, assuming
that the pose of the camera at time 1 is a 4 x 4 identity matrix for initialization.
However, in our experiments, when applying this basic algorithm, the estimation
of camera pose transformations was inaccurate, and became less stable as errors
accumulate along the sequence. In order to improve the accuracy, we apply a
sliding-window bundle adjustment.

Bundle adjustment [16] is the problem of refining the 3D structure as well
as the camera parameters. Mathematically, assume that n 3D points b; are seen
from m cameras with parameters a;, and X;; is the projection of the th point on
camera j. Bundle adjustment is the task to minimize the reprojection error with
respect to 3D points b; and cameras’ parameters a;. In formal representation,
determine the minimum

n m
min Z Z d(Q(aj, b;), Xi5)*
T =1 =1
where Q(a;,b;) is the function projecting point ¢ on camera j, and d is the
Euclidean distance between points in the image plane. Bundle adjustment is a
non-linear minimization problem which can be solved by using iterative methods
such as Levenberg-Marquardt.

Ideally, the best result can be obtained by applying bundle adjustment to all
the recorded frames. But, considering its complexity and the limited comput-
ing power we have, we use a sliding window bundle adjustment (similar to the
method used in [15]), i.e. only optimizing the camera poses within a window of k
frames, and moving this window across the whole sequence (only the left images
are used for bundle adjustment).

Starting from frame F}, a window of k images is constructed and the esti-
mated camera poses are used as initial estimates. Then, bundle adjustment is
applied for the window using the tracked features. In the next iteration, the
window advances by one frame, i.e. we estimate now the camera pose for frame
Fi.11, as described in the previous subsection. The estimated pose for Fj1 plus
bundle-adjusted poses for F5 to F}, serve then as initial estimates for the camera
pose for frame F}o, and so on.

3 Surface Reconstruction

In this section, we build a 3D model of the scene using results of visual odometry.
The final surface representation is polygonal, but in order to build it we construct



a point cloud model first. Once we calculate the pose for cameras for all frames,
building a 3D point cloud model can be as easy as projecting all 3D points derived
from pixels with valid disparities into a global coordinate system. However, we
did not accumulate pixels for all the frames, because the number of points grows
exponentially, and a large percentage of points is actually redundant information.
(The vehicle was driving at 10 km/h only, and recall that images were captured
at 25 Hz.) For each frame, only pixels within a specified disparity range are used,
due to the non-linear property of the Z-function. See Fig. 2 for an example.

Point-cloud data usually contain large portion of noise and outliers, and the
density of points varies across the 3D space. Two additional steps are to be
carried out to refine the quality of the point cloud.

Down-Sampling. A voxel grid filter is applied to simplify cloud data, thus im-
proving the efficiency of subsequent processing. The filter creates a 3D voxel
grid spanning over the cloud data. Then, for each voxel, all the points within
are replaced by their centroid.

QOutlier Remowal. Errors in stereo matching and visual odometry lead to sparse
outliers which corrupt the cloud data. Some of these errors can be eliminated by

Fig. 2. A generated point cloud model. Yellow cubes indicate detected camera poses.

Fig. 3. A created surface model. Yellow cubes indicate camera poses.



applying a statistical filter on the point set, i.e. for each point, we compute the
mean distance from it to all of its neighbours. If this mean distance of the point
is outside a predefined interval, then the point can be treated as an outlier and
is removed from the set. The order of these steps affects the overall performance
of the process. The down-sampling process is significantly faster than outlier
removal. Thus we decided to perform these two processes in the listed order.

Given a set S of points in 3D, the a-shape [4] was designed for answering
questions such as “What is the shape formed by these points?” Edelsbrunner
and Miicke mention in [4] an intuitive description of 3D a-shape: Imagine that
a huge ice-cream fills space R? and contains all points of S as “hard” chocolate
pieces. Using a sphere-formed spoon, we carve out all possible parts of the ice-
cream block without touching any of the chocolate pieces, even carving out holes
inside the block. The object we end up with is the a-shape of S, and the value
« is the squared radius of the carving spoon.

To formally define the a-shape, we first define an a-complex. An a-complex
of a set S of points is a subcomplex of the 3D Delaunay triangulation of S, which
is a tetrahedrization such that no point in S is inside the circumsphere of any
of the created tetrahedra. Given a value of «, the a-complex contains all the
simplexes in the Delaunay triangulation which have an empty circumscribing
sphere with squared radius equal to, or smaller than «. The a-shape is the
topological frontier of the a-complex.

