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Abstract

Generalised inverse limits are a new topic of study in the area of continuum

theory. Although similarly defined to the more traditional inverse limits of

continuous functions on continua, they have a much richer structure. It was

realised early on that many of the theorems relating to the inverse limits of

continuous functions do not carry over to generalised inverse limits, which use

set valued functions. Much of the research in generalised inverse limits to this

point has been to attempt to characterise their structure.

This thesis contains three main chapters, each of which is based on a topic

in generalised inverse limits research. In the first of these we explore the

structure of a particular generalised inverse limit known as K(0,1). This is

the inverse limit of a generalised tent map. The inverse limits of tent maps

have played an important role in continuum theory in the past, and with the

introduction of generalised inverse limits we can include generalised tent maps

that are not continuous functions. The only such generalised tent map whose

inverse limit does not have a very simple structure is K(0,1). In this chapter

we prove a number of topological properties of K(0,1), and give an embedding

of K(0,1) into R3.

For the second topic we characterise a certain kind of disconnection in

generalised inverse limits over Hausdor↵ continua. This generalises a result

by Greenwood and Kennedy for generalised inverse limits over intervals. Con-

nectedness is a property that has attracted much interest in generalised inverse

limits, as these are not necessarily connected, unlike the inverse limits of con-
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iv ABSTRACT

tinuous functions, which are.

In the final chapter we prove a result relating to path connectedness in

generalised inverse limits. Path connectedness in generalised inverse limits

is in some ways a very di↵erent property to connectedness. For example, a

generalised inverse limit may not be path connected even though all its finite

approximants are path connected. This cannot happen if we replace the words

“path connected” with “connected” in the previous sentence. The result proved

in this chapter links the path connectedness of a generalised inverse limit with

path connected properties of its finite approximants.
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Chapter 1

Introduction

This thesis is on the topic of generalised inverse limits, a relatively new area

of study in continuum theory. Generalised inverse limits are defined in a very

similar manner to the inverse limits of continuous functions on continua that

have been central to continuum theory for the last 50 years, but their structure

is much richer. Generalised inverse limits use upper semicontinuous set valued

functions as bonding functions, rather than continuous single valued functions

that have been more commonly used in the past. Many of the standard theo-

rems regarding inverse limits of continuous functions on continua do not carry

over to the generalised case, and much of the work that has been done to this

point has been to look for theorems for generalised inverse limits analogous to

those of the inverse limits of continuous functions.

This thesis contains three fairly self contained main chapters, each explor-

ing a di↵erent topic in the field of generalised inverse limits. In Chapter 2, we

explore the structure of a particular generalised inverse limit known as K(0,1).
This inverse limit is a very complicated continuum that has a single bonding

function: a generalised tent map. This is the only inverse limit of a generalised

tent map that is di�cult to describe, despite many inverse limits of tent maps

which are continuous functions having a very complicated structure. In Chap-

1



2 CHAPTER 1. INTRODUCTION

ter 2 we prove a number of topological properties of K(0,1), including that it

has the fixed point property, and we also give an embedding into R3, which

will give the reader a good intuition into its structure.

In Chapter 3, we give a result characterising a certain type of disconnection

in generalised inverse limits on continua, by defining what is called an HC-

sequence. This is a generalisation of a result by Greenwood and Kennedy

[GK], we extend this result to work for compact Hausdor↵ factor spaces from

the intervals used in the original theorem. Although the extended result looks

similar in nature, the proof uses quite di↵erent ideas. A corollary of the main

result of this section is that if an HC-sequence exists, the generalised inverse

limit is disconnected. Connectedness is an area where generalised inverse limits

on continua di↵er from inverse limits of continuous functions on continua, the

latter being always connected.

In Chapter 4, we look into path connectedness in generalised inverse lim-

its. This property is very di↵erent to the connectedness explored in Chapter

3. It is possible for an inverse limit to be path connected for each finite ap-

proximation, and then not path connected in the limit (this is not possible

for connectedness). This gives two somewhat distinct problems when trying

to characterise path connectedness in generalised inverse limits. Firstly, we

need to know whether all the finite approximations are path connected, and

secondly, if all the finite approximants are path connected, we have the distinct

question of whether the inverse limit itself is path connected. Chapter 4 focuses

on the latter question, and gives a result that to some extent characterises path

connectedness in the inverse limit, assuming all finite approximants are path

connected.

For the remainder of this chapter we will firstly introduce some notation

and basic definitions that will be used throughout the thesis. We will then

look into the current state of knowledge in generalised inverse limits, giving

an overview of results obtained to date.
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1.1 Notation and Definitions

The field of generalised inverse limits is a relatively new area of study, and

not all notation is standard. In this section we present preliminaries and a

few basic results for generalised inverse limits that will be used in following

chapters.

The subset notation ⊂ will allow for equality of sets when used throughout

this thesis. For example if A and B are sets, then if we write A ⊂ B then it is

possible that A = B. If we want strict inclusion, ie A ≠ B, then we will write

A � B.

We take N to be the set of natural numbers {0,1,2, . . .}.
c is the cardinality of the continuum.

A point in R2 is denoted with angle brackets, as �a, b�.
We include the following basic topological definitions, due to their impor-

tance in this thesis.

Definition 1.1.1. If X is a topological space, we say X is connected if X

does not contain a proper non-empty clopen subset. Otherwise we say X is

disconnected. If x ∈ X, the largest connected subspace of X containing x is

called the component of x in X.

Definition 1.1.2. A path in X is a continuous function � ∶ [0,1] → X. We

say X is path connected if for all pairs of points x, y ∈ X, there exists path

� ∶ [0,1] → X such that �(0) = x and �(1) = y. If x ∈ X, the largest path

connected subspace of X containing x is called the path component of x in X.

Definition 1.1.3. A continuum is a compact, connected, metric space. A

Hausdor↵ continuum is a Hausdor↵, compact, connected topological space.

Note that if a space X is a continuum, then X is also a Hausdor↵ contin-

uum.

The main topic of this thesis is inverse limits, which we will begin to define

now.
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Definition 1.1.4. An inverse sequence is a sequence of pairs (X
i

, f

i+1) for
i ≥ 0, where for each i, X

i

is a Hausdor↵ continuum, and f

i+1 ∶ Xi+1 → X

i

is a

continuous function.

From this we can define the inverse limit of the inverse sequence.

Definition 1.1.5. If (X
i

, f

i+1) is an inverse sequence, then the inverse limit

of the inverse sequence, denoted lim←�(Xi

, f

i

), is defined as:

lim←�(Xi

, f

i

) = {x = (x0, x1, x2, . . . ) ∈ ⇧i∈NXi

∶ for all i ∈ N, x
i

= f
i+1(xi+1)}.

If only one function, f , is being used for every function, then often we will

shorten lim←�(Xi

, f

i

) to lim←�f .

The spaces X

i

are called factor spaces, and the functions f

i

are called

bonding functions.

To avoid confusion, often we will refer to the inverse limits of continuous

functions defined above as classical inverse limits, as opposed to generalised

inverse limits, the topic of this thesis.

If X is a topological space, we use 2X to denote the collection of nonempty

closed subsets of X.

Definition 1.1.6. If X and Y are continua, a function f ∶ X → 2Y is called

upper semicontinuous at a point x ∈X if for each open set V in Y containing

f(x), there is an open set U in X containing x such that if y is in U , then

f(y) ⊂ V . If f is upper semicontinuous at x for all x ∈ X, then we say f is

upper semicontinuous.

If f ∶ X → 2Y is a function, then the graph of f is the subset of X × Y ,

denoted G(f), defined as

G(f) = {�x, y� ∈X × Y ∶ y ∈ f(x)}.
The following theorem gives an equivalent definition for upper semicontinuity,

and this is usually easier to use as a working definition. See [IM, Theorem 2.1]

for the proof.
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Theorem 1.1.7 (Ingram and Mahavier). If X and Y are continua, then f ∶
X → 2Y is upper semicontinuous if and only if the graph of f is closed in

X × Y .

An upper semicontinuous set valued function f ∶ X → 2Y is said to be

surjective if for every y ∈ Y , there exists x ∈X such that y ∈ f(x).
Now we can define a generalised inverse limit. The definition looks very

similar to that of classical inverse limits, but we need to take into account the

set valued functions. So for a point x = (x0, x1, x2, . . . ) to be in the generalised

inverse limit, we only require that each coordinate x
i

is contained in the image

of the following coordinate, x
i+1, by the function f

i+1.
Definition 1.1.8. An generalised inverse sequence is a sequence of pairs

(X
i

, f

i+1) for i ≥ 0, where for each i, X

i

is a Hausdor↵ continuum, and

f

i+1 ∶Xi+1 → 2Xi is an upper semicontinuous set valued function.

With a slight abuse of notation, often we will refer to a (generalised) inverse

sequence by (X
i

, f

i

).
If (X

i

, f

i+1) is a generalised inverse sequence, then the generalised inverse

limit, denoted lim←�(Xi

, f

i

), is defined by

lim←�(Xi

, f

i

) = {x = (x0, x1, x2, . . . ) ∈ ⇧i∈NXi

∶ for all i ∈ N, x
i

∈ f
i+1(xi+1)}.

Again, the spaces X
i

are called factor spaces, and the functions f
i

are called

bonding functions, and if only one function, f , is being used for every bonding

function, then often we will shorten lim←�(Xi

, f

i

) to lim←�f . In this thesis, when

an inverse sequence (I
i

, f

i

) is written, it can be assumed that the factor spaces

are intervals, that is I
i

= [0,1] for all i ∈ N.
In the above definitions, the factor spaces are indexed over the natural

numbers, N. This is a special case of a more general indexing which is done

over a directed set. The details of this will not be included here, and we note

that unless it is mentioned otherwise, all inverse limits in this thesis will be

indexed over the natural numbers, N.
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Often it is useful to look at finite restrictions of the inverse limit. With

this in mind, we have the following definition.

Definition 1.1.9. If (X
i

, f

i

) is a generalised inverse sequence, and 1 ≤m ≤ n,
then we define

G(f
m

, . . . , f

n

) =
{�x

m−1, xm

, . . . , x

n

� ∈ ⇧
m−1≤i≤nXi

∶ x
i

∈ f
i+1(xi+1) for all m − 1 ≤ i < n}.

G(f1, . . . , fn) is known as the Mahavier product from f1 to f

n

. If m = 1, then
often we will abbreviate G(f1, . . . , fn) as Gn. These are sometimes called finite

approximants of an inverse limit.

We also denote the graph of a set valued function f

n

∶ X
n

→ 2Xn−1 by

G

n

, that is, G

n

= {�x
n

, x

n−1� ∈ X

n

× X

n−1 ∶ xn

∈ X

n

and x

n−1 ∈ f

n

(x
n

)}.
Alternatively, if f is a set valued function, its graph can be denoted G(f).

Note that if m = n then G(f
m

) is the graph of f−1
m

, so G(f
m

) is homeomor-

phic to G

m

= G(f
m

).
The following notation will be used for projection functions.

Definition 1.1.10. Given a generalised inverse sequence (X
i

, f

i

) and j ∈ N,
we define ⇡

j

∶ lim←�(Xi

, f

i

) → G

j

to be the projection map into the graph G

j

, ie

⇡

j

((x0, x1,

x2, . . . )) = �xj

, x

j−1�. Given a graph G

j

, we also define ⇢

j,j

∶ G
j

→ X

j

and

⇢

j,j−1 ∶ Gj

→X

j−1 to be projection maps into factor spaces, ie ⇢

j,j

(�x
j

, x

j−1�)
= x

j

, and ⇢

j,j−1(�xj

, x

j−1�) = xj−1. If a function f ∶X → 2Y with graph G is not

indexed, the notation ⇢

X

∶ G → X and ⇢

Y

∶ G → Y will denote the projection

maps into X and Y respectively.

1.2 Background

In this section we present some background on previous work done in the area

of generalised inverse limits. We begin with a brief introduction into classical
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inverse limits.

Inverse limits have been shown to be a very useful tool in continuum theory.

One application is that inverse limits give an easy way to construct compli-

cated continua from simple bonding functions. A famous example of this is

a tent map as a bonding function gives as an inverse limit the buckethandle

continuum, an example of an indecomposable continuum (there will be more

on this later in the thesis). Another example by Henderson [H] is a pseudo-arc

being the inverse limit of a single bonding function. A pseudo-arc is a one

dimensional arc-like continuum that is hereditarily indecomposable, that is,

all of its subcontinua are indecomposable.

Inverse limits describe a type of ‘backward dynamics’ - the bonding func-

tions are defined as going backwards in ‘time’. Inverse limits of continuous

functions have been used to model a variety of di↵erent phenomena. Often a

phenomenon being modelled by discrete dynamics will be modelled by relations

which are not functions, but their inverses are functions. So an inverse limit

in some sense represents the forward dynamics of the inverses of the relations.

