Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
AN INPUT-OUTPUT MODEL OF NORTHLAND'S ECONOMY:
WITH APPLICATION TO FORESTRY

A thesis submitted in partial fulfilment of
the requirements of the degree of Doctor of Philosophy
at the University of Auckland

Christopher I. Moore

Department of Theoretical and Applied Mechanics
School of Engineering, University of Auckland,
New Zealand

November 1981
This work presents a 50-industry input-output model of Northland's economy and demonstrates how input-output analysis could be used to enhance regional planning in New Zealand. As it is the first regional input-output model in this country to incorporate significant survey and secondary data the survey procedure and model construction are outlined. The input-output table is used to discuss important regional transactions and the purchase and sales patterns of industries. The model analyses industries' contributions to export receipts and import payments and calculates the impact of changes in export receipts on regional income and imports. A comprehensive multiplier analysis of Northland's economy covers output, income, employment and imports and confidence limits for the multipliers are developed using the Monte Carlo technique to simulate survey errors. The model explores the economic implications of forestry expansion in Northland and discusses the areas available for afforestation, planting rates, tree management, wood supply and wood processing options in the region. The modifications made to the model and data requirements for simulating forestry expansion are outlined and employment and income impacts given for three types of processing complexes and for forestry expansion as a whole. Finally an economic evaluation is made of the impacts of processing-plant construction and supporting services.
ACKNOWLEDGEMENTS

Firstly I would like to thank Associate Professor Mervyn Rosser for his supervision and advice throughout the study. Thanks also to Professor Cecil Segedin for his encouragement over the years. Special thanks go to my wife, Judith and daughter Olivia, for their unflagging support during the study. I am also indebted to the Ministry of Works and Development for their assistance and to many other government departments and private companies for advice and information received. Finally my thanks to Shelley Carlyle for her skilful typing of the thesis.
TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION
1.1 Introduction .. 1
1.2 Experience with Regional Input-Output Analysis in New Zealand 2
1.3 Objectives and Scope of the Study 3
1.4 The Remaining Chapters .. 3

CHAPTER 2 - THE INPUT-OUTPUT MODEL
2.1 Introduction .. 5
2.2 The Accounting Framework of the Input-Output Model 6
 2.2.1 Reading the Transactions Table 6
 2.2.2 The Transactions Table as a Descriptive Model 8
 2.2.3 The Transactions Table as an Economic Model 9
2.3 The Input-Output Model .. 10
 2.3.1 Derivation of the Model 10
 2.3.2 An Example 6-Industry Model 13
2.4 Assumptions .. 16

CHAPTER 3 - CONSTRUCTION OF THE INPUT-OUTPUT TABLE
3.1 Preliminary Considerations 19
 3.1.1 The Study Area .. 19
 3.1.2 Choice of Base Year .. 20
 3.1.3 Compiling a Business Register 20
 3.1.4 Sectoring .. 23
 3.1.5 Questionnaire Design .. 25
3.2 Survey Procedure .. 31
 3.2.1 Sampling .. 31
3.2.2 Introductory Letter 32
3.2.3 Personal Contact 32
3.2.4 Follow-up Procedure 33
3.2.5 Telephone Survey 33
3.3 Survey Response 33
3.3.1 Response 33
3.3.2 Comments and Findings 35
3.4 Development of Control Totals 36
3.4.1 The Processing Sector 36
3.4.2 The Final Demand and Primary Payments Sectors 38
3.5 Input-Output Table Construction 40
3.5.1 Automatic Versus Manual Compilation 41
3.5.2 Purchase Versus Sales Data 41
3.5.3 Information Sources 41
3.5.4 An Outline of the Calculation Procedure 43
3.5.5 The Reconciliation Process 46
3.6 Conclusions 46

CHAPTER 4 - A DESCRIPTION OF NORTHLAND'S ECONOMY
4.1 Introduction 48
4.2 An Input-Output Description of Northland's Economy 50
4.2.1 Introduction 50
4.2.2 The Transactions Table 50
4.2.3 Purchase Patterns 52
4.2.4 Sales Patterns 55
4.3 Direct and Indirect Exports and Imports 57
4.4 Aggregate Export Multipliers 59
4.4.1 Simple Export Multipliers 61
4.4.2 Total Export Multipliers 63
4.4.3 Conclusions 65
4.5 Economic Base Multipliers 65

CHAPTER 5 - MULTIPLIER ANALYSIS
5.1 The Multiplier Concept 67
5.1.1 Introduction 67
5.1.2 Input-Output Multipliers 70
5.1.3 An Example 71
5.1.4 Household Consumption Function 73
5.1.5 Mathematical Formulation of Input-Output Multipliers 75
5.1.6 Revised Multipliers 80
5.1.7 The Relationship between Type I and Type II Multipliers 81
<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Town and Country Planning Act 1977: First Schedule - Matters to be dealt with in Regional Schemes</td>
<td>153</td>
</tr>
<tr>
<td>B</td>
<td>Northland Sectors in Terms of those used in the New Zealand Interindustry Study 1971/72</td>
<td>156</td>
</tr>
<tr>
<td>C</td>
<td>Questionnaire and Covering Letters</td>
<td>158</td>
</tr>
<tr>
<td>D</td>
<td>Introductory and Follow-up Letters plus Calculation Forms</td>
<td>174</td>
</tr>
<tr>
<td>E</td>
<td>Information Sources by Industry and Sector</td>
<td>178</td>
</tr>
<tr>
<td>F</td>
<td>Error Distribution, Generation Technique and Confidence Limit Calculation</td>
<td>221</td>
</tr>
<tr>
<td>G</td>
<td>Error Limits associated With Run 5 and 'Special Run' Plus Confidence Limits for Normal and Revised Income and Employment Type I and Type II Multipliers</td>
<td>227</td>
</tr>
<tr>
<td>H</td>
<td>Errors in Direct Coefficients and their effect on Multiplier Accuracy</td>
<td>233</td>
</tr>
<tr>
<td>I</td>
<td>Input-Output Tables</td>
<td>236</td>
</tr>
</tbody>
</table>