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Fighting network space: it is time for an
SQL-type language to filter phylogenetic

networks
Steven Kelk, Simone Linz, and David A. Morrison

Abstract—The search space of rooted phylogenetic trees is vast and a major research focus of recent decades has been the
development of algorithms to effectively navigate this space. However this space is tiny when compared with the space of rooted
phylogenetic networks, and navigating this enlarged space remains a poorly understood problem. This, and the difficulty of
biologically interpreting such networks, obstructs adoption of networks as tools for modelling reticulation. Here, we argue that
the superimposition of biologically motivated constraints, via an SQL-style language, can both stimulate use of network software
by biologists and potentially significantly prune the search space.

Index Terms—filtering, network space, phylogenetic networks
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1 INTRODUCTION

ROOTED phylogenetic networks are extensions of
rooted phylogenetic trees to explicitly incorporate

reticulation events such as lateral gene transfer and
hybridization, modelled as nodes with two or more
parents (e.g. the network shown in Figure 1 has a
reticulation r1 with the three parents p1, p2, and p3).
While the potential of such networks for hypothesis
generation and testing is increasingly recognised, a
number of obstacles prevent their widespread use by
evolutionary biologists. First, the space of rooted phy-
logenetic networks is vast, far larger than the space
of rooted trees, and even heuristically navigating this
space is a formidable computational challenge. Sec-
ond, hypothesis-testing techniques that are standard
in the tree literature, such as the ability to query
whether there is support for a particular clade, are
not yet well-developed. These two problems often
coincide in the sense that, depending on the specific
context, a large number of networks in the search
space will be biologically irrelevant. For this reason
it is both biologically and computationally attractive
that biologists should be able to describe a priori, via a
user-friendly SQL-style (Structured Query Language)
modelling language, those networks which should
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(or should not) be taken into consideration. Such
constraints can help biologists interpret the output
of network-building software and, when incorporated
into the search algorithms used by such software,
potentially allow the search space to be dynamically
pruned. Furthermore, they can equally be used a
posteriori to filter an already given set of candidate
networks for biological relevance. Historically, the
idea of using constraints to reduce the search space
of phylogenetic trees dates back to at least [1], who
pointed out that a complete search of a smaller tree
space could be better than a heuristic search of a larger
space, in terms of finding the optimal tree. Inspired by
this idea, we propose an outline for such a constraint-
based framework for phylogenetic networks.

2 SQL-STYLE NETWORK MODELLING AND
WHAT WE CAN LEARN FROM TREES

As indicated in Figure 1, a rooted phylogenetic net-
work, henceforth simply network, is an extension of
the rooted phylogenetic tree to the space of rooted
directed acyclic graphs. For a technical description
of their characteristics we refer the reader to [2].
Networks are often constructed as parsimonious sum-
maries of incongruence within a set of trees. A com-
mon goal is to construct a network that is as parsimo-
nious as possible, in terms of the number of reticula-
tions, and which has all the input trees simultaneously
embedded within it (e.g. the tree that is shown on the
left-hand side of Figure 1 is embedded in the network
that is shown on the right-hand side of the figure).
Methods that work directly on sequence data are also
emerging and show considerable promise, as well
as approaches that model duplication, loss, transfer,
and incomplete lineage sorting events by reconciling
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a gene tree with a species tree (e.g. [3]). However,
severe computational intractability (NP-hardness or
worse) is a recurring feature of almost all explicit
network methodologies, greatly limiting the scope of
their application. The core of the problem is that, even
for a small number of taxa and reticulations, the space
of networks is vast, and even heuristic traversal of
this space is problematic. One way of trimming the
space of networks is to heavily constrain the number
of reticulations and/or their relative location in the
network. Although beneficial from a tractability per-
spective such constraints should be first and foremost
biologically well-motivated. Indeed, constraint-based
pruning is a feature that one often encounters in tree-
building software to test hypotheses (e.g. the SOWH
test [4]). Software such as PAUP* [5] and RAxML [6],
for example, allow the user to restrict the search of
tree-space to trees that contain a certain clade or
that are consistent with a given tree backbone (i.e.
a constraint tree). Such restrictions allow the user
to test support for competing clade hypotheses, an
experimental technique that is used extensively in
practice.

As Figure 1 suggests, networks have features that
cannot be described simply in terms of clades. It
is unlikely, and unreasonable to expect, that biolo-
gists will reach a single, unified consensus on which
network features are meaningful and which are not.
However, in a given experimental context, and guided
by the data at hand, a biologist often already has
some insight into which networks do, and do not,
constitute plausible hypotheses. The challenge there-
fore is to provide biologists with an easy-to-use tool
that allows them to formally articulate these insights.
For maximum flexibility, such a tool should allow
both certain natural atomic constraints and SQL-style
compound constraints. We note here that SQL was
originally developed for managing and retrieving
database content by using complex queries, but the
concept is now used widely in computational science.
The atomic constraints should allow fundamental
characteristics of the candidate network to be tested
(and, ideally, should themselves be computationally
tractable). Some examples include:

(a) A given subset of taxa must be below a cut-edge,
i.e. a locally isolated part of the network.