Some examples of applications include the following.

In physics, inverse limits play a central role in the theory of tiling spaces,

which are used to model aperiodic crystals, see [S]. In economics, the ‘over-

lapping generations model’ and the ‘cash in advance model’ both use inverse

limits to model economic phenomena. See for example [AR] and [K]. The

Christiano - Harrison model [CH] is an example of a model in economics util-

ising relations that are not functions in either the forward or reverse direction,

so requires the use of generalised inverse limits. Inverse limits also appear in

areas such as game theory and functional analysis, see [P], [TY].

The field of generalised inverse limits is relatively new, but in the last

few years there has been considerable research in the area. The first paper

published on the subject was by Mahavier in 2004 [M]. This paper introduced

many of the basic theorems that are used, and concentrated exclusively on
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inverse limits of set valued functions over intervals. A little later, Ingram and

Mahavier published an article [IM] which generalises many of these results to

Hausdor↵ continua.

The first two results given here from [IM] confirm that the generalised

inverse limits of compact Hausdor↵ spaces are indeed compact (and Hausdor↵).

Theorem 1.2.1 (Ingram and Mahavier). Suppose for each i ≥ 0, X
i

is compact

and Hausdor↵, and for i ≥ 1, f
i

∶X
i

→ 2Xi−1 is upper semicontinuous. Then G
n

is nonempty and compact.

Theorem 1.2.2 (Ingram and Mahavier). Suppose for each i ≥ 0, X
i

is compact

and Hausdor↵, and for i ≥ 1, f
i

∶ X
i

→ 2Xi−1 is upper semicontinuous. Then

lim←�(Xi

, f

i

) is nonempty and compact.

The following theorems also appear in [IM], and are the first theorems

regarding connectedness in generalised inverse limits, a topic that will be ex-

plored in more detail in Chapter 3.

Theorem 1.2.3 (Ingram and Mahavier). Suppose that for each i ≥ 0, X
i

is a

Hausdor↵ continuum, and for each i ≥ 1, f
i

∶ X
i

→ 2Xi−1 is an upper semicon-

tinuous function, and for each x ∈ X
i

, f
i

(x) is connected. Then lim←�(Xi

, f

i

) is
a Hausdor↵ continuum.

Theorem 1.2.4 (Ingram and Mahavier). Suppose that for each i ≥ 0, X

i

is a Hausdor↵ continuum, and for each i ≥ 1, X
i

is a Hausdor↵ continuum,

f

i

∶X
i

→ 2Xi−1 is an upper semicontinuous function, and for each x ∈X
i−1, {y ∈

X

i

∶ x ∈ f
i

(y)} is non-empty and connected. Then lim←�(Xi

, f

i

) is a Hausdor↵

continuum.

A very useful theorem regarding connectedness in generalised inverse limits

was given by Nall in [Nal2] (it appears as Lemma 3.2).
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Theorem 1.2.5 (Nall). Suppose X is a Hausdor↵ continuum, and f ∶ X →
2X is a surjective upper semicontinuous set valued function. Then lim←�f is

connected if and only if G
n

is connected for every n ∈ N.
The proof given for this theorem allows for the spaces and functions to be

di↵erent, and it will be generalised as Lemma 3.1.1 in Chapter 3.

Theorem 1.2.5 is very powerful in that it means that if an inverse limit is

disconnected, then there will be some finite n such that G
n

is disconnected.

This illustrates a common problem in generalised inverse limits - knowing

whether if G
n

has a certain property for all n implies that lim←�(Xi

, f

i

) has

the same property. The above result says that it does for the property of

connectedness, but as we will see in Chapter 4, Theorem 1.2.5 does not have

an analogy for path connectedness. There are upper semicontinuous functions

f ∶ [0,1]→ 2[0,1] such that G
n

is path connected for all n, but lim←�f is not path

connected (the usual surjective tent map has this property).

Much of the early research into generalised inverse limits has been in the

property of indecomposability.

Definition 1.2.6. A continuum X is decomposable if X contains proper sub-

continua A and B such that X = A ∪B. Otherwise X is said to be indecom-

posable.

For example, the interval [0,1] is decomposable as [0,1] = [0, 12]∪ [12 ,1]. It
is not clear a priori from the definition that an indecomposable continuum even

exists. Two examples of indecomposable continua are the buckethandle con-

tinuum and the pseudo-arc that were mentioned earlier in this section. These

are di�cult to define, however the following theorem, appearing in [Nad] as

Theorem 2.7, links inverse limits of certain continuous functions with indecom-

posable continua.

We say that an inverse sequence (X
i

, f

i

) is an indecomposable inverse se-

quence if for each i ≥ 0, whenever A
i+1 and B

i+1 are subcontinua of X
i+1 such
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that X
i+1 = Ai+1 ∪Bi+1, then f

i+1(Ai+1) =Xi

or f
i+1(Bi+1) =Xi

.

Theorem 1.2.7. If (X
i

, f

i

) is an indecomposable inverse sequence with inverse

limit lim←�(Xi

, f

i

), then lim←�(Xi

, f

i

) is an indecomposable continuum.

This gives an easy way to create indecomposable continua - by defining

them as the inverse limit of a particular indecomposable inverse sequence. A

simple bonding function can be used to give rise to a complex continuum.

Perhaps the most famous example is the buckethandle continuum, which will

be described in detail in Chapter 2. The buckethandle continuum is homeo-

morphic to the continuum defined as the inverse limit of the tent map shown

in Figure 1.1 [Nad, 2.9]. The usual description of the buckethandle as given

in Chapter 2 requires a rather involved definition and defining the continuum

using the inverse limit is a much simpler method.

The function shown in Figure 1.1 is an example of a tent map. The in-

verse limits of tent maps have been studied extensively, and are the subject of

Chapter 2. Tent maps have played a huge role in the study of classical inverse

limits and in topological dynamics. See for example [BBS], [BM], [H]. One of

the major areas of research in classical inverse limits has been to classify the

inverse limits of tent maps. A tent map is defined as follows.

Definition 1.2.8. For a ∈ (0,1) and b ∈ [0,1], we define a tent map f(a,b) ∶
[0,1]→ [0,1] to be a continuous function with a graph consisting of two lines:

one from �0,0� to �a, b�, and another from �a, b� to �1,0�.
The classification of the inverse limits of tent maps is still incomplete,

but following a large amount of work on the specific question, Barge, Bruin,

and Štimac proved the following theorem, which was known as the Ingram

Conjecture.

Theorem 1.2.9 (Barge, Bruin, Štimac). Let 1
2 ≤ a < b ≤ 1, and let f( 1

2
,a) and

f( 1
2
,b) be tent maps. Then lim←�f( 1

2
,a) and lim←�f( 1

2
,b) are not homeomorphic.
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1

10

1
2 , 1

Figure 1.1: The graph of f( 1
2
,1).

There have been numerous results concerning indecomposability for gen-

eralised inverse limits. One of the properties of classical inverse limits is that

any subcontinuum of an inverse limit whose projection onto a factor space is

the whole space for infinitely many factor spaces is the entire inverse limit.

This is called the full projection property, and in general it does not hold for a

generalised inverse limit; this is a topic of research in its own right.

Ingram gives a result regarding indecomposability in [In1], where a suf-

ficient condition called the ‘two pass condition’ is given. This condition is

similar to the condition of an indecomposable inverse sequence defined earlier
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in the section. The two pass condition, along with the full projection property,

guarantees indecomposability of the resultant inverse limit. If f ∶ [0,1]→ 2[0,1]
is upper semicontinuous, f is said to satisfy the two-pass condition provided

there exist two mutually exclusive connected open subsets U and V of [0,1]
such that f �

U

and f �
V

are continuous functions and f(U) = f(V ) = [0,1].
Theorem 1.2.10 (Ingram). If for each i ≥ 0 X

i

= [0,1], and for each i ≥ 1, f
i

∶
[0,1]→ 2[0,1] is upper semicontinuous and satisfies the two-pass condition, and

lim←�(Xi

, f

i

) has the full projection property, then lim←�(Xi

, f

i

) is indecomposable.

As can be seen, one premise of the theorem is that lim←�(Xi

, f

i

) has the full

projection property. It remains open as to what conditions on the bonding

functions will guarantee the full projection property.

Theorem 1.2.10 has been generalised by Varagona [Va], and then further

again by Kelly and Meddaugh [KM]. An example of an upper semicontinuous

set valued function that gives an indecomposable inverse limit is shown in

Figure 1.2. It contains a Cantor set of vertical lines, with endpoints of the

Cantor set joined by lines whose inverses are functions. Further details can be

found in [KM].

This represents one of the most complicated classes of bonding functions

whose inverse limits are guaranteed to be indecomposable. A full characterisa-

tion of indecomposability in generalised inverse limits still remains some way

away.

Inverse limits (in the classical sense at least) derive from the category the-

ory notion of an inverse limit. For a good introduction to category theory

see [M]. Banič and Sovič investigated generalised inverse limits in terms of

category theory [BS]. Although Hausdor↵ continua (as objects) and upper

semicontinuous set valued functions (as arrows) form a category, generalised

inverse limits as defined in Definition 1.1.8 are not always inverse limits in

this category. The authors of [BS] introduced the notion of a weak inverse
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�

��

Figure 1.2: A bonding function giving an indecomposable inverse limit.

limit, and showed that generalised inverse limits are weak inverse limits in this

category.

One of the reasons for this work in category theory was to study generalised

inverse limits that were indexed over arbitrary directed sets. Some of the basic

theorems mentioned earlier in this chapter have been proved for directed set

indices in [IM2]. To this point in time, the majority of results regarding gen-

eralised inverse limits have been done indexing over the positive integers. An

exception to this is the work of Vernon in [Ve], where indexing over the integers

in their entirety is investigated. One of the advantages of indexing over the

integers is that the shift map on the inverse limit space is a homeomorphism.



14 CHAPTER 1. INTRODUCTION

This fact is exploited by Vernon in his proof that if a single bonding function

is used, and a generalised inverse limit is a finite graph, then it contains no

loops. This is a generalisation of Theorem 1.2.12 by Illanes below.

Indexing over the integers allows for continua to be constructed that cannot

be constructed when indexing over only the positive integers. For example,

Vernon shows how to construct a two-cell (a space homeomorphic to a unit

disc) using a single bonding function where the factor spaces are intervals. The

graph of the bonding function is shown below in Figure 1.3.

�

��

Figure 1.3: A bonding function giving an inverse limit that is a two-cell, when

indexed over Z.

Nall has shown in [Nal1] that this is not possible when indexing by N. It is
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not known whether it is possible when indexing over the integers to construct

an n cell for n > 2. The method that Vernon uses cannot be generalised to

produce such an n cell.

There has been research into what spaces can be obtained as the inverse

limit of a single bonding function. To date, this work has focussed on the

factor spaces being intervals. Nall showed in [Nal3] that the only finite graph

that can be obtained as a generalised inverse limit of a single bonding function

over intervals is an arc.

Theorem 1.2.11 (Nall). If f ∶ [0,1]→ 2[0,1] is a surjective upper semicontin-

uous function such that lim←�f is a finite graph, then lim←�f is an arc.

Illanes showed that a circle cannot be a generalised inverse limit of a single

bonding function over intervals in [Il].

Theorem 1.2.12 (Illanes). There is no upper semicontinuous set valued func-

tion f ∶ [0,1]→ 2[0,1] such that lim←�f is a simple closed curve.

These results were both replicated for the case when indexing over the

integers is used by Vernon [Ve].

In classical inverse limits, if the factor space is an arc, then every finite

approximation G(f1, . . . , fn) for each n ≥ 1 will be an arc, so these finite ap-

proximations are not very interesting to study. With generalised inverse limits

however, a finite approximation can be much more interesting. Even if the

factor spaces are arcs, the first bonding function could have a graph that is,

for example, a pseudo-arc. If we allow di↵erent bonding functions, then any

space that can be produced by a finite number of bonding functions, ie any

G(f1, . . . , fn), can be produced as an inverse limit by extending the sequence

of functions to include f

m

to be the identity function for m > n.
Because it seems somewhat unnecessary to have to include these identity

functions, we often simply refer to the Mahavier product G(f1, . . . , fn).
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As can be seen from the selection of results given above, this area of study

is very new (the first mention of generalised inverse limits was in 2004) To

date there has been much research into a number of areas. The results so far

indicate that there is a rich structure inherent in generalised inverse limits and

there is still a long way to go before the structure is fully explained.



Chapter 2

Generalised Tent Maps: K(0,1)
Recall from Definition 1.2.8 that a tent map is a continuous function f(a,b) ∶
[0,1] → [0,1] with a graph consisting of two lines: one from �0,0� to �a, b�,
and another from �a, b� to �1,0�. This definition can be extended to allow for

set valued functions, which we call generalised tent maps (defined in the next

section).

