

RESEARCHSPACE@AUCKLAND

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

Growth and Development of Intellectually Handicapped Children

by Margaret R Sims

October 1982

A thesis presented to the Department of Anthropology, Auckland University for the degree of Doctor of Philosophy

UNIVERSITY OF AUCKLAND LIBRARY

8360111114130021 THESIS

83-122

cop. 2.

FORRESTERS LAW: In a complex social system, the obvious, commonsence solution to a problem will turn out to be wrong most of the time.

ACKNOWLEDGEMENTS

I owe many people thanks for their help with this research. First I would like to thank the New Zealand Society for the Intellectually Handicapped for their permission to work in several of their Preschool/Special Care Centres. The staff at these Centres were always obliging and prepared to spend time to assist me. I would like to thank them all. To the parents of all the children I also present my thanks. They all expressed keen interest in the study and were prepared to spend time with me every assessment when I needed them. To the children themselves I give a big vote of thanks. They welcomed me back each time with a smile.

I would like to thank my supervisors, Dr G Bridgman and Dr G Tunnell. They both worked very hard to help get this thesis into its final form. To Geoff especially I want to say thanks for all the over-time put in.

The statistical analyses in this thesis were only possible because of clear and patient advise from Mr Steve Black. I want to thank you Steve, for all the time you spent advising and teaching me the correct way to approach statistics. I also owe thanks to the staff of the Computer Centre. Without their help I would never have been able to cope with all the computing in this thesis. I would specially like to thank Mr Russell Fulton for his patient help with my computing problems.

I thank Mr Marc Rackley who wrote the programme to convert the raw nutrition data into nutrient intakes per day. Thank you Marc. You did a job for me that I could never have done myself and I appreciate that.

I would also like to thank Mr Reg Croawell who kindly donated the paper for this thesis. Your support was greatly appreciated Reg.

ABSTRACT

There have been no studies in New Zealand designed to investigate the effectiveness of the major "systems-based" programme available for intellectually intervention handicapped children; the service offered by the New Zealand Society for the Intellectually Handicapped. The Society does not have a standardised programme running in all its Preschool/Special Care Centres throughout the country. However, the Auckland branch developed a formalised approach to programming and teaching in 1979. This study attempted to determine the effectiveness of this new approach in terms of the children it was designed to benefit. It was found that children attending Auckland Preschool/Special Care Centres did show greater rates of progress than children attending Preschool/Special Care Centres outside Auckland for a variety of different skills. For Downs Syndrome children these were self-help, cognitive and language skills. For motor-delayed multihandicapped children the skills were selp-help and language. These differences persisted when differences between the social and environmental backgrounds of the children from Auckland and outside Auckland were controlled for.

It was also found that Downs Syndrome, motor-delayed multihandicapped and normal children showed different rates of progress for motor, socialisation, cognitive/academic and language skills. Rates of progress were not different for self-help skills although the absolute level of achievement was significantly different for the three poulations.

The three groups of children showed different rates of growth in a variety of physical measurements, and different absolute sizes in several others. Downs Syndrome children have shorter limbs than either of the other two groups of children. They also have the narrowest jaws and a small thorax. Motor-delayed multihandicapped children have the smallest limb diameters but have the longest faces.

Downs Syndrome, motor-delayed multihandicapped and normal children differ in several ways in their social and environmental backgrounds. Parents of Downs Syndrome children are older than parents of the other two groups. Mothers of intellectually handicapped children are less likely to have a job than mothers of normal children. Different health records are evident between the three populations. Normal children tend to be seen as more healthy by their parents. Intellectually handicapped children tend to have less ascorbic acid in their diet than normal children.

Downs Syndrome children are more susceptible to minor environmental fluctuations than motor-delayed multihandicapped or normal children. The cumulative effect of this hostile environment can be seen in their short stature and smaller overall body dimensions compared to normal children.

Motor-delayed multihandicapped children do not show the same reaction to the environment as Downs Syndrome children. In this more severely handicapped group, the effect of the motor and intellectual handicap over-rides any effect the environment might have. However, nutritional intake is closely related to physical growth in these children. This is because in most cases exercise does not mediate between nutritional intake and physical growth.