(b) A given subset of taxa must be below a tree-edge,
i.e. a purely tree-like part of the network.

(c) A given taxon x should be a hybrid of two other
designated taxa y and z.

(d) A given tree should be embedded in the network.

To illustrate, taxa 7, 8, 9, and 10 are below a cut-
edge and taxa 1, 2, and 3 are below a tree-edge in
the network shown in Figure 1. Furthermore, taxon
r2 is a hybrid of the two taxa p′1 and p′2.

In addition to atomic constraints that describe cer-
tain topological characteristics of a network, one could

also include statistically motivated constraints. For
example, one may wish to consider only those net-
works whose probability of a given gene tree topology
exceeds some user-defined value (for details, see [7]).
Note, also, that constraints can be either positive
(specifying characteristics that must appear in the
final network) or negative (forbidding certain char-
acteristics).

Lastly, as mentioned above, atomic constraints can
be used as building blocks to design more powerful
compound constraints. The next example combines
three atomic constraints, and might be useful if one
has more detailed information about the evolutionary
history of a subset of the taxa under consideration. In
such a case, one could build the following SQL-type
query:

SELECT those networks whose number of
reticulations is below a certain threshold AND
that have a given subset of the taxa below a cut-edge
WHERE a time-consistent labeling can be assigned
to the nodes of the subnetwork below the cut-edge.

Here, a time-consistent labeling is a labeling on the
nodes of a (sub)network such that reticulation events
occur only among contemporaneously existing taxa.
For example, the network shown in Figure 1 is not
time-consistent because the two parents p2 and p3
of r1 cannot have the same timestamp, whereas the
subnetwork below the indicated cut-edge in the same
figure is indeed time-consistent.

3 CONSTRAINTS FOR FILTERING AND
PRUNING

The purpose of SQL-style constraints in the con-
struction and analysis of networks is twofold. First,
they can be used a posteriori to filter a given set of
candidate networks resulting from an analysis that
reconstructs networks from a data set (e.g. characters,
trees, clusters). Since many of these methods are
based on combinatorial frameworks, the set of optimal
candidate solutions can be quite large. For example,
an analysis of a well-known grass data set that finds
all networks containing two given trees, each on 40
taxa, and whose number of reticulations is minimized,
results in a set of (at least) 2268 optimal solutions.
Obviously, validating all optimal networks by hand
becomes a tedious task. In order to support the biolo-
gist in this part of an analysis, [8] describes two con-
straints that are available as part of the Dendroscope
program [9] and can be used to filter or rank a list
of previously generated networks. Second, SQL-type
constraints can also be defined before any analysis so
that the search space of networks, which is vast, can
be pruned dynamically. Since the space of networks
is, in general, infinite for a fixed number of taxa,
even a small number of constraints can greatly aid
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FIG. 1.—A network N (left) and a rooted phylogenetic tree (right) that is embedded in N as indicated by the thicker edges in N. All edges are
directed downwards. Note that N has two reticulations r1 and r2.

ogist often already has some insight into which networks
do, and do not, constitute plausible hypotheses. The chal-
lenge therefore is to provide biologists with an easy-to-use
tool that allows them to formally articulate these insights.
For maximum flexibility, such a tool should allow both cer-
tain natural atomic constraints and SQL-style compound
constraints. We note here that SQL was originally devel-
oped for managing and retrieving database content by us-
ing complex queries, but the concept is now used widely in
computational science. The atomic constraints should al-
low fundamental characteristics of the candidate network
to be tested (and, ideally, should themselves be computa-
tionally tractable). Some examples include:
(a) A given subset of taxa must be below a cut-edge, i.e.

a locally isolated part of the network.
(b) A given subset of taxa must be below a tree-edge, i.e.

a purely tree-like part of the network.
(c) A given taxon x should be a hybrid of two other des-

ignated taxa y and z.
(d) A given tree should be embedded in the network.
To illustrate, taxa 7, 8, 9, and 10 are below a cut-edge and
taxa 1, 2, and 3 are below a tree-edge in the network shown
in Figure 1. Furthermore, taxon r2 is a hybrid of the two
taxa p01 and p02.

In addition to atomic constraints that describe certain
topological characteristics of a network, one could also in-
clude statistically motivated constraints. For example, one
may wish to consider only those networks whose proba-
bility of a given gene tree topology exceeds some user-
defined value (for details, see Yu et al. 2012). Note, also,
that constraints can be either positive (specifying charac-
teristics that must appear in the final network) or negative
(forbidding certain characteristics).