This chapter concentrates on a specific generalised inverse limit known as

K(0,1), the inverse limit of a generalised tent map. The inverse limits of tent

maps have been the subject of much research. Tent maps are very simple

functions, yet inverse limits of tent maps can be very complex. In Chapter

1, we introduced the buckethandle continuum, which is homeomorphic to the

inverse limit of the tent map f( 1
2
,1), shown in Figure 1.1. We will now give a

construction of the buckethandle continuum.

Let n ≥ 1. If S ⊂ Rn is a set of points in Rn, a ∈ R, and b ∈ Rn, then by

a ⋅ S + b we mean the set

{x ∈ Rn ∶ there exists y ∈ S such that x = a ⋅ y + b}.
Let C0 = [0,1], and for all i ≥ 1, let

C

i

= 1

3
⋅C

n−1 ∪ (1
3
⋅C

n−1 + 2

3
).

17
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Note that �
i∈NCi

= C, where C is the Cantor middle thirds set.

Now, define:

D0 = �x = �x1, x2� ∈ R2 ∶ �x − �1
2
,0�� ≤ 1

2
, x2 ≥ 0� ,

and for n ≥ 1, define
D

n

= �x = �x1, x2� ∈ R2 ∶ �x − �1
2
,0�� ∈ 1

3
⋅C

n−1, x2 ≥ 0� ,
so D

n

is a collection of half annuli with thicknesses related to the sets C

n−1.
For n ≥ 0, define

D

∗
n

= {x = �x1, x2� ∈ R2 ∶
there exists y = �y1, y2� ∈Dn

such that y1 = x1 and x2 = −y2},
so D

∗
n

is the set D
n

reflected about the x-axis.

Finally, let B0 =D0, and for n ≥ 1, define
B

n

=D
n

∪ �
1≤i≤n�

1

3i
⋅D∗

n−i + � 5

2 ⋅ 3i − 1

2
�� .

We can now define the buckethandle continuum B to be the intersection of all

the sets B
n

, so

B = �
n∈NBn

.

The first few sets B
n

are shown in Figure 2.1

The reader can appreciate how the use of an inverse limit with a simple

bonding function (in this case f( 1
2
,1)) to construct an indecomposable contin-

uum is much simpler than the construction of the buckethandle above.

The problem of the classification of the inverse limits of tent maps is a

highly non-trivial, open problem. Much work has been undertaken, and there

are many partial results. For example in the article [BCMM], the authors

describe curves on [0,1]2 such that if two tent maps have their peaks on the

same curve, their respective inverse limits are homeomorphic, and their inverse

limits are not homeomorphic if the peaks lie on di↵erent curves. Another
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Figure 2.1: The sets B0, B1, B2, and B3 in the construction of the buckethandle

continuum.

major result is found in [BBS], where the Ingram conjecture (Theorem 1.2.9)

is proven. The full classification however, is still incomplete.

With the conception of generalised inverse limits, it is natural to extend the

problem of the classification of inverse limits of tent maps to the classification

of generalised inverse limits of generalised tent maps.

Including these ‘extra’ generalised inverse limits in this classification makes

the problem more di�cult, purely due to there being more cases to consider.

Fortunately, there are not as many cases as there might appear. All but one of

these generalised tent maps that cannot be expressed as continuous functions

have inverse limits that are easy to describe. In [BCMM], Banič et al show

that K(0,0) and K(1,b) for b ∈ [0,1) are a single point (the point (0,0,0, . . . )),
K(0,b) (for b ∈ (0,1)) is homeomorphic to an arc, and K(1,1) is homeomorphic

to a harmonic fan (the notation K(a,b) will be defined in Section 2.1).

This leaves only one additional generalised tent map that is not a contin-
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uous function, f(0,1). The function f(0,1) that has K(0,1) as an inverse limit is

shown below.

�

��

Figure 2.2: The function f(0,1) that has K(0,1) as its inverse limit.

Some work has been done in understanding the structure of K(0,1). In

[BCMM] it is shown that K(0,1) contains harmonic fans and sin 1
x

continua,

and that K(0,1) is one dimensional. In [CR] it is shown that K(0,1) has trivial
shape and is thus tree-like. In his book [In2], Ingram gives a basic model for the

structure of K(0,1). In this he shows, in addition to what is already mentioned,

that K(0,1) is nonplanar, and contains many mutually exclusive n-ods for each

positive integer n.

In this chapter we will describe the topological properties of K(0,1) in more
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detail. In Section 2.1, we will cover preliminary results that will be required for

later sections, including the structure of a typical point inK(0,1). In Section 2.2

we prove some of the topological properties of K(0,1). In Section 2.3 we show

K(0,1) has the fixed point property. In Section 2.4, we describe an embedding

of K(0,1) into R3.

2.1 The Basic Structure of K(0,1)
In this section we develop some notation and explore the basic structure of

K(0,1). Tent maps were defined in Chapter 1, Definition 1.2.8. Here we extend

this definition to generalised tent maps.

Definition 2.1.1. A generalised tent map with a peak at �a, b�, where a ∈ [0,1]
and b ∈ [0,1] is a function f(a,b) ∶ [0,1] → 2[0,1] that has a graph consisting of

two straight lines. One from the point �0,0� to the point �a, b�, and another

from the point �a, b� to the point �1,0�.
If f(a,b) is a generalised tent map, then we denote lim←�f(a,b) by K(a,b).

Note that a generalised tent map is an upper semicontinuous set valued

function, so K(a,b) is well defined.
The function we are interested to study in this chapter is f(0,1), and more

specifically its resulting inverse limit K(0,1) = lim←�f(0,1). First we look at what

a typical point in K(0,1) looks like.
Suppose that x = (x0, x1, x2, . . . ) ∈ K(0,1). Then as K(0,1) is surjective,

x0 ∈ [0,1]. Now, to find a suitable x1, we need to find what values in [0,1]
map to x0. It is clear from the graph that only 0 and (1 − x0) map to x0.

So there are points in the inverse limit that begin with (x0, (1 − x0), . . . ) and
(x0,0, . . . ). Now consider what x2 can be. If x1 = (1 − x0), then we have the

same choice as before, either x2 = 1 − (1 − x0) = x0 (in which case we are back

where we started), or x2 = 0. If x1 = 0, then we have two choices, either x2 = 0
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(and we are back where we started), or x2 = 1. If x2 = 1, then there is only one

choice, it must be that x3 = 0. In other words, if x
i

= a, the choice is always

between 0 and (1 − a).
We have now fully described the structure of what the coordinates of a

point can look like, so a typical point can be summarised as follows:

The sequence of coordinates begins with a ∈ [0,1], and is followed by a

sequence of alternating 1− a and a (note this following sequence may be

of length zero).

If the alternating sequence ends after finitely many terms, say after x
n

,

then x

n+1 = 0 (unless n = 0 and x0 = 0).
After the first term of 0, each subsequent term is either 0 or 1, but there

is also the condition that a 1 is always followed by a 0.

In order to explore the structure of K(0,1) further, we will define a certain

class of points that will be particularly useful. The set of vertices of K(0,1)
(which we denote by V ) is the set of all points that have coordinates consisting

of only 0s and 1s. This set V is a Cantor set, as mentioned in [BCMM].

The set V is totally disconnected, and from Theorem 1.2.3 we know that

K(0,1) is connected [IM, Theorem 4.7], so the other points in K(0,1) must con-

nect the vertices. We saw earlier that a point in K(0,1) consists of two sections.

It starts with an alternating sequence of a and 1 − a for a ∈ [0,1], and then

(if at all) there is a 0, followed by a sequence of 1s and 0s (where a 1 is also

followed by a 0).

Definition 2.1.2. Two vertices a and b ∈K(0,1) are directly connected if there

exists a path in K(0,1) that has a and b as end points, and the path does not

contain any other vertices.

If either a or b (or both) is not a vertex, a and b are directly connected

if there exists a path in K(0,1) that has a and b as end points, and the path
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does not contain any other vertices. If a vertex is directly connected to only

one other vertex, this is an end vertex.

Note that any point a = (a0, a1, a2, . . . ) ∈K(0,1) that has a0 = a1 = 0 will be

an end vertex.

Above we mentioned that two vertices, a = (a0, a1, a2, . . . ) and b = (b0, b1, b2, . . . )
are connected if there exists n ∈ N ∪ {∞} such that:

a

m

≠ b
m

for m < n, and
a

k

= b
k

for k ≥ n.
It is clear that if this property holds the vertices will be directly connected.

This statement is also true in the other direction.

Lemma 2.1.3. Two distinct vertices a and b ∈K(0,1) are directly connected if

and only if there exists n ∈ N ∪ {∞} such that:

a

m

≠ b
m

for m < n, and
a

k

= b
k

for k ≥ n.
Proof. Suppose a and b are directly connected, and a ≠ b. If a

m

≠ b
m

for all

m ∈ N, then the conditions are satisfied (n =∞).

Suppose a

m

= b
m

, m is minimal with respect to this property, and m ≥ 1.
Then it follows that a

m

= b
m

= 0, since if a
m

= b
m

= 1 then either a
m−1 = 1 or

b

m−1 = 1, so one sequence will have two consecutive 1s. As m is minimal, this

means either a
m

= 1 or b
m

= 1. Without loss of generality, suppose b

m

= 1, so
a

m

= 0. Now suppose a

n

≠ b
n

for some n > m. Then for any path connecting

a and b will need to contain points p↵ = (p↵0 , p↵1 , p↵2 . . . ) ∈ K(0,1) for every

↵ ∈ (0,1) such that p↵
n

= ↵. Then as a p
↵

∈ K(0,1), for every such p

↵, we have

p

↵

n−1 = 1 − ↵, p↵n−2 = ↵, etc. Also, if there is a path between a and b that does

not contain any other vertices, every point in the path must be either a, b, or

p↵ for some ↵ ∈ (0,1).
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Then if there is a path in K(0,1) between a and b, the points p↵ must

converge coordinate-wise to a. But as a

m−1 = am = 0, if a sequence of points

p

↵

m−1 converges to 0, p↵
m

converges to 1.

Therefore we conclude such a path cannot exist, so a and b are not directly

connected.

Finally, suppose a0 = b0. Then for the same reason above, a
n

= b
n

for all

n ≥ 1. This means that a = b, contradicting a and b being distinct. This

finishes the proof of the forward direction.

For the reverse direction, suppose there exist distinct vertices a and b ∈
K(0,1), and n ∈ N∪{∞} such that a

m

≠ b
m

for m < n and a

k

= b
k

for k ≥ n. Then
the path directly connecting a and b is given by � ∶ [0,1]→K(0,1), defined as:

�(x) =
�����������
(x,1 − x, x, . . . ,0, a

n+1, an+2, . . . ) if n <∞
(x,1 − x, x, . . . ) if n =∞.

Then either �(0) = a and �(1) = b, or �(0) = b and �1 = a, meaning a and

b are endpoints of �, and furthermore, if x ≠ 0 and x ≠ 1, �(x) is not a vertex,

so a and b are directly connected.

A figure showing how two vertices are directly connected is given in Figure

2.3.

Finally, we will introduce some notation that will be helpful in the next

section.

Definition 2.1.4. If a = (a0, a1, a2, . . . ) is a vertex, we say a has a 01-sequence

of length n for some n ∈ N if a
n

= a
n+1 = 0, and a

i

≠ a
i−1 for all 1 ≤ i ≤ n. If

a

i

≠ a
i−1 for all i ≥ 1, then we say a has a 01-sequence of length ∞.

This means that if a has a 01-sequence of length n, then there is an alter-

nating sequence of 0s and 1s at the start of a, up to the nth coordinate.
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Figure 2.3: Two vertices in K(0,1) connected by an arc.

One important function that is applied to vertices if what is called a forward

move, defined below. A forward move essentially increases the 01-sequence at

the start of a vertex by one.

Definition 2.1.5. Let a = (a0, a1, a2, . . . ) be a vertex with a 01-sequence of

length n. Then we define a forward move by the function m ∶ V → V , m(a) =
(b0, b1, b2, . . . ), where b

i

≠ a
i

for i ≤ n, and b

i

= a
i

for i > n.
Note that m(a) is directly connected to a by Lemma 2.1.3. Also note that

m is a well defined function, but it is not injective, so m

−1 is not well defined.

We will however, use the term backwards move to denote the reverse of a

forwards move (ie given a vertex a, a backwards move on a gives a vertex b

such that m(b) = a). It should be remembered that a backwards move is not a

well defined function, for example m((0,1,0,0,0,0, . . . )) = (1,0,1,0,0,0, . . . ) =
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m((0,0,1,0,0,0, . . . )).
There is another important subset of K(0,1) that is helpful in understanding

the structure. That is the arc with endpoints (0,1,0, . . . ) and (1,0,1, . . . ). We

call this the limit line, abbreviated ll.