* * * * * * * * * *

TABLE OF CONTENTS

CH	AF	TI	ER	- 1

INTRODUCTION
1.1 THE NEW ZEALAND SOCIETY FOR THE
INTELLECTUALLY HANDICAPPED
1.1.1 Preschool/Special Care Centres
1.2 GROWTH AND DEVELOPMENT OF THE
INTELLECTUALLY HANDICAPPED 6
1.2.1 Downs Syndrome
1.2.2 Motor-delayed multihandicapped
1.2.3 Normal children
1.3 RELATIONSHIP BETWEEN PHYSICAL AND
MENTAL GROWTH
HENTAL ONOWIN,
1.4 SOCIAL, ENVIRONMENTAL AND NUTRITIONAL
INFLUENCES 16
1.5 ORGANISATION OF THESIS
CHAPTER 2
DATA COLLECTION
2.1 THE SAMPLE
2.2 THE ANTHROPOMETRIC MESUREMENTS
2.2.1 Growth and normal children 25
2.3 THE PSYCHOLOGICAL ASSESSMENTS
2.3.1 IQ tests and normal children
2.4 THE QUESTIONAIRE DATA
2.4.1 The growth questionnaire
2.4.2 The Interview Questionnaire 40
2.4.3 The Preschool/Special Care Centre
Questionnaire 42

CHAPTER 3

SOCIAL/ENVIRONMENTAL INFLUENCES ON		
GROWTH AND DEVELOPMENT		. 4
3.1 INTRODUCTION		. 4
3.2 BIOLOGICAL AND SOCIAL VARIABLES	. ,	. 4
3.2.1 Birth order and family size		. 4
3.2.2 Birth weight and gestation		. 4
3.2.3 Parents' heights and weights		. 4
3.2.4 Parental ages		. 5
3.2.5 Socioeconomic Status		. 5
3.2.6 Demographic Patterns		. 5
3.2.7 The effect of biological/social		
variables on growth and development		. 6
3.3 HEALTH		7
3.3.1 Introduction		
3.3.2 Demographic patterns		
3.3.3 Relationship of health to		• 1.
growth and development		. 7
3.4 MOTHERS' AGE AT MENARCHE		
3.4.1 Introduction		
3.4.2 Demographic patterns		. 8
3.4.3 Relationship between mothers' age		
at menarche and growth and development	•	. 8
.5 CONCLUSIONS		83
Y Committee to		
CHAPTER 4		21
NUTRITION		A. DOILE
4.1 INTRODUCTION	•	. 87
4.2 SOCIOECONOMIC PATTERNS IN FOOD CONSUMPTION		. 89
4.2.1 Analyses		. 92
4.2.2 Results and Discussion		. 92
A COMPARISON WITH OTHER WITHTOWN COUNTRY		101
4.3 COMPARISON WITH OTHER NUTRITIONAL STUDIES		
4.3.1 Results and Discussion		. 10

4.4 P	OPULATI	ON I	IF	FEF	REN	CE	S	IN	N	UT	RI	TI	ON	•	٠	٠		٠	٠	•	.108
4.4.1	Analys	is .															•	•			.109
4.4.2	Result	s ar	nd 1	Dis	scu	SS	ic	n	٠	•	٠		•	٠			•	٠	٠	٠	.109
4.5 A	NTHROPO	METI	RY .	ANI	0 1	IUI	'RI	TI	ON	IAL		ST A	TU	IS		: *)		•	•		.117
4.5.1	Analys	is				٠		•	*	٠			٠	4	٠			٠	٠	•	.118
4.5.2	Result	s ar	nd :	Dis	seu	:55	ic	n	•				٠	٠	1	٠	•	*	×	÷	.119
4.6 C	ONCLUSI	ONS			•	•	ě	٠	•	.	•	•	٠	•	٠	•	٠		•	٠	.127
							CH	IAP	TE	R	5										
PRESC	HOOL/SP	ECI	AL	CAI	RE	SE	ERV	/IC	E		٠		٠		•						.133
5.1 I	NTRODUC	TIO	Ν.	٠	•	•	•	•		•				٠	٠		•	•	•	٠	.133
5.2 A	NALYSES				•		*	•											•	•	. 140
5.3 R	ESULTS	AND	DI	SCI	JSS	SIC	NC			٠			•								.141
5.4 C	ONCLUSI	ONS																			. 150
							CH	HAF	T	ER	6										
DATA	REDUCTI	ON			•	ě					٠	•	•	٠	•	٠		ķ			.152
6.1 T	HE SUBS	SAMP	LES		٠		•		•	٠	¥	٠		ý		•					.154
6.1.1	Method	i .					•	*		٠	٠						٠	•	٠		. 154
6.1.2	Conclu	sio	ns.		٠		•	*	٠		٠	•	٠	٠	٠	١,	٠	٠	٠	•	.162
6.2 P	RINCIPA	AL C	OMP	ON	EN:	rs	Al	NAI	Y:	SIS	s.										. 163
	Birth																				
	School																				
	Socio																				
	Nutrit																				
	Health																				
6.3 R	REGRESS	ION								*				•		٠		•		•	. 169
6.3.1	Regre:	ssio	n 1					٠	*				•	•	٠	٠	•				.170
6.3.2	Regre	ssio	n 2		*	٠	٠	٠	×	•	٠	٠	٠	٠	*	٠	•	•	•	٠	.172
640	OVARTA	res									ĕ.										.175

