http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Wave-Wave Interactions and the Infrasonic Pressure Field in the Ocean

A thesis submitted to

The University of Auckland

in partial fulfilment of

the requirements for the degree of

Doctor of Philosophy in Physics

by

Cheng Yi Wu

Auckland December 1988
Abstract

Building on Kibblewhite's long term investigations of the nonlinear wave-wave interactions and the infrasonic ocean noise and the microseisms these induce, this thesis further explores the physical nature of these processes. The classical description of this interaction, which takes into account only the homogeneous component of the induced field, has been extended to include the inhomogeneous component. A complete expression for the wave induced noise spectrum is established following a geometrical analysis of the dispersion relations among interacting waves. The relative importance of these two components and their directivity properties are also calculated and discussed. It is shown that while at observation points deeper than 500 meters the effects of the inhomogeneous component can be regarded as negligible, it can cause an increase of noise level of up to 40 dB in the region near the surface of the sea. Furthermore, in contrast to the nearly omni-directional distribution of the homogeneous component of the induced acoustic field, there is a tendency for the energy associated with the inhomogeneous component to focus in the wind direction.

Based upon a multilayer analysis of a visco-elastic geoacoustic model, Green's functions and the spectral transfer functions relating the surface source pressure field to the underwater noise and microseism fields are derived for both near and far field cases. A 3-dimensional presentation defined on the dispersion plane (frequency and horizontal wave number) is introduced to describe the sea bottom reflection-loss and Green's functions, and is extended to include the inhomogeneous region for the first time. The characteristics of this 3-D presentation are explained in terms of the geoacoustic parameters.

The influence of the interaction of multiple seas (and swell) on the induced acoustic field are also discussed in this thesis.

All these effects are considered in the calculation of the synthetic spectra of both the noise and microseism field. When compared with measured data excellent agreement is found between the theoretical and experimental results, which provides further confirmation that the nonlinear interaction is the most important source of the infrasonic ocean noise, as well as confirming the basic validity of the procedure introduced by Kibblewhite and Ewans to derive the ocean noise spectra from microseism records.
Acknowledgements

Now I am finally close to the end of the project. I am very excited. Four years ago, attracted by the interesting connection between the ocean wave activities and microseismic noise records reported by Kibblewhite and Ewans I began this study. When I firstly got from Professor Kibblewhite his collection of four fully packed boxes of reference papers I could not keep from being surprised by the complexity and involvement of this subject. So many branches of science: air turbulent motion, ocean wave development, underwater acoustics, and seismic wave propagation are involved and I wondered what I should choose to do first. It was Professor Kibblewhite who had then suggested and encouraged me to focus on the physical nature of the wave interaction process and the energy transfer in real environments. For the last four years I have been kept in going progressively in this direction without straying.

Reviewing the whole process I owe all the progresses in the study to Professor Kibblewhite, my supervisor. His close guidance is vitally important to my studies at each stage. His enthusiasm for exploring unknowns as well as the spirit of devoting to science have greatly influenced me, and most importantly, his deep insight into the subject and rich in experiences of scientific researches have from time to time guided me solving all the problems I met. Infact, what I have done is only small improvements based on his previous wide range investigations. I owe him also most of original ideas and motivations in the development of this study. I got from him all the geoacoustic parameters and experimental data used in the thesis. Besides these, financially supported me to cover all the expenses. Without all these it would never be possible for me to finish this study. Another thing which often touched me deeply was the great patience he exercised in correcting my poor English drafts and even rewriting them.

I would also like to address here my warm acknowledgement to Dr.K.C. Ewans. His comprehensive thesis, "Ocean Waves, Microseisms, and Their Interrelations", recorded vast amount of experimental data, from which I learned about the previous investigations as well as the background knowledge about the subject.

I thus always feel it not proper to put only my name as the author of the thesis. In fact in this long period of study I received also large amount of help, beside those mentioned above, from all my friends and colleagues in the department.

Without exaggeration I can say that without the help of Mr.N.G.Plumpton this thesis could not have been presented in this form. He undertook the tough tasks of organizing and
checking the data and computation programs, designing and replotted all the graphs, and
the typing and editing. I am also grateful to him for valuable suggestions and discussions.
His skills and nature of pursuing high qualities in all his work impressed me deeply.

My felt thanks should also be addressed to Dr.S.M.Tan for the 3-dimentional plotting
software which has proved to be very helpful to the development of the thesis.

I also remember that it was Mr.P.L.Pearce, Mr.D.E.Ash, and Mr.G.Deane who had
initially helped me to get famliar with the computer systems of the department. In the
later years they also kindly helped me in different ways.

Here I must also show my high respect and thanks again to Professor
A.C.Kibblewhite, Dr.C.T.Tindle, Dr.M.D.Johns, Dr.G.E.J.Bold, and Dr.B.J.Brennan
for their interesting lectures. Their profound knowledge about the Ocean Dynamics,
Underwater Acoustics, Signal Processing, and Seismic Wave Propagation helped me in
my research.