Lemma 2.1.6. Every point in K(0,1) is directly connected to a vertex.

Proof. Let a = (a0, a1, a2, . . . ) ∈K(0,1), and a is not a vertex. Then the coordi-

nates of a are of the form a0,1−a0, a0 for length n, where n ∈ (N�{0})∪{∞}.
Then a will be directly connected to the vertex v = (v0, v1, v2, . . . ), where

�������������������

v0 = 1,
v

i

= 1 − v
i−1 if i ≤ n, and

v

i

= a
i

if i > n.
This path � ∶ [0,1]→K(0,1) is defined as �(x) = (p0, p1, p2), where

�������������������

p0 = x ⋅ (1 − a0),
p

i

= 1 − v
i−1 if i ≤ n, and

p

i

= a
i

if i > n.
If a is a vertex, then a is directly connected to the vertex obtained under

a forward move.

We end this section with the model of K(0,1) that was given by Ingram in

[In2]. Some notation has been changed slightly to align with the notation in

this chapter, but the description is largely taken from the text. Ingram begins

by creating subsets of K(0,1) defined as B

n

∶= {x ∈ K(0,1) ∶ xn+1 = 0} for each

n ≥ 0. Each of these sets B
n

will be the product of a Cantor set with an arc.

B
n

denotes the collection of arcs in B

n

.

We then partition the vertices V into sets C0 ∶= {x ∈ V ∶ x0 = 0} and

C1 ∶= {x ∈ V ∶ x0 = 1}. Then for each n ≥ 1, let pn ∈ {0,1}n be a string of n
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symbols starting with 0 and alternating between 0 and 1, and similarly define

qn ∈ {0,1}n to be a string of n symbols starting with 1 and alternating between

0 and 1.

Now define for each n ≥ 0 the sets D

n

∶= {pn} × C0 and E

n

∶= {qn} × C0.

Also, let p = (0,1,0, . . . ) and q = (1,0,1, . . . ). Then C0 =D1∪D3∪D5∪⋅ ⋅ ⋅∪{p},
and C1 = E2 ∪E4 ∪E6 ∪ ⋅ ⋅ ⋅ ∪ {q}.

Note that for each positive odd integer n, each element of B
n

is an arc

directly connecting a point in D

n

with a point in E

n

= E
n+1 ∪En+2, and if n

is even, each element of B
n

is an arc directly connecting a point in E

n

with a

point in D

n

= D
n+1 ∪Dn+2. Also, for n ∈ N and x ∈ D

n

∪E
n

, x is the endpoint

for some arc in B
n

.

We conclude the construction by picking two skew lines in R3 and embed-

ding C0 in one and C1 in the other. As noted above, C0 =D1∪D3∪D5∪⋅ ⋅ ⋅∪{p},
and C1 = E2 ∪E4 ∪E6 ∪ ⋅ ⋅ ⋅ ∪ q, so from each point in D1, directly connect it

to an appropriate point in E1, then for every point in E2, directly connect it

to an appropriate point in D2, repeating this for all n ∈ N. Finally, connect p
and q with the limit line arc.

Figure 2.4 gives a schematic of Ingram’s model.

2.2 The Topology of K(0,1)
Now that we know the basic structure of K(0,1), we can look at some of its

topological properties. We present them here as a series of propositions.

As mentioned earlier, it is easy to see using Theorem 1.2.3 that K(0,1) is a
continuum. In Section 2.1, we showed how vertices in K(0,1) are connected by

paths: direct connections. By extending this, we will be able to find the path

components of K(0,1).

Definition 2.2.1. Let V

L

= {x ∈ V ∶ there exists n ∈ N such that x
i+1 = 1 −

x

i

for all i ≥ n}.
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Figure 2.4: A schematic of Ingram’s model of K(0,1).

Given a vertex a = (a0, a1, a2, . . . ), if a ∉ VL

, we define

Ba = {x = (x0, x1, x2, . . . ) ∈K(0,1) ∶ there exists

n ∈ N such that x
i

= a
i

for all i ≥ n}.
If a ∈ V

L

, we define

Ba = {x = (x0, x1, x2, . . . ) ∈K(0,1) ∶
there exists n ∈ N such that x

i

= 1 − x
i+1 for all i ≥ n}.

Then it is easy to check that the relation ∼ on K(0,1) defined by a ∼ b if and

only if Ba = Bb is an equivalence relation. We call these equivalence classes

the branches of K(0,1). There is clearly more than one branch, for example

(0,0,0,0, . . . ) and (0,1,0,1,0, . . . ) are in di↵erent branches. In fact, it is not

hard to see there are uncountably many branches.

Lemma 2.2.2. There are c many branches, and each branch contains count-

ably many vertices.
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Proof. First we will show that there are countably many vertices in each

branch. Let c be a vertex, Bc its branch, and let Vc be the set of all ver-

tices in Bc. Now we define inductively A0 = {a = (a0, a1, a2, . . . ) ∈ Vc ∶ ai =
c

i

for all i > 0}, and for all other n ∈ N, define A

n

= {a = (a0, a1, a2, . . . ) ∈
(Vc � �0≤i<nAi

) ∶ a
i

= c

i

for all i > n}. So we have partitioned Vc into sets

defined by the last coordinate at which a vertex di↵ers from c. These sets are

clearly disjoint, and �
i∈NAi

= Vc. Also note that each A

i

is a finite set, as

for each i, there are only finitely many possible combinations of points in the

coordinates less than i. Therefore, Vc is a countable union of finite sets, so

countable.

As V is a Cantor set, we know there are c many vertices, and these are

disjointly partitioned into branches, each branch containing only countably

many vertices. Therefore, there must be c many branches.

Lemma 2.2.3. Two vertices a and b of K(0,1) are in Bc for some vertex c if

and only if there is a finite chain of vertices v0,v1,v2, . . . ,vq

such that v0 = a,
v
q

= b, and for all 1 ≤ i ≤ q, v
i

is directly connected to v
i−1.

Proof. Suppose a and b are vertices in Bc. Then there exists n1 ∈ N such that

for i ≥ n1 we have ai = ci, and also there exists n2 ∈ N such that for i ≥ n2, bi = ci.
Let n = max{n1, n2}, then for all i ≥ n, a

i

= b
i

. Suppose a has a 01-sequence

of length m1, and b has a 01-sequence of length m2 let k1 = min{n,m1}, and
k2 = min{n,m2}. Now, by applying a total of n − k1 forward moves to a, we

have a finite sequence of vertices p0,p1, . . . ,pl

where p0 = a, p
l

= d (where

d has a 01-sequence of length n, and d

i

= c

i

for i > n), and p
i

is directly

connected to p
i−1 for all 1 ≤ i ≤ l. Similarly by applying n − k2 forward moves

to b, we have a finite sequence of vertices p
l

,p
l+1, . . . ,pj

(where j ≥ l), where
p
l

= d, p
j

= b, and p
i

is directly connected to p
i−1 for all l + 1 ≤ i ≤ j. Then

p0,p1, . . . ,pj

is the sequence we require.
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For the reverse direction note that by Lemma 2.1.3 if two vertices are

directly connected, their coordinate sequences have the same tail. So any finite

collection as described by v0,v1, . . . ,vq

will have the same tail, and hence are

in the same branch Bc.

The next lemma will help us to see what the path components of K(0,1)
are.

Lemma 2.2.4. Suppose a and b are vertices in K(0,1). Then there is a path

� ∶ [0,1] → K(0,1) between a and b if and only if there is a finite chain of

vertices v0,v1,v2, . . . ,vq

such that v0 = a, vq

= b, and for all 1 ≤ i ≤ q, v
i

is

directly connected to v
i−1.

Proof. Let � ∶ [0,1] → K(0,1) be a path, let A ⊂ K(0,1) be the image of �, and

suppose A contains  vertices for some infinite cardinal . Let V0 be the set of

all vertices with first coordinate 0 contained in A, and let V1 be the set of all

vertices with first coordinate 1 contained in A. Then either V0 or V1 is infinite.

Suppose, without loss of generality, that V0 is infinite. Then as V0 ⊂K(0,1) and
K(0,1) is compact, V0 has an accumulation point, call this b. As A is compact,

b ∈ A, so b ∈ V0.

Let (b
i

∶ i ∈ N) be a sequence of points in V0 converging to b. If we take

the inverse image of each b
i

, and their limit point b, we have a collection

of points in [0,1], B = {�−1(b),�−1(b0),�−1(b1),�−1(b2), . . .}. Then as we

have an infinite collection of points in a compact interval, they will have an

accumulation point p. Choose a sequence (c
i

∶ i ∈ N) in B that converges to p.

Then (c
i

∶ i ∈ N) is convergent, and hence (�(c
i

) ∶ i ∈ N) must be a subsequence

of (b
i

∶ i ∈ N), hence �(p) = b, so �(p) had first coordinate 0.

By Lemma 2.1.3, for any i ∈ N, the vertices b
i

and b
i+1 cannot be directly

connected since they both have first coordinate 0. Therefore, for each i ∈ N,
there exists a point d

i

∈ [0,1] such that d
i

lies between c

i

and c

i+1, and �(d
i

)
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has first coordinate 1. Then we have a sequence of points (d
i

∶ i ∈ N) that
converges to p, and for each i ∈ N, �(d

i

) has first coordinate 1. Therefore

(�(d
i

) ∶ i ∈ N) converges to a point in K(0,1) with first coordinate 1, hence �(p)
must have first coordinate 1.

So we have a contradiction, and conclude the image of any path contains

only finitely many vertices. That there is a chain with the necessary properties

is clear from the existence of a path and the definition of a direct connection.

For the reverse direction, for i ∈ {1, . . . q}, let �

i

∶ [0,1] → K(0,1) be a

path between v
i−1 and v

i

that exists as they are directly connected. Then

let �

′
i

∶ [0, 1
q

] → K(0,1) be defined as �

′
i

(x) = �
i

(q ⋅ x). Then � ∶ [0,1] → K(0,1)
defined as

�(x) =
�����������
a if x = 0
�

i

(x − i−1
q

) if x ∈ ( i−1
q

,

i

q

]
is a path in K(0,1) from a to b.

Corollary 2.2.5. Two points a and b in K(0,1) are connected by a path if and

only if they are in the same branch Bc for some c ∈ V .

Proof. If a and b are vertices, this follows from Lemma 2.2.3 and Lemma 2.2.4.

If a or b is not a vertex, by Lemma (above) it will be directly connected to a

vertex in the same branch, so again we can obtain a path.

This shows that the path components of K(0,1) are precisely the branches,

{Bv ∶ v ∈ V }. As there is more than one branch, we have:

Proposition 2.2.6. K(0,1) is not path connected.

In addition to being not path connected, we also have that K(0,1) is not

locally connected anywhere.

Proposition 2.2.7. K(0,1) is not locally connected anywhere.
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Proof. Let x = (x0, x1, x2, . . . ) ∈K(0,1). Let
U = ���x0 − 1

8
, x0 + 1

8
� ∩ [0,1]� × [0,1]!� ∩K(0,1)

(the actual value 1
8 used here and later in the proof has no real significance

other than it needs to be less than 1
4). Let V ⊂ U be open, with x ∈ V . We will

show that V is disconnected. Let V
↵

be a basic open set in V that contains x.

Then as V
↵

must have as factors [0,1] for infinitely many coordinates, we can

conclude that there must exist y = (y0, y1, y2, . . . ) ∈ V↵

such that there is at least

one occurrence of consecutive 0s in y, and y has a di↵erent tail to x. Suppose

the first occurrence of consecutive 0s begins at coordinate y
n

. Let m > n+2 be

such that y
m

≠ x
m

(such a point exists as x and y have di↵erent tails), and let

l

∗ = �y
m

−x
m

� and l = l

∗
2 . Let d ∈ [0,1]�((x0− 1

8 , x0+ 1
8)∪(1−(x0+ 1

8),1−(x0− 1
8))).

Now, let

A

U

= ((⇧
i<n((xi

− 1
8 , xi

+ 1
8) ∩ [0,1])) × [0, d) × [0, d)×[0,1]m−(n+1) × ((y

i

− l, y
i

+ l) ∩ [0,1]) × [0,1]!) ∩K(0,1),
and

A

∗
U

= ((⇧
i<n([xi

− 1
8 , xi

+ 1
8] ∩ [0,1])) × [0, d] × [0, d]×[0,1]m−(n+1) × ([y

i

− l, y
i

+ l] ∩ [0,1]) × [0,1]!) ∩K(0,1).
Then A

U

∩ U is open in U , and A

∗
U

∩ U is closed in U . A

∗
U

∩ U = A
U

, as

any point in K(0,1) that has an ith coordinate on the boundary of (x
i

− 1
8 , xi

+
1
8) ∩ [0,1] for i < n, or on the boundary of [0, d) for the the nth and (n + 1)th
coordinate, or on the boundary of (y

i

− l, y
i

+ l)∩ [0,1] for the mth coordinate

will not be in U .