CHAPTER 7

AUCKLAN	D VS	OUTS	IDE	AU	ICK	LA	ND	P	RE	SC	HC	100								
																			. 1	.17
7.1 ANA	YSES																			
7.2 DOW	NS SY	NDRO	ME																	.180
7.3 MOT	OR-DE	LAYE	D M	ULT	ΊΗ	AN	DI	CA	PP	ΕD										. 197
7.4 CON																				
					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.200
						С	HA	PT	ER	8	į									
DOWNS S	CNDRO	ME V	S M	OTO	R-	DE	LA	YE	D											
М	JLTIH	ANDI	CAPI	PED	٧	S	NO	RM	AL											.202
8.1 ANA																				
8.2 PSY																				,
8.3 PHYS																				
8.3.1 Bd																				
8.3.2 Bd																				
8.3.3 Le																				
8.3.4 Ar																				
8.3.5 He																				
8.3.6 Fa	cial	meas	ure	mer	nts	5.	٠	٠	•	*	٠	٠	•	•	•	•	•	9	*	.240
8.4 CONC	LUSIO	NS.						•		•	٠	٠					•			.241
						CH	IAF	PTE	ER	9										
THE RELA	TIONS	HIP	BET	WEE	EN	PH	YS	SIC	AL	. (R)WI	H	Al	ND.					
						M	EN	ITA	L	DE	V	ELC	PM	1EN	T	٠				.244
9.1 ANAL	YSES			×	٠	•		٠		٠		•	٠	٠	٠		٠			.244
9.2 RESU	LTS A	ND D	ISC	USS	SIC	N										į.				.245
9.2.1 Bo	dy bu	lk.												Ì		Ĭ				.247
9.2.2 Bo																				
9.2.3 Ar	n mea	sure	men	ts							**							e u		248
9.2.4 Le	g mea	sure	men	ts							3				e e		isi is	18		.250
9.2.5 Fa	ce me	asur	emei	nts															el el	.251
9.2.6 He	ad mea	asur	emei	nts					è					•						.251
9.3 CONC																				252
							•		1	200	140	164	4	100						12

CHAPTER 10

CONCLUDI	NG 1	REMAI	RKS .	٠	•		٠	•	×	٠	٠	٠	ķ	٠	٠	٠	٠	٠	.254
APPENDIX	1:	THE	QUES	TIC	ии.	AIF	ES	i s i	•	٠	•		٠	•	•	•	•		.269
APPENDIX	2:	THE	DATA	٠.	•	•		•		•	•	•	•	•	×	٠	•	٠	.281
APPENDIX	3:	THE	ANTE	IROI	POM	ETI	RIC	M	EA:	SU	REI	ME	NT	s.	•		•	•	.299
APPENDIX	4:	OUT	SIDE	AUG	CKL	AN]	Q Q	UE	ST	10	NN.	AI	RE	•	٠	٠	•	•	.304
BIBLIOGR	APH	Υ.			•			•	•	•	,	,					•	•	.305