Lastly, as mentioned above, atomic constraints can
be used as building blocks to design more powerful
compound constraints. The next example combines
three atomic constraints, and might be useful if one
has more detailed information about the evolutionary
history of a subset of the taxa under consideration. In
such a case, one could build the following SQL-type query:

SELECT those networks whose number of reticulations
is below a certain threshold AND that have a given subset
of the taxa below a cut-edge WHERE a time-consistent
labeling can be assigned to the nodes of the subnetwork
below the cut-edge.

Here, a time-consistent labeling is a labeling on the nodes
of a (sub)network such that reticulation events occur only
among contemporaneously existing taxa. For example, the
network shown in Figure 1 is not time-consistent because
the two parents p2 and p3 of r1 cannot have the same times-
tamp, whereas the subnetwork below the indicated cut-
edge in the same figure is indeed time-consistent.

Constraints for filtering and pruning

The purpose of SQL-style constraints in the construc-
tion and analysis of networks is twofold. First, they can be
used a posteriori to filter a given set of candidate networks
resulting from an analysis that reconstructs networks from
a data set (e.g. characters, trees, clusters). Since many of
these methods are based on combinatorial frameworks, the
set of optimal candidate solutions can be quite large. For
example, an analysis of a well-known grass data set that
finds all networks containing two given trees, each on 40
taxa, and whose number of reticulations is minimized, re-
sults in a set of (at least) 2268 optimal solutions. Obviously,
validating all optimal networks by hand becomes a tedious
task. In order to support the biologist in this part of an anal-
ysis, Huson and Linz (2013) describe two constraints that
are available as part of the Dendroscope program (Huson
and Scornavacca 2012) and can be used to filter or rank a
list of previously generated networks. Second, SQL-type
constraints can also be defined before any analysis so that
the search space of networks, which is vast, can be pruned
dynamically. Since the space of networks is, in general, in-
finite for a fixed number of taxa, even a small number of
constraints can greatly aid the computational process and
significantly reduce its running time, so that instances of
a larger input size can potentially be solved exactly. In the
context of phylogenetic trees, Constantinescu and Sankoff
(1986) showed that the use of a constrained tree reduces
the search space remarkably by calculating the difference
between the number of trees of a fixed size that need to
be considered in an unconstrained search and the number
of trees of the same size that are compatible with a given
constraint tree.

The technicalities involved in dynamic pruning will
be nontrivial, but we draw inspiration from a number of
“branch and bound”-style pruning techniques that are al-
ready being used, albeit in an ad hoc fashion, in the phy-
logenetic network literature. For example, algorithms that
construct networks that contain embeddings of triplets (or
clusters) will cease to explore a branch of the network

Fig. 1. A network N (left) and a rooted phylogenetic tree (right) that is embedded in N as indicated by the thicker
edges in N . All edges are directed downwards. Note that N has two reticulations r1 and r2.

the computational process and significantly reduce
its running time, so that instances of a larger input
size can potentially be solved exactly. In the context
of phylogenetic trees, [10] showed that the use of a
constrained tree reduces the search space remarkably
by calculating the difference between the number of
trees of a fixed size that need to be considered in an
unconstrained search and the number of trees of the
same size that are compatible with a given constraint
tree.

The technicalities involved in dynamic pruning will
be nontrivial, but we draw inspiration from a number
of “branch and bound”-style pruning techniques that
are already being used, albeit in an ad hoc fashion,
in the phylogenetic network literature. For example,
algorithms that construct networks that contain em-
beddings of triplets (or clusters) will cease to explore
a branch of the network search space if the partially
constructed network already fails to contain a certain
triplet, because adding more taxa to the network will
never recover the missing triplet [11], [12]. Adding
additional constraints should allow for even more
aggressive pruning of the network search space. The
step from high-level constraints to low-level pruning
is a topic we hope to return to in a forthcoming article.

Furthermore, and perhaps most fundamentally, by
using SQL-type constraints, biologists have more con-
trol on the output of programs that reconstruct net-
works. In fact, they can go beyond the widespread
concept of regarding an algorithm as a black box, and
actively engage in the construction of networks by
adding extra biological information to it and, there-
fore, reduce the risk of misanalyses.

4 CONCLUSION

The space of phylogenetic networks is huge, and this
is an obstacle from both a computational and interpre-
tational viewpoint. We propose the development of an
SQL-style constraint-based language that will allow
the imposition of biologically relevant constraints on
this space, thus enhancing the utility of phylogenetic
networks for biologists, and potentially cutting down
the search space of phylogenetic networks to a more
reasonable size.
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