Therefore, A
U

is clopen , so if we let B

U

= U �A
U

, then A

U

is open and

nonempty (y ∈ A
U

), B
U

is open and nonempty (x ∈ B
U

), and A

U

∪B
U

= U .

Then if we define A = A
U

∩ V , B = B
U

∩ V then A and B are nonempty,

open, and A ∪B = V , so V is disconnected.
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Earlier in this thesis, we encountered the buckethandle continuum, an in-

decomposable continuum. In addition to the buckethandle continuum being

homeomorphic to lim←�f( 1
2
,1), it is also true that the buckethandle continuum

is homeomorphic to lim←�f(a,1) for a ∈ (0,1). The next proposition shows that

although there are tent maps f(a,1) with peaks arbitrarily close to that of f(0,1),
K(0,1) is not homeomorphic to the buckethandle continuum, and it is not even

indecomposable.

Proposition 2.2.8. K(0,1) is decomposable.

Proof. Consider the following decomposition. Let

D1 = [0,1]! � ��0, 1
4
� × �0, 1

4
� × �0, 1

4
� × [0,1]!� .

Then D1 is closed, so D1 ∩K(0,1) is closed. We can then see that D1 ∩K(0,1)
includes all vertices in K(0,1) except vertices beginning with at least three 0s.

Furthermore, we can then see that it will include all points in K(0,1) except
those with first three coordinates a,0,0, where a ∈ [0, 14). As these excluded

points all occur at the ends of the path components, ie we have removed some

of the end vertices and a portion of the arc that directly connects them to the

next vertex, so what remains is homeomorphic to what we began with. So

D1 ∩K(0,1) is connected, hence it is a continuum, ie a proper subcontinuum of

K(0,1).
Now, let

D2 = [0,1]! � ��0, 1
4
� × �0, 1

4
� × �3

4
,1� × [0,1]!� ,

then similarly to above D2 ∩K(0,1) contains all vertices in K(0,1) except those
that start with exactly two 0s, and then it will include all points in K(0,1)
except those that start with (a,0,1, . . . ), where a ∈ [0, 14). Then similarly to
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above, D2 ∩K(0,1) is a proper subcontinuum of K(0,1), and we have K(0,1) =
(D1 ∩K(0,1)) ∪ (D2 ∩K(0,1)), so K(0,1) is decomposable.

Definition 2.2.9. A dendrite is a locally connected continuum that contains

no simple closed curves. A finite dendrite is a dendrite which can be written

as the union of finitely many arcs, any two of which are either disjoint, or

intersect at one of their endpoints. A finite dendrite is sometimes called a tree.

Definition 2.2.10. If x ∈ K(0,1), the degree of x is the maximum number of

distinct arcs whose pairwise intersection is x.

As K(0,1) is not locally connected, it is not a dendrite. One could then ask

the question “Does K(0,1) contain a universal dendrite?”. Equivalently “Does

K(0,1) contain every dendrite?” - such dendrites exist, for example Wazewski’s

universal dendrite [Nad, 10.37]. The answer to this question is no. K(0,1) has
exactly two points of degree !, (0,1,0,1,0, . . . ) and (1,0,1,0,1, . . . ). These

are the only points of degree !, since are the only vertices directly connected to

infinitely many other vertices. To see this, suppose a vertex x = (x0, x1, x2, . . . )
is such that x ≠ (0,1,0,1, . . . ), and x ≠ (1,0,1,0, . . . ). Then x has a finite 01

sequence, which will be followed by a 00. Say the first 0 in the 00 happens

at the nth coordinate. Note that from Lemma 2.1.3, two vertices are directly

connected if and only if their initial coordinates are not equal. Then any point

directly connected to x will only be able to di↵er in every coordinate in the

first n − 1 coordinates (or else there will be a 11), and only finitely many can

do this.

If we concentrate instead on finite dendrites, we have the following propo-

sition.

Proposition 2.2.11. K(0,1) contains every finite dendrite.

Proof. Let a = (0,0,0,0, . . . ). After applying 4n + 1 forward moves to a, we

have m

2n+1(a) = b is directly connected to at least n vertices. This is because
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after 4n + 1 forward moves, there will be at least 2n 1s in the 01 sequence

of b. Then, By Lemma 2.1.3, b will be be directly connected to at least 2n

other vertices, each obtained by replacing a 1 in the 01 sequence of b by a 0,

and then changing the coordinates before this to make a 01 sequence. By the

same reasoning, the vertices obtained by replacing 1 by 0 for each 1 occurring

between the (n+ 1)st occurrence of 1 through to the 2nth occurrence of 1 will

all be directly connected to at least n vertices.

So after 4n+1 forward moves, we have (at least) n vertices that are directly

connected to (at least) n vertices each. Let the point m(4n+1)n(a) = c, and let

A be the union of the collection of all vertices obtained as backwards moves

from c, and the arcs directly connecting these vertices. Then A contains a

continuum containing at least n vertices, each of which is directly connected

to at least n vertices in A. Moreover A is locally connected (it is a finite

portion of one branch). Then given any finite dendrite D with n vertices, we

can embed D into A, and hence into K(0,1).

Note that the proof of Proposition 2.2.11 shows that each branch actually

contains every finite dendrite. This strengthens Ingram’s result [In2, Example

2.1.5] of K(0,1) containing many mutually exclusive n-ods for each n (an n-od

is is a collection of n arcs, all intersecting at a single point).

2.3 The Fixed Point Property in K(0,1)
In this section we show K(0,1) has the fixed point property.

Definition 2.3.1. A continuum A has the fixed point property if for every

continuous function f ∶ A→ A, there is a point x ∈ A such that f(x) = x.
Before proving that K(0,1) has the fixed point property, we first present

some background on the fixed point property.
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We begin with the definition of P-like, where P is the collection of spaces

that share a particular property, for example the collection of all arcs, or the

collection of all trees.

Definition 2.3.2. Let X and Y be compact metric spaces and f ∶ X → Y .

Then f is called an "-map provided that f is continuous, and the diameter of

f

−1(f(x)) < " for all x ∈X.

Let P be a collection of compact metric spaces. Then X is said to be P-like
provided that for each " > 0, there is an "-map f

"

from X onto some member

Y

"

of P .
It is shown in Nadler [Nad, Corollary 12.30], that all arc-like continua have

the fixed point property. In [CR, Example 2], it is shown that K(0,1) is tree-
like. There are examples of tree-like continua that do not have the fixed point

property, for example in [B] and [OR]. It is, however, shown in [Nad, Theorem

10.31] that every dendrite (and hence every tree) has the fixed point property

(this result will be used repeatedly in the proof). These results indicate that

K(0,1) having the fixed point property is not a trivial result.

We will call the path component that contains the limit line L. That is,

L is the collection of all points in K(0,1) that have a (0,1,0,1, . . . ) tail (Given

two sequences of values in [0,1], a = (a0, a1, a2, . . . ) and b = (b0, b1, b2, . . . ), we
say a has a b-tail if there exists N ∈ N such that for all n ≥ N , a

N+n = b

n

).

Whereas all other path components look essentially the same, L has some

di↵erent properties.

For any point x ∈ L, either x is on the limit line, or after finitely many

forward moves, x will be directly connected to a point in the limit line. We

can think of L as being an arc (the limit line) that has (countably) infinitely

many trees attached at each end.

For example, from the point (0,1,0,1,0,1, . . . ) we can obtain the point

(1,0,1,0,0,1,0, . . . ) by a backward move. From there we can also (through

backwards moves) obtain the vertices (0,0,1,0,0,1,0, . . . ), (0,1,0,0,0,1,0, . . . ),
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(1,0,0,0,0,1,0, . . . ), and (0,0,0,0,0,1,0, . . . ). These vertices (along with the

lines joining them) form one of the trees coming out of (0,1,0,1,0,1, . . . ). This
is illustrated in Figure 2.5.

(1,0,1,0,0,1,0,...)

(0,1,0,1,0,1,...)

(0,0,1,0,0,1,0,...)

(0,1,0,0,0,1,0,...)

(1,0,0,0,0,1,0,...)

(0,0,0,0,0,1,0,...)

Figure 2.5: A tree in L.

The trees arrange to something similar to a ‘harmonic fan’ around the limit

line (ll). To see this, note that the first line in a tree coming out of one of the

endpoints of ll is closer to ll the greater the coordinate that the first backwards

move originates from. These lines will then converge to the limit line as this

coordinate becomes large.

Note that L is not compact, as we can create a sequence of points (x
i

)
i∈N

in L, where x
i

consists of i 0s followed by a 01 sequence. This sequence of

points converges to the point (0,0,0,0, . . . ) which is not in L.

Figure 2.6 is a schematic of L. The limit line is the centre line, and the
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trees are emerging from each end of the limit line, converging back to the line

itself.

�����

�����

Figure 2.6: A schematic of L. The limit line is shown in blue.

We will proceed first to show that L has the fixed point property, and from

there show that K(0,1) has the fixed point property.

The following well known theorem of Brouwer is used in the proof. In

particular, we use the case in one dimension.

Theorem 2.3.3 (Brouwer [Br]). Every compact convex set in Rn has the fixed

point property.

In the next lemma we use the notion of a ball around a set. In this context,

given a set A ⊂K(0,1) and " > 0, we define the closed ball B
"

(A) = {x ∈K(0,1) ∶
d(x,y) ≤ " for some y ∈ A}. Here the distance function on K(0,1) is the metric

generated by the norm ��x�� = ∑
i≥0 �xi

i

2 �, where x
i

is the ith coordinate in x. This

means that for x ∈K(0,1), ��x�� < 2.
The lemma also uses the term continuous sequence of length m in reference

to a point x ∈ K(0,1). This simply refers to an initial subsequence (x
i

)0≤i≤m of
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x where for all 1 ≤ i ≤m we have x

i

= 1 − x
i−1. This is a generalisation of a 01

sequence.

Lemma 2.3.4. For every " > 0, there exists a compact set C in K(0,1) contained
in B

"

(ll) that is connected, and a neighbourhood of ll.

Proof. Let " > 0. Let
C

n

= {x ∈K(0,1) ∶ x has a continuous sequence of length at least n}.
We make two claims about C

n

.

1. C

n

⊂ B
"

(ll) for some suitably large (finite) n, and

2. C

n

is homeomorphic to K(0,1).

For the first claim, given " > 0, note that there exists some k ∈ N such that

∑
i≥k 1

i

2 < ". Then given x ∈ C
k

, the first k coordinates of x are the same as

some y ∈ ll, so since for all i > k we have �x
i

− y
i

� ≤ 1, ��x − y�� ≤ ∑∞
i=k 1

i

2 < ".

Hence C

k

⊂ B
"

(ll).
For the second claim, note that C

n

restricted to all coordinates after n is

homeomorphic to K(0,1), as it contains all possible points in K(0,1). Also, the

string of coordinates before the nth coordinate is uniquely determined by the

nth coordinate.

C

n

is a neighbourhood of ll because it contains the open set

��0, 34� × �14 ,1� × �0, 34� × ⋅ ⋅ ⋅ × �0, 34� × [0,1]!�∪��14 ,1� × �0, 34� × �14 ,1� × ⋅ ⋅ ⋅ × �14 ,1� × [0,1]!�
(here the products are restricted for the first n + 1 coordinates).

So given " > 0, we can simply define C = C
n

for some suitably large n.

The following is a slightly modified version of the Brouwer theorem in one

dimension.
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Lemma 2.3.5. Suppose f ∶K(0,1) →K(0,1) is continuous, and ll ⊂ f(ll). Then
ll has a fixed point.

Proof. First we make the claim that there exist x and y ∈ ll such that f[x,y] =
ll (here [x,y] denotes the arc in ll between x and y). To prove this, first note

that ll is an arc, and if points ↵ ∈ ll and � �∈ ll are path connected, the path

connecting them contains one of the endpoints of ll. Call the endpoints of ll

w and v (so ll = [w,v]). As ll ⊂ f(ll), there exists a and b ∈ ll such that

f(a) =w and f(b) = v. Suppose that a < b (here the ordering comes from the

identification of ll with an arc). Then let

d = inf{x ∈ ll ∶ x > a and f(x) = v}.
As f is continuous d > a. Now let

c = sup{x ∈ ll ∶ x < d and f(x) =w}.
As f is continuous c < d.