In our reconstruction pipeline, after obtaining and refining a point-cloud
model, the a-shape is calculated and defines a 3D surface model of the scene.
See Fig. 3 for an example. Compared to Fig. 2, the reader might agree with our
general observation that the surface model looks in general “better” than the
point-cloud visualization.

4 Merging Models from Opposite Runs

Now we are ready to discuss our proposed merger of point-cloud or surface data
obtained from multiple runs through a 3D scene.

The 3D model reconstructed from a single run (i.e. driving through the scene
in one direction) contains a large number of “blind spots” (e.g. due to occlusions,
e.g. the “other side of the wall”, or the limited viewing angle of the cameras, but
also due to missing depth data, if disparities were rated “invalid”). By combining
the results from opposite runs, we aim at producing a more accurate and more
complete model of the scene.

The task of aligning consistently models from different views is know as
registration. Fully automatic pairwise registration methods exist for laser-scanner
data, and the main steps are listed below

1. Identify a set of interest points (e.g. SIFT [11]) that best represent both 3D
point sets.

2. Compute a feature descriptor at each interest point, using methods such as
fast point feature histograms (FPFH); see [14].



Fig. 4. Bird’s-eye view of an initial alignment of two opposite runs. Results of each
run are shown in different colours.

3. Estimate the correspondence between two sets of feature points based on
their similarities. The simplest method is brute-force matching.

4. Assuming that the data is noisy, invalid correspondences are rejected to
improve the registration.

5. Compute the pose transformation from the remaining correspondences.

6. Use the resulting estimation as an initial alignment; then apply an iterative
closest points technique (ICP) to further align two point sets; see [3].

However, compared to laser-scanner data, stereo data is more inaccurate and
contains a significant amount of noise, especially around the edge areas of scene
objects. Therefore, the method stated above is not applicable for our system
in this form. Considering the complexity of the scene (i.e. objects may look
completely different from opposite directions) and the inaccuracy of stereo data,
we propose the following semi-automatic method to align the two stereo point
clouds.

Initial Alignment. We let the user manually select a set of corresponding points
from both models. Then, a rough estimation of alignment is calculated by ap-
plying the least-square method. See Fig. 4 for an example.

Adjustment. Due to (not fully avoidable) errors in the visual odometry process
and the considerable dimension (length) of the recorded scene, both point-cloud

Fig. 5. Bird’s-eye views of individual and merged surface models.



Fig. 6. Street views illustrating the benefit of merging 3D data.

models cannot be perfectly aligned as a whole. (Both models are twisted to a
certain degree in 3D space.) Therefore, we break the point cloud models into
a few segments along the Z direction (the main driving direction). Then we
loop through each segment, apply feature matching across the two point-cloud
models using 3D feature detectors, such as SIFT. A more precise alignment for
this segment is calculated by matching the two feature sets. If the new alignment
does not differ from the initial alignment more than a threshold 7, the new
alignment is applied to the cloud segment.

Post Processing. Since we merged two (very extensive) point clouds, the point
density is not uniform any more. We need to down-sample the merged point cloud
again (as described in the previous section), for the convenience of subsequent
processing. After the merged point cloud is simplified, a surface model can be
created using the a-shape algorithm. See Fig. 5 for surface models of two separate
runs, and for the merged point cloud.

The street views in Fig. 6 show clearly the benefit of merging: many of the
missing parts in one run are filled-in by reconstruction results of the second
run. The facades of buildings and other details of the scene are getting more
complete, with an accuracy as defined by stereo matching and visual odometry.
We will not further illustrate the obvious positive effects, but like to point on
two detected issues when merging. Figure 7 reveals that occlusions walls from
opposite directions intersect each other. Due to the inaccurate disparities around
the edge area, a wall structure can be formed along the viewing direction on the
edge. When merging models from opposite runs, the occlusion walls from the
two models intersect each other.

Fig. 7. Occlusion walls from opposite directions intersect each other.



5 Conclusions and Future Work

In this paper we described a stereo-based 3D reconstruction pipeline for mod-
elling street scenes. We proposed a semi-automatic method for aligning mod-
els reconstructed from opposite directions, to fill-in missing components. Our
proposed system is certainly useful for improving the completeness of ground-
level 3D reconstruction. It might also be useful for combining results of aerial
and ground-level large-scale 3D reconstruction. For future improvements we see
needs to increase the accuracy of the visual odometry process, and to enhance
the quality of the point cloud model. Evaluation on the quality and performance
of the reconstruction system also needs to be done.

Acknowledgment: The authors thank Simon Hermann for the provision of
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