* * * * * * * * *

TABLES

Table	2.1	Comparison of normal sample with				
		Auckland standards				26
Table	2.2	Comparison of New Zealand standards				
W	ith	school-aged children from this study .		٠		30
Table	2.3	Correlations between the tests		٠	٠	37
Table	2.4	Correlation coefficients between				
	tes	st/retest for nutrition variables			٠	42
Table	3.1	Family size in precentages		٠	•	56
Table	3.2	Birth order (sibrank) in				
		percentages	•	٠	•	57
Table	3.3	Birth weight and gestation				
		in percentages	٠	•	٠	57
Table	3.4	Problems of pregnancy or birth				
		in percentages		*	٠	57
Table	3.5	Parental factors	٠	•		
Table	3.6	Socioeconomic Status in percentages			•	60
Table	3.7	Education of parents by population				
		in percentages	•	•		61
Table	3.8	Income of parents in early 1979				
		in percentages		٠		62
Table	3.9	Standardised regression coefficients .	٠	٠	٠	65
Table	3.1	O Health ratings in percentages			٠	75
Table	3.1	1 Standardised discriminant coefficients	3			
for fu	unct	ion 1: health rating and psychological				
		test scores.				77
Table	3.1	2 Means of variables within each				
		health category		٠	٠	77
Table	3.1	3 Standardised discriminant function				
coeff	icie	nts for function 1: health category				
		and physical variables	*	•		78
Table	3.1	4 Means of variables within each				
		health category		٠	٠	78
Table	3.1	5 Age of mother at menarche			•	81
Table	3.1	6 Standardised discriminant coefficient:	3			
for f	unct	ion 1: mothers age at menarche and the				
		psychological test scores.				82

Table 3.17 Standardised discriminant coefficients	
for function 1: mothers age at menarche and the	
physical variable set	. 82
Table 4.1 Foods which showed socioeconomic	
differences in normal children and either of	1
the intellectually handicapped groups (in %)	. 93
Table 4.2 Foods which showed socioeconomic	
differences only for normal children (in %)	. 96
Table 4.3 Foods which showed socioeconomic	
differences in both intellectually handicapped	
groups but not for normal children (in %)	. 97
Table 4.4 Foods in which only motor-delayed	
multihandicapped children show socioeconomic	The.
differences (in %)	. 98
Table 4.5 Foods for which Downs Syndrome children	
only show socioeconomic differences (in %)	. 99
Table 4.6 Comparison of nutrition	
information from various studies	.107
Table 4.7 Compariosn of nutrient intake	.110
Table 4.8 Discriminant results for high and	
medium intake of nutrients for Downs Syndrome	.120
Table 4.9 Discriminant results for high and	
medium intake of nutrients for motor-delayed	
multihandicapped	.122
Table 4.10 Discriminant results for high and	
medium intake of nutrients for normal children	.124
Table 5.1 Discriminant function coefficients	.142
Table 5.2 Means of variables important	
in discrimination	.143
Table 5.3 Pupil/teacher ratios	.146
Table 6.1 Variables in groupings	.155
Table 6.2 Chi-square and significance for	
discriminant function	. 157
Table 6.3 Means of variables in significant	
discriminations	.158
Table 6.4 Chi-squared and significance for	
discriminant function	.160
Table 6.5 Means for variables significant in	
the discrimination	161