Then f(c) = w, f(d) = v, so as f is continuous, by the intermediate value

theorem, f([c,d]) ⊃ ll, but as there is no z ∈ (c,d) such that f(z) = w or

v, and these are the only points through which the image can ‘exit’ ll, we

conclude f([c,d]) = ll. The proof works entirely similarly if b < a.
Now consider the function f �[c,d] ∶ [c,d] → ll. By identifying ll with [0,1],

using the homeomorphism h ∶ ll → [0,1] defined by simply taking the first

coordinate of a point in ll (it is easy to see this is a homeomorphism), we

can define the function g ∶ [c,d] → [0,1] by g(x) = h(f(h−1(x))). Then g is

continuous, so by the intermediate value theorem the (continuous) function

g(x) − x has a 0, which corresponds to a fixed point for g, and hence a fixed

point for f .

Lemma 2.3.6. Let B be a branch, and suppose B ≠ L. Then any continuum

contained in B is a tree.
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Proof. Let A be a continuum contained in a branch B. We will show that A

has only finitely many vertices. Suppose with a view to contradiction A has

infinitely many vertices, these being the set V ∗ ∶= {v
i

∶ i ∈ N}. We claim that

as there are infinitely many vertices, there are vertices in V

∗ with arbitrarily

long 01 sequences. Suppose there is a maximum length of a 01 sequence, say

n, and let v
m

have a 01 sequence of length n. Then v

m

cannot be connected

to any other vertices with a 01 sequence of length n. For v
m

to do so would

require at least one forward move and corresponding backward moves (with

all vertices associated with these moves included in V

∗), and this would mean

there is a vertex in A with a 01 sequence of length n + 1. So the only vertices

included in A come from backward moves from v

m

, and there are only finitely

many of these. So we conclude that if there are infinitely many vertices, there

are arbitrarily long 01 sequences in the set of these vertices.

Now consider the open cover of A by the following sets. For i ≥ 0, let U
i

be

defined as ⇧
j≥0Xj

, where:

X

j

=
�������������������

[0, 34) if j = i or j = i + 1 or j = i − k for k even

(14 ,1] if j = i − k for k odd

[0,1] if j > i + 1
Then a point in K(0,1) � ll will be in some U

i

if it has a 01 sequence of

length i, so {U
i

∶ i ≥ 0} covers A, but as there are arbitrarily long 01 sequences

of vertices in A, there is no finite subcover of {U
i

∶ i ≥ 0} for A, so A is not

compact.

Therefore, we conclude that there must be only finitely many vertices in

A, so by [Nad, Theorem 9.10], we have that A is a tree.

Lemma 2.3.7. If A is a continuum in K(0,1) that does not contain any points

in the limit line, then A is contained in a single branch.
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Proof. As A is compact, using a similar argument to Lemma 2.3.6, we have that

there exists some n ∈ N such that A only contains vertices with 01 sequences

of length less than n (if not we can construct the same open cover and show

that A is not compact). Therefore, for any point x ∈ A, the value of x
m

for

m > n is either 0 or 1.

Suppose that A contains points from two branches, a ∈ B1 and b ∈ B2.

Then as a and b have di↵erent tails, there exists some k > n such that a
k

= 0
and b

k

= 1. Then let

Ua = ([0,1]k × �0, 1
2
� × [0,1]!) ∩A,

and

Ub = ([0,1]k × �1
2
,1� × [0,1]!) ∩A.

Then Ua and Ub are nonempty, open, disjoint, and A = Ua ∪ Ub, so A is

disconnected.

Therefore, we conclude that A is contained in a single branch.

Now we will show L has the fixed point property.

Lemma 2.3.8. L has the fixed point property.

Proof. Given a continuous f ∶ L → L, we will consider what happens to the

limit line, ll, under f . There are four cases:

1. f(ll) ⊂ ll. Here we have an arc mapping into itself, so by the Brouwer

theorem (Theorem 2.3.3), f �
ll

has a fixed point, hence so does f .

2. ll ⊂ f(ll). This time, by Lemma 2.3.5, f �
ll

has a fixed point, and therefore

so does f .

3. One of the end points of the limit line ll (call this point w), has f(w) in
a tree that is rooted at w (one of the trees that arrange as a harmonic fan

and are rooted at w, as mentioned earlier in the section). We can assume
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f(w) ≠ w, or else w is a fixed point. Call this tree T , so f(w) ∈ T . Let
g ∶ T → T be defined as follows:

g(x) =
�����������
f(x) if f(x) ∈ T
w if f(x) �∈ T

Then g is continuous on T , since if x ∈ T , if g(x) is either equal to f(x)
(which is continuous), or w, and since the two possible cases agree on

the boundary (as f is continuous), g will be continuous.

Then as g is a continuous map from a tree T to itself, and trees have

the fixed point property [Nad, Theorem 10.30], g has a fixed point. This

fixed point cannot possibly be w, as f(w) ≠ w, so the fixed point must

be some x ∈ T � {w}. Then as g(x) = x ∈ T , we have f(x) = x ∈ T , so x

is a fixed point for f .

4. In the last case, we have all other possibilities. As none of the other three

cases can apply, we conclude that in this case, one of the endpoints of ll

(call it w) maps to a tree coming from the other endpoint of ll (call this

v), and v maps inside ll. Then as v is a disconnection point for L, there

exists x ∈ ll such that f(x) = v. Then similarly to the proof in Lemma

2.3.5, we can obtain a maximum value for such a point x, and by the

intermediate value theorem f �
ll

has a fixed point, and hence so does f .

In all cases, f has a fixed point, so we conclude that L has the fixed point

property.

Now we can prove the main theorem of this section.

Theorem 2.3.9. K(0,1) has the fixed point property.
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Proof. Let f ∶ K(0,1) → K(0,1) be continuous. Note that as f is continuous,

path components are mapped by f to path components. We have two cases,

depending on where f maps the limit line, ll.

1. ll maps into L. In this case L maps to itself, so since L has the fixed

point property, f �
L

has a fixed point, and hence f has a fixed point.

2. ll maps to a branch B that is not L. In this case, consider f(ll). Here

f(ll) is compact and connected, hence by Lemma 2.3.6, f(ll) is a tree.

As f(ll) is compact, and maps outside ll, then d(ll, f(ll)) = a > 0 (here

d(ll, f(ll)) = inf
x∈ll{inf

y∈f(ll){d(x, y)}). Then for " = a

2 , as f is (uniformly)

continuous, there exists a @ > 0 such that d(ll, f(B
@

(ll))) > a

2 > 0.
Therefore f(B

@

(ll)) does not contain ll. By Lemma 2.3.4, B
@

(ll) con-
tains a continuum that contains a neighbourhood of ll, call this C. Then

f(C) is compact, connected, and does not contain the limit line, so by

Lemma 2.3.7, f(C) is contained in a single branch. But as C is a neigh-

bourhood of ll, C meets every path component in K(0,1), ie points from

every branch. Then as f is continuous, all these path components must

map under f to the same branch (the branch that C maps to), so we

conclude the image of K(0,1) under f is contained in a single branch.

Then as K(0,1) is compact and connected, its image is compact and con-

nected, so by Lemma 2.3.6, f(K(0,1)) is a tree, call it T . Then if we

restrict f to T , f �
T

∶ T → T is a continuous function from a tree into

itself, and as trees have the fixed point property [Nad, Lemma 10.30],

f �
T

has a fixed point, and hence so does f .

In either case, f has a fixed point, and hence K(0,1) has the fixed point

property.
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2.4 An Embedding of K(0,1) into R3

In this section we will describe an embedding ofK(0,1) into R3. This embedding

will be particularly useful for visualising the structure of K(0,1). In Section 2.1

we gave a basic model of K(0,1) due to Ingram. In this section we will develop

this further into an explicit embedding in R3.

We know that the set of vertices of K(0,1), which we are calling V , is home-

omorphic to the Cantor set, C of all binary sequences. For the purposes of the

embedding, it will be helpful to refer to the vertices by their coordinates under

a particular homeomorphism that re-labels each vertex as a binary sequence in

the Cantor set. This homeomorphism h ∶ V → C acts on a vertex by (starting

at the left of the sequence) removing a 0 that appears directly to the right of

each 1, and shifting the remainder of the sequence to the right of the 1 one place

to the left. For example: h((0,1,0,0,1,0,1,0,0, . . . )) = (0,1,0,1,1,0, . . . ).
We will describe the vertex relations (ie which vertices are joined by direct

connections) under the new coordinates. For the remainder of this section,

unless otherwise specified, when mentioning the coordinates of a vertex, now

we are referring to the coordinates after the homeomorphism is applied, eg

(1,1,1,1, . . . ) is now a perfectly valid point in K(0,1) (and corresponds to the

limiting point whose pre-homeomorphism coordinates are (1,0,1,0,1, . . . )).
The reason for doing this is that it makes it easier to describe the embedding

by describing the position of the point in terms of the usual Cantor middle

thirds set.

We now need to redefine some terminology. For any a = (a0, a1, a2, . . . ) ∈ C,

we say that a has a 1 sequence of length n for n ∈ N∪{∞} if a
n

= 0, and either:

1. a

i

= 1 for all 0 ≤ i < n, or
2. a0 = 0, and a

i

= 1 for all 1 ≤ i < n.
Note that if a0 = a1 = 0, then a has a 1 sequence of length 1. The concept of a

1 sequence is analogous to that of a 01 sequence.
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We can describe a forward move by the function m

′ ∶ C → C as follows.

Suppose an element a = (a0, a1, a2, . . . ) in C has a 1 sequence of length n. We

can then define:

m

′(a) =
�����������
(1,1, . . . ,1, a

n+1, an+2, . . . ) if a0 = 0
(0,1,1, . . . ,1, a

n+1, an+2, . . . ) if a0 = 1
(in each case there are n 1s before a

n+1).
For notational purposes, we will split C into a number (countably infinite)

of disjoint subsets. Let s = (s0,1, . . . ,1,0) be a finite sequence of 0s and 1s of

length n + 1 such that s0 = 0 or 1, s
n

= 0, and s

i

= 1 for all 1 ≤ i < n. Then

let Cs be the set of all binary sequences such that the first n + 1 coordinates

match the coordinates of s. Also, define C(0,1,1,1,... ) = {(0,1,1,1, . . . )}, and
C(1,1,1,1,... ) = {(1,1,1,1, . . . )}. It is easy to see that the sets Cs form a disjoint

union to give C - the Cantor set. We call these sets partition sets of C. In doing

this we have partitioned the points C by the 1 sequence of the coordinates at

the start of the point.

The concept of a direct connection is still used in the same way as before.

The end vertices (vertices directly connected to only one other vertex) have

sequences that begin with at least two 0s, ie the end vertices are C(0,0). These
vertices have the natural structure of a Cantor set (we simply ignore the first

two 0s, and we can represent them on a compact interval as the points of the

usual middle thirds Cantor set).

In representing C(0,0) in this way, we see that it can be divided into two

classes - those whose third coordinate is a 1, and those whose third coor-

dinate is a 0. Consider what happens if the next coordinate is a 0. Sup-

pose a = (0,0,0, a3, a4, . . . ). After applying a forward move to a we have

m

′(a) = (1,0, a3, a4, . . . ). This means the 1 sequence of m′(a) also has length

1, and m

′(a) has first coordinate 1, and second coordinate 0. So m′(a) ∈ C(1,0).
Now suppose that a ∈ C(0,0), but a2 = 1. Then m

′(a) = (1,1, a3, a4, . . . ).
We cannot tell yet what partition set of C m

′(a) is in. To do this we need
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to know what a3 is. If a3 = 0, then m

′(a) = (1,1,0, a4, . . . ), so in this case

m

′(a) ∈ C(1,1,0). If however, a3 = 1, we still don’t know what partition set a

is in, so we need to keep repeating this process until a
n

= 0 for some n, or if

a

i

= 1 for all i ≥ 2, then a ∈ C(1,1,1,... ).
This means that given an end vertex a (in C(0,0)), we can easily find which

partition set m′(a) is in. We simply find where the first 0 is (after the initial

two 0s). Suppose it occurs at a
n

, then a will be directly connected to a vertex

in C(1,1,...,1,0), where the 0 occurs at s
n

.

Suppose that we have two points in C(0,0) that are su�ciently close (where

they have the same beginning to their sequences for n coordinates for some

arbitrarily large n - say at least until the first 0 if it exists). Then the images

of these points are similarly close under m

′. In this sense, the Cantor set

structure is preserved under m′.
We can now consider what partition sets will be ‘close’ together. Each

partition set Cs, where s is a finite sequence, has the natural structure of

a Cantor set, so for points within the partition set we know which ones are

‘close’. The partition sets themselves also have a natural ‘closeness’ relation

based on the points that are in them. Firstly, suppose a = (0, a1, a2, . . . ), and
b = (1, b1, b2, . . . ). Then a and b are not particularly close, as they will always

di↵er at the first coordinate. Therefore C(0,1,1,...,1,0) and C(1,1,1,...,1,0) can never

be close, no matter how many 1s each has (including infinitely many).