Finally, let me take this opportunity to express my respect and thanks to Professor
A.R.Poletti, all the staff members and secretaries of the department for all the help,
concern, friendship and kindness I have received from them in this long period of four

Cheng Yi Wu
Contents

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>The Generation of Infrasonic Ambient Noise in the Ocean by Nonlinear Interactions of Ocean Surface Waves</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Non-Linear Interaction Between Plane Surface Wave Trains and the Resulting Source Pressure Field</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Response of a Liquid Layer Overlying a Solid Half-Space to a Plane-Wave Pressure-Field</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>The Underwater Infrasonic Noise Field Induced by Nonlinear Interactions in Surface Wind Waves</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>The Spectral Transfer Functions and Their Approximations</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>The Shear-Wave Contribution</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>Summary</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Appendix</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>The Relative Levels of the Homogeneous and Inhomogeneous Components of the Acoustic Pressure Field</td>
<td>65</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>66</td>
</tr>
<tr>
<td>3.2</td>
<td>Geometrical Description of Wave-Wave Interactions</td>
<td>70</td>
</tr>
<tr>
<td>3.3</td>
<td>Wave Number-Frequency Spectrum of the Pressure Field</td>
<td>71</td>
</tr>
<tr>
<td>3.4</td>
<td>Homogeneous and Inhomogeneous Components of the Pressure Field</td>
<td>73</td>
</tr>
<tr>
<td>3.5</td>
<td>General Expressions for the Wave-Induced Underwater Pressure Field and Microseisms</td>
<td>76</td>
</tr>
<tr>
<td>3.6</td>
<td>Space-Time Covariance and an Equivalant Source Level of the Noise Pressure-Field</td>
<td>76</td>
</tr>
<tr>
<td>3.6.1</td>
<td>An analysis based on the plane-wave reflection coefficient</td>
<td>76</td>
</tr>
<tr>
<td>3.6.2</td>
<td>An analysis based on the Green’s function</td>
<td>77</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Comparison of the two approaches</td>
<td>78</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Ocean surface-noise source level</td>
<td>81</td>
</tr>
</tbody>
</table>
CHAPTER 4 Directivity of the Underwater Acoustic Field Induced by Nonlinear Interaction of Ocean Surface Gravity Waves

4.1 Introduction
4.2 Nonlinear Coupling of Interacting Surface Waves And the Induced Acoustic Wave Field
4.3 Angular Distribution Function of the Homogeneous Component
4.4 Angular Distribution Function of the Inhomogeneous Component
4.5 Numerical Examples
4.6 Summary
References
Appendix

CHAPTER 5 A Reexamination of the Role of Wave-Wave Interactions in Ocean Noise Generation

5.1 Introduction
5.2 Basic Theoretical Predictions
5.3 The Ocean-Wave Spectra
5.4 The Influence of the Spreading Coefficient on the Pressure Field
5.5 The Transfer Function
5.6 The Event of 16-24 October 1981
5.7 The Case of Multiple Seas
5.8 The Sediment - Velocity Structure
5.9 The Shear-Wave Contribution
5.10 The Theoretical and Revised Experimental Curves
5.11 Frequency Dependence of the Noise Fields
5.12 Conclusions
References
Appendix

CHAPTER 6 The Plane-Wave Reflection Coefficient for a Multi-Layered Visco-Elastic Seabed

References
Appendix
CHAPTER 7 Spectral Transfer Functions and Green’s Functions for a Multilayered Seabed

7.1 Introduction
7.2 The Integral Solution of the Wave-Induced Underwater Pressure and Microseismic Fields
7.3 Far and Near-Field Approximations
7.4 Spectral Transfer Function
7.5 On-Shore Microseism Response
7.6 The Green’s Function in its Three Dimensional Form
7.6.1 Two-layered model involving the water layer and a “hard” seabed
7.6.2 Three layer models
7.6.3 The K-model
7.7 Summary
References
Appendix

CHAPTER 8 Spectral Characteristics Of The Wave-Induced Pressure-Field

8.1 Introduction
8.2 The Influence of Water Depth
8.3 The $|E|^2$ Functions for the MK-Model
8.4 The Effect of the Unconsolidated Sediment Layer
8.5 The Effects of the Low Shear-Velocity Layer ($LSVL$)
8.6 Comparison with the Kibblewhite-Ewan's (KE) Spectra 189
8.7 Comparison with the Webb and Cox Experiment 192
8.8 Comparison of Synthetic Microseismic Spectra with the Measured Data 194
8.9 Summary 195
References 197
Appendix - Analysis of the $|E|^2$ Functions in the δ-f Plane
A.1 The Case of a Water Layer Overlying a Solid Half-Space 199
A.2 The Multilayered Case 201

CHAPTER 9 Conclusions 204