Table	6.6 Means for variables in significant			
	discrimination	•		.162
Table	6.7 Principal components for birth			.164
Table	6.8 Principal components for schooling			.165
Table	6.9 Principal components for socioeconomic	٠		
	status		٠	.166
Table	6.10 Principal components for nutrition		*	.167
Table	6.11 Principal components for health	•		.168
Table	6.12 Anthropometric categories	٠		.169
Table	6.13 Regression 1 results	•	•	.171
Table	6.14 Regression 2 results	٠	ě	.173
Table	7.1 ANOVA Table for Bayley/Stanford-Binet.	٠		.180
Table	7.2 ANOVA Table for Motor	•	٠	.181
Table	7.3 ANOVA Table for Self-help	•	•	.182
Table	7.4 ANOVA Table for Socialisation			.183
Table	7.5 ANOVA Table for Cognitive	•	•	.184
Table	7.6 ANOVA Table for Language	÷	*	. 191
Table	7.7 ROP's and DQ's for Downs Syndrome	•		.191
Table	7.8 Apetite ratings for the 12 Downs			
	Syndrome children. In %	٠	٠	.194
Table	7.9 Eating problems for 12 Downs			
	Syndrome. In %			
	7.10 ANOVA Table for MDMH Bayley			
	7.11 ANOVA Table for MDMH Motor			
	7.12 ANOVA Table for MDMH Self-help			
	7.13 ANOVA Table for MDMH Socialisation			
	7.14 ANOVA Table for MDMH Cognitive			
Table	7.15 ANOVA Table for MDMH Language	٠	٠	.199
Table	7.16 ROP's and DQ's for motor-delayed			
	multihandicapped	٠	•	.199
Table	8.1 age means for the 3 populations	٠	٠	.203
Table	8.2 ANOVA Table for Bayley/Stanford-Binet.	•	٠	.204
Table	8.3 ANOVA Table for motor skills	•	•	.204
Table	8.4 ANOVA Table for self-help skills	•	٠	.205
Table	8.5 ANOVA Table for socialisation skills .	•	٠	,205
Table	8.6 ANOVA Table for cognitive skills	•	٠	.206
Table	8.7 ANOVA Table for language skills	•	•	.206
Table	8.8 DQ's and ROP's	•	٠	.207
Table	8.9 ANOVA Table of body bulk			.212

Table 8.10 Means for body bulk	6
Table 8.11 Means for body lengths	16
Table 8.12 ANOVA Table of body lengths	17
Table 8.13 Means for arm measurements	20
Table 8.14 ANOVA Table of leg measurements	21
Table 8.15 Means for leg measurements	24
Table 8.16 ANOVA Table of arm measurements	5
Table 8.17 Correlation of covariates with	
wrist breadth	29
Table 8.18 ANOVA Table of head measurements 23	30
Table 8.19 Means for head measurements	32
Table 8.20 ANOVA Table of facial measurements23	33
Table 8.21 Means for facial measurements	37
Table 9.1 F-values for ANCOVA with physical	
measurements as covariates	46
Table 9.2 ANOVA Table for arm measurements	
with self-help skills	49
Table 9.3 Correlation of individual arm	
measurements with self-help skills	110

.

TABLE OF FIGURES

Fig	2 1	Age	hv	TO		2				2					ē.						. 35
Fig	4.1	Cal	orie	25		•	•	٠	٠	٠	•	•		•	•		٠	٠		٠	.111
Fig	4.2	Pro	teir	าร	ķ	٠	٠	٠		٠		٠		٠	•	k		٠	٠	×	.111
Fig	4.3	Rib	ofla	avi	n		٠	×	٠			٠	×	٠	•	٠	•	٠	٠	٠	.113
Fig	4.4	Asc	orb:	ic	Ac	id					٠			٠	٠	è		٠	¥	٠	.113
Fig	4.5	Vit	ami	n A		٠	i	•	٠	٠	٠	٠	٠	•	•		•	٠	*	٠	.115
Fig	4.6	Cal	ciu	m.	•	•			*		٠	٠		•	•		•	٠	٠	•	.115
Fig	7.1	Dow	ns	Syr	dr	on	ie	co	ogr	nit	civ	/e	S	or	es	3.	٠	٠	•	٠	. 185
Fig	7.2	Dow	ns	Syr	dr	on	ie	18	ang	gua	age	9 8	300	ore	28	٠		٠		٠	.185
Fig	7.3	Dow	ns	Syr	ndr	on	ne	36	el:	f-!	ne!	Lp	S	cor	res	3.	٠	•	18	٠	.187
Fig	7.4	Mot	or-	de]	Lay	rec	l r	nu]	lt:	iha	and	di	ca	ppe	ed						
								se.	lf-	-h	elp)	SC	ore	es	٠				•	.187
Fig	7.5	Mot	or-	de:	lay	rec	1 !	nu.	lt	ih	and	di	ca	pp	ed						
							i	cos	σn	it.	iv	Δ.	SC	or	23	4				٠	.189

* * * * * * * * * *