Also, suppose Cs1 and Cs2 have the same first coordinate, but di↵erent

(finite) lengths (suppose s1 has length m, and s2 has length n, where m < n).
Then as two points, one in each partition set, will di↵er at the mth coordinate,

Cs1 and Cs2 will also not be close (they get closer as m gets larger). On the

other hand, C(0,1,1,... ) has sets of the form C(0,1,1,...,1,0) arbitrarily close (as the

1 sequence of the second set becomes arbitrarily large). Similarly, C(1,1,1,... )
has sets of the form C(1,1,1,...,1,0) arbitrarily close.

Now that we know how the vertices are directly connected, and how the
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vertices and partition sets relate to each other in terms of distance, we can

begin to look for an embedding of K(0,1) into R3. We will put the embedding

into a unit cube [0,1] × [0,1] × [0,1] in R3.

We start with the end vertices, ie C(0,0). We will embed these points into

the line in the unit cube which has coordinates (0, x,1), where x ∈ [0,1]. We

order the points in the way described above (as a middle thirds Cantor set),

by putting the point (0,0,1,1,1, . . . ) at (0,0,1), and the point (0,0,0,0, . . . )
at (0,1,1). This is what we mean by a canonical embedding of a Cantor set

into {0} × [0,1] × {1}, ie the point with all coordinates 0 to the right, and the

point with all coordinates 1 to the left. These points all have a first coordinate

of 0, and we know that points with first coordinate 0 will converge to the point

(0,1,1,1, . . . ) as part of a sin 1
x

curve. Now we need to consider what happens

to these points after a forward move. As mentioned above, if we have a point

a, where a = (0,0, a2, . . . ), and a2 = 0, then m

′(a) ∈ C(1,0). Therefore all points
with coordinates (0, x,1), where x ∈ [12 ,1], will be directly connected to points

in C(1,0).
Now we must consider where to place C(1,0). Similarly to the points begin-

ning with 0, the points beginning with 1 converge to the point (1,1,1, . . . ) as
part of a sin 1

x

curve. So we will embed C(1,0) in a di↵erent plane to C(0,0), and
indeed all points that begin with a 1 in a di↵erent plane to those that begin

with a 0. As only the points in C(0,0) that have a third coordinate of 0 will

directly connect to points in C(1,0), we only need half of the length of Cantor

set as for C(0,0). Therefore, we can embed C(1,0) as a Cantor set in the line

in the cube with coordinates (12 , x,0), where x ∈ [23 ,1]. The first coordinate

of this embedding being 1
2 is because, as the length of the 1 sequence of the

points is increasing, we are proceeding further along the sin 1
x

curves, which

will have a limiting line that has a first coordinate of 1 (in the cube).

A diagram showing the placement of these sets is shown in Figure 2.7, along

with the intended position of the limit line.
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Figure 2.7: The placement of sets C(0,0), C(1,0), and C(0,1,0).

Now we have to consider how to lay out the points of C(0,1) in the interval.

Remembering that a point a = (0,0, a2, a3, . . . ) will have a direct connection

to a point b = (1,0, b2, b3, . . . ) if and only if a
i

= b
i

for all i ≥ 2, there is the

obvious way to lay them out. This involves having (1,0,1,1,1, . . . ) at (12 , 23 ,0),
and (1,0,0,0, . . . ) at (12 ,1,0) so they will be connected with a straight line.

This will however cause problems later, so we will lay it out slightly di↵erently.

To do this, we will now introduce two di↵erent ways to rearrange a Cantor set,

called a type 1 switch, and a type 2 switch. Each of these is a homeomorphism

of C. We denote a type 1 switch by the function s1, and a type 2 switch by

the function s2. They are defined as follows: let a = (a0, a1, a2, . . . ) ∈ C. Then
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we define:

s1(a) = (1 − a0,1 − a1,1 − a2, . . . )
s2(a) =

�����������
(1, a1, a2, a3, . . . ) if a0 = 0
(0,1 − a1,1 − a2,1 − a3, . . . ) if a0 = 1

As the intent of these functions is to show the way in which we make direct

connections, in Figure 2.8 the Cantor set at the top is transformed by s1 (on

the left), and s2 (on the right), and in each case, for each a ∈ C, a is directly

connected to s

i

(a), for i ∈ {1,2}. This is a representation of how an embedding

in R3 of a particular section would look.

�

����������

�

Figure 2.8: The e↵ects of the functions s1 and s2 on C.

Now we can see how C(1,0) will be arranged. We apply a type 2 switch

(the function s2) to the canonical arrangement of C(1,0), so we have the point

(1,0,0,1,1,1, . . . ) at (12 , 23 ,0), and (1,0,1,1,1, . . . ) at (12 ,1,0), etc.
Now, similarly to the case for C(0,0), the points in C(1,0) that have a third

coordinate of 0 will be directly connected to points in C(0,1,0). We will embed

the points of C(0,1,0) in the cube on the line of points (34 , x,1), where x ∈ [23 , 79].
These are again at the top of the cube (the same plane as C(0,0) - note that

in C(0,1,0) we are ‘further along’ the sin 1
x

curve than at C(0,0), but both are

converging to the same point in the limit line). C(0,1,0) sits at the left of C(1,0),
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whereas C(1,0) sat to the right of C(0,0). This time we will embed C(0,1,0) in
the canonical way, ie (0,1,0,1,1,1, . . . ) is at (34 , 23 ,1), and (0,1,0,0,0, . . . ) is
at (34 , 79 ,1).

We now have embeddings for the first three partition sets. These have

created a pattern we will now specify how to follow. Let s = (s0, s1, . . . , sn−1,0)
be a finite sequence of 0s and 1s of length n + 1 such that s0 = 0 or 1, s

n

= 0,
and s

i

= 1 for all 1 ≤ i < n, as defined above. Now, we can embed Cs into the

line in the cube as follows (note that a ∈ Cs has a 1 sequence of length n):

If n = 1, then the line has coordinates:

�����������
(0, x,1) if s0 = 0
(12 , y,0) if s0 = 1

where x ∈ [0,1], and y ∈ [23 ,1], or
If n > 1, the line has coordinates:

�����������
(∑2n−2

i=1 1
2i , x,1) if s0 = 0

(∑2n−1
i=1 1

2i , y,0) if s0 = 1
where

x ∈ � n�
i=2

2

32i−3 ,1 +
n�
i=2
�− 2

32i−2�� ,
and

y ∈ � n�
i=1

2

32i−1 ,1 +
n�
i=2
�− 2

32i−2�� .
In terms of the arrangement of the points in each partition set in the

line, every partition set whose coordinates begin with a 0 is arranged in the

canonical way, and every partition set whose coordinates begin with a 1 is

given a type 2 switch (the function s2).

This embedding of the vertices can be seen in Figure 2.9 (Figure 2.9 also

includes the arcs connecting them). The numbers on the left refer to the initial

coordinates of the partition set in that row.
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Figure 2.9: A plan view of the embedding in R3 of K(0,1).

We will now specify how the non-vertex points will be embedded. First

we note that any non-vertex point in K(0,1) will be in an arc between two

vertices, so we only need to specify how arcs that directly connect vertices are

embedded.

Suppose we have two partition sets embedded in the cube, and they are

directly connected (or at least parts of them are). How the arcs connecting

them will be arranged will depend on the order of the Cantor sets. Suppose

that the two Cantor sets are embedded in the line segments with coordinates

{a} × [b, c] × {d} and {e} × [f, g] × {h} respectively, where (wlog) a < e and d,

h ∈ {0,1}. We have the following cases:
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If there has been no change in order (ie no switches relative to each

other), the arcs can be embedded in the plane that is bound by the

line segments the Cantor sets are embedded in. That is, we have taken

C × [0,1], and resized it appropriately to fit between the two sets of

vertices being connected, embedded in a plane.

If there has been a type 1 switch, then similarly to the first case, we can

embed the arcs as C × [0,1], but the ‘strip’ that they are embedded into

needs to be given a ‘twist’. This can be resized to fit into a box [a, e] ×
[min{b, f},max{c, g}]× [s, t], where [s, t] ⊃ [d, h]. This is essentially the

box bounded by the Cantor sets of vertices, the extra height of [s, t] is
possibly needed in order to accommodate the ‘twist’ (but the height of

the twist can be resized to be arbitrarily small).

If there has been a type 2 switch, then this requires a combination of the

above two cases. Again, it can be fit into an appropriate sized box as

per the previous case.

A picture of what the embedding for type 1 and type 2 switches will look

like can be seen in Figure 2.8.

Note that in the embedding of the vertices in each partition set, half the

vertices will be directly connected to the partition set one step closer to the

limit line, then half the remaining vertices will be directly connected to the

partition set a further two steps closer to the limit line, then the next remaining

half connect to a partition set a further two steps, and so on. Finally, the last

vertex will be directly connected to the limit line.

The way the vertices have been laid out, the limit line is somewhere near the

centre of the cube horizontally (as seen in Figure 2.9), and the further toward

the edge of the cube the vertex is embedded in its particular partition set, the

greater the number of steps the partition set is that it is directly connected to.
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This was the reason for introducing the type 1 and type 2 switches, to keep

these points on the outside, making the embedding easier.

We will now describe how the various sets of arcs are embedded. Let

x ∈K(0,1) be a non-vertex point. Then x will be in an arc between two vertices

that are directly connected. How the arc will be embedded will depend on

how many steps apart the partition sets of the vertices are in terms of distance

to the limit line. Suppose the vertices are embedded as a = (a1, a2, a3) and
b = (b1, b2, b3), where a1 = 1− 1

2m and b1 = 1− 1
2n , with n <m, and a3, b3 ∈ {0,1}

(note that a3 ≠ b3). The following cases apply.

The distance is one, ie m = n + 1. In this case, if a3 = 1 and b3 = 0, then
the vertices in the partition set of a that have next coordinate 0 will be

directly connected to the vertices in the partition set of b with arcs that

have been rearranged with a type 2 switch mentioned above. The box

that this fits into is spanned by the vertices being connected. If a3 = 0
and b3 = 1, then the vertices in the partition set of a with next coordinate

0 are directly connected to the vertices in the partition set of b with arcs

that go straight through without a switch, the kind mentioned in the

first case above.

The distance is greater than one, but finite. In this case we proceed

in two steps. First suppose a3 = 1 and b3 = 0. Here we embed all the

arcs that directly connect vertices in these two partition sets as follows.

Firstly, we create a copy of the vertices of the partition set of a that are

to be connected, and embed these in the line {1− 1
2n − 1

2n+m+1}×[a, b]×{1},
where [a, b] is the coordinate interval of vertices in the partition set of a

that are being directly connected. These undergo a type 2 switch, and

the arcs are embedded as per the description above, in the box [1− 1
2m ,1−

1
2n ]× [a, b]× [1− 1

2n ,1]. These copied vertices are then directly connected

to the vertices in the partition set of b, via straight arcs between the
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sets.

These straight arcs then do not intersect any others in the embedding

as they pass underneath any arcs inside them, the arcs inside stay su�-

ciently close to the top of the cube. The type 2 switch was necessary to

cancel the type 2 switch that the vertices in the partition set of b had

been subject to.

If a3 = 0 and b3 = 1, the process is essentially the same, except the switch

occurs at the bottom of the cube, where the vertices of the partition set

of a are embedded, and are then connected upwards to the vertices in

the partition set of b. Also in this case a type 1 switch is performed

instead of a type 2.

The distance is greater than one, but infinite. In this case the vertex is

directly connected to the limit line, so b is a vertex in the limit line. The

embedding is done by embedding a straight line from a to c = (1, a2, a3),
and a straight line from c to b. This can be viewed as the completion of

the previous step.

We have now completely described the embedding of K(0,1) into [0,1] ×
[0,1]×[0,1]. A picture of what the three dimensional embedding will look like

is shown in Figure 2.10.

A summary of the key structural properties of K(0,1) that can be seen from

the embedding are:

each collection of points that have the same (finite) initial sequence form

a Cantor set;

two vertices that have opposite initial sequences immediately followed by

the same sequence are joined by a line; and

collections of lines having coordinates with the same tail converge to the

‘limit line’.
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Figure 2.10: A view of the embedding in R3 of K(0,1). The limit line is shown

in blue.

There are similarities of the embedding with Ingram’s model in Section 2.1.

In particular, we have D1 = C(0,0), D3 = C(0,1,0), E2 = C(1,0), etc. Bn (for each

n) represents all the direct connections between the vertices.



Chapter 3

Connectedness over Hausdor↵

Continua

As mentioned in Chapter 1, one of the properties of classical inverse limits

is that they are always connected [Nad, Theorem 2.4]. It was realised early

on that this is not necessarily the case for generalised inverse limits, even

with a single bonding map with a connected graph. The standard example

of such a generalised inverse limit first appeared in [IM, Example 1]. In this

example, each factor space X

i

= [0,1], and each bonding function f

i

is the

(upper semicontinuous) set valued function with the graph shown in Figure

3.1.

To see that this is disconnected, consider the subset of lim←�f that is

C = ��1
4
� × �1

4
� × �3

4
� ×⇧

i≥3[0,1]� ∩ lim←�f.

This subset is closed, nonempty, and a proper subset of lim←�f . Now consider

the open subset

U = ��1
8
,

3

8
� × �1

8
,

3

8
� × �5

8
,

7

8
� ×⇧

i≥3[0,1]� ∩ lim←�f.

Let x = (x0, x1, x2 . . . ) ∈ U . From the first graph of f , G1, the first two

coordinates of x must have values such that 1
8 < x0 ≤ 1

4 and 1
8 < x1 ≤ 1

4 . But

57
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�

��

�
� � �� �

� � ��

Figure 3.1: A function f whose inverse limit is not connected.

then from the second graph of f , G2, we have 1
4 ≤ x1 < 3

8 and 3
4 ≤ x2 < 7

8 .

Therefore x1 = 1
4 , so x0 = 1

4 and x2 = 3
4 . Hence C = U , so C is a nonempty

proper clopen subset of lim←�f .

This discovery that generalised inverse limits are not necessarily connected

led Ingram to pose the following problem in his 2011 paper [In1].

Problem 3.0.1 (Ingram). Suppose for each nonnegative integer i, X

i

is a

compact Hausdor↵ (metric) space and f

i+1 ∶ Xi+1 → 2Xi is an upper semicon-

tinuous function. Find necessary and su�cient conditions (preferably on the

bonding functions) such that lim←� (Xi

, f

i

) is connected.
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In Chapter 1 we gave some partial solutions: Theorem 1.2.3 and Theorem

1.2.4, both appearing in [IM]. Also mentioned in the opening chapter was The-

orem 1.2.5 from [Nal2], if a generalised inverse limit lim←�(Xi

, f

i

) is disconnected,
then one of its corresponding Mahavier products G

n

will be disconnected for

some n ∈ N. If this is the case we say a disconnection happens over the first n

functions.

An important result in [Nal2] states that if the graph of an upper semicon-

tinuous set valued function F can be represented as a union of the graphs of

upper semicontinuous set valued functions, each of which has the property that

at each point in the domain its image is connected, then lim←�F is connected.

Theorem 3.0.2 (Nall). Suppose X is a compact metric space, and {F
↵

}
↵∈⇤

is a collection of closed subsets of X ×X such that for each x ∈ X and each

↵ ∈ ⇤ the set {y ∈ X ∶ (x, y) ∈ F
↵

} is nonempty and connected, and such that

F = �
↵∈⇤F↵

is a connected closed subset of X ×X such that for each y ∈X the

set {x ∈X ∶ (x, y) ∈ F} is nonempty. Then lim←�F is connected.

It was mentioned in Chapter 1 that if f is an upper semicontinuous set

valued function, then so is f−1. Another result from [Nal2] states that if lim←�f

is connected, then lim←�f

−1 is connected.

Theorem 3.0.3 (Nall). Suppose X is a Hausdor↵ continuum, and f ∶ X →
2X is a surjective upper semicontinuous set valued function. Then lim←�f is

connected if and only if lim←�f

−1 is connected.

Ingram and Marsh [Imar] give an example of a generalised inverse sequence

(X
i

, f

i

) having a connected inverse limit, but the generalised inverse sequence

(X
i

, g

i

), where for each i ∈ N, g
i

= f−1
i

, has a disconnected inverse limit. This

means that extending Theorem 3.0.3 to allow for di↵erent bonding functions

is not possible.

Ingram [In3] gives a sequence of upper semicontinuous set valued functions

f1, f2, f3, . . . with the property that the graph of fn

n

is not connected, but the
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graph of fk

n

is connected for each 1 ≤ k < n. This means that lim←�f

n

is not

connected for each n, but longer sequences of functions need to be examined

to see this as n increases.

Throughout this chapter, we assume that for every generalised inverse se-

quence (X
i

, f

i

), the graph G

i

of each f

i

is connected. This is because if there is

a graph that is disconnected, then the inverse limit will also be disconnected,

as seen in the next lemma.

Lemma 3.0.4. Let (X
i

, f

i

) be a generalised inverse sequence, and suppose

f

i

is surjective for each i ≥ 1. Then if there exists an i ∈ N such that G
i

is

disconnected, then lim←�(Xi

, f

i

) is disconnected.
Proof. Suppose G

i

is disconnected, then there exist disjoint nonempty open

sets A, B ⊂ G
i

such that G

i

= A ∪B. Then if we let A

∗ = (⇧0≤j≤i−2Xj

× A ×
⇧

j≥i+1Xj

) ∩ lim←�(Xi

, f

i

), and B

∗ = (⇧0≤j≤i−2Xj

×B ×⇧
j≥i+1Xj

) ∩ lim←�(Xi

, f

i

), we
have A∗ and B

∗ are open, disjoint, nonempty (since each f

i

is surjective), and

A

∗ ∪B∗ = lim←�(Xi

, f

i

), so lim←�(Xi

, f

i

) is disconnected.

The main theorem in this chapter, Theorem 3.0.6, is a generalisation of

the following theorem from Greenwood and Kennedy [GK]. This theorem

essentially selects a sequence of closed sets, subsets of the spaces I
i

×I
i−1 (each

I

i

is a closed interval), that are appropriately aligned so that they give rise

to what is called a C-sequence. We do not define a C-sequence here but note

that it is very similar to an HC-sequence defined in the next section. Theorem

3.0.5 characterises a certain kind of disconnection in the inverse limit, one

where there is a nonempty proper ‘basic’ clopen subset (the term basic is a

slight abuse of notation, but its meaning should be clear from the definition).

Theorem 3.0.5 (Greenwood and Kennedy). Suppose that for each i ≥ 0, I
i

is a closed interval, and for each i > 0, f

i

∶ I
i

→ 2Ii−1 is a surjective upper

semi-continuous function and the graph, G
i

of f
i

is connected. There exists
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m ≥ 0 and n > m + 1 such that if m ≤ i ≤ n then there exists an open interval

U

i

and a closed interval A
i

such that A
i

⊂ U
i

⊂ I
i

, U
i

≠ I
i

,

lim←� (Ii, fi) ∩ (⇧i<mIi ×⇧m≤i≤nUi

×⇧
i>nIi)

= lim←� (Ii, fi) ∩ (⇧i<mIi ×⇧m≤i≤nAi

×⇧
i>nIi) ≠ �,

and lim←� (Ii, fi) ≠ ⇧
i<mIi × ⇧m≤i≤nAi

× ⇧
i>nIi, if and only if {f

i

∶ i > 0} has a

C-sequence.

Theorem 3.0.5 deals only with generalised inverse limits over intervals. The

aim of this chapter is to generalise this result to generalised inverse limits over

Hausdor↵ continua. The main result of the chapter is formulated as follows:

Theorem 3.0.6. Let (X
i

, f

i

) be a generalised inverse sequence, and suppose

every function f

i

has a connected graph. Then {f
i

∶ i > 0} admits an HC-

sequence if and only if there exists a connected basic open set

U = ⇧0≤i<mXi

×⇧
m≤i≤nUi

×⇧
i>nXi

⊂ ⇧
i∈NXi

containing a closed set

A = ⇧0≤i<mXi

×⇧
m≤i≤nAi

×⇧
i>nXi

,

such that

lim←� (Xi

, f

i

) ∩U = lim←� (Xi

, f

i

) ∩A ≠ �,
and lim←� (Xi

, f

i

) �⊂ U .

This then gives the following su�cient condition for disconnectedness:

Corollary 3.0.7. Suppose that for all i ∈ N, X

i

is a Hausdor↵ continuum,

f

i+1 ∶ Xi+1 → 2Xi is a surjective upper semicontinuous function, the graph G

i

of f
i

is connected. If {f
i

∶ i > 0} admits an HC-sequence then lim←� (Xi

, f

i

) is
disconnected.
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Subsequently Greenwood and Kennedy [GK3] have given conditions similar

to a C-sequence and HC-sequence, known as a CC-sequence, which give a

characterisation of disconnectedness of generalised inverse limits over intervals.

Theorem 3.0.8 (Greenwood and Kennedy). Suppose that for each i ≥ 0, I
i

=
[0,1] and f

i

is an upper semicontinuous set valued function. Then lim←�(Ii, fi)
is disconnected if and only if {f

i

∶ i ≥ 0} admits a CC-sequence.

The work presented in this chapter has been published in [GL].

3.1 HC-Sequences

In this section we will give some definitions and basic results specific to this

chapter, and in particular, define an HC-sequence.

We begin with Lemma 3.1.1, which generalises Theorem 1.2.5. The proof

is the same proof given in [Nal2], which will work in both cases.

Lemma 3.1.1. Let (X
i

, f

i

) be a generalised inverse sequence. Then lim←� (Xi

, f

i

)
is connected if and only if G(f

m

, . . . , f

n

) is connected for every m,n, 0 <m ≤ n.
Since the inverse of an upper semicontinuous function is also an upper

semicontinuous function (the graph is compact) we have:

Lemma 3.1.2. Let (X
i

, f

i

) be a generalised inverse sequence. Then for every

n > 0, G(f1, . . . , fn) connected if and only if G(f−1
n

, . . . , f

−1
1 ) is connected.

Proof. The proof comes from the fact that (x0, . . . xn

) ∈ G(f1, . . . , fn) if and
only if (x

n

, . . . x0) ∈ G(f−1
n

, . . . , f

−1
1 ), and this gives the obvious homeomor-

phism.

Lemma 3.1.4 generalises [GK, Lemma 2.5]. The aim is to show that without

a loss of generality we can assume that the disconnection starts with the first
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function. In order to state the lemma we require the notation of the following

definition.

Definition 3.1.3. Let (X
i

, f

i

) be a generalised inverse sequence. Let X

m

i

=
X

i+m, and f

m

i

= f
i+m and define lim←�(Xi

, f

i

)
i≥m = lim←�(Xm

i

, f

m

i

).
Lemma 3.1.4. Let (X

i

, f

i

) be a generalised inverse sequence, and suppose f

i

is a surjective function for all i ≥ 1. If there exists m,n ∈ N such that m ≤ n
and whenever m ≤ i ≤ n there exists an open set U

i

and a closed set A
i

such

that A
i

⊂ U
i

⊂X
i

, then:

lim←�(Xi

, f

i

) ∩ (⇧0≤i<mXi

×⇧
m≤i≤nUi

×⇧
i>nXi

)
= lim←�(Xi

, f

i

) ∩ (⇧0≤i<mXi

×⇧
m≤i≤nAi

×⇧
i>nXi

)
if and only if

lim←�(Xi

, f

i

)
i≥m ∩ (⇧m≤i≤nUi

×⇧
i>nXi

)
= lim←�(Xi

, f

i

)
i≥m ∩ (⇧m≤i≤nAi

×⇧
i>nXi

)
Proof. Let:

U = lim←�(Xi

, f

i

) ∩ (⇧0≤i<mXi

×⇧
m≤i≤nUi

×⇧
i>nXi

),
A = lim←�(Xi

, f

i

) ∩ (⇧0≤i<mXi

×⇧
m≤i≤nAi

×⇧
i>nXi

),
V = lim←�(Xi

, f

i

)
i≥m ∩ (⇧m≤i≤nUi

×⇧
i>nXi

), and
B = lim←�(Xi

, f

i

)
i≥m ∩ (⇧m≤i≤nAi

×⇧
i>nXi

).
Suppose U = A. Clearly B ⊂ V . Let (x

i

) ∈ V . Then as each f

i

is surjective,

there exists an element (y
i

) ∈ U , where for each i ∈ N, y
i+m = xi

. But (y
i

) ∈ A,
and so (x

i

) ∈ B, hence V = B.

Now suppose V = B. Clearly, A ⊂ U . Let (x
i

) ∈ U and for each i ∈ N let

y

i

= x
i+m. Then (y

i

) ∈ V . As this implies (y
i

) ∈ B, we conclude that (x
i

) ∈ A,
so A = U .
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We can now begin to define an HC sequence. An HC sequence is a fi-

nite sequence of sets of consecutive factor spaces, which will isolate a proper

(nonempty) clopen subset of the inverse limit. The details will be presented

over the following three definitions.

Definition 3.1.5. Suppose m, n ∈ N with m + 2 ≤ n, for each i, m ≤ i ≤ n,

X

i

is a Hausdor↵ continuum, U
i

is a connected open subset of X
i

, U
i

≠X
i

, A
i

is a closed subset of X
i

such that A
i

⊂ U
i

, and for m < j < n there exist sets

P

j

, S

j

⊂ U
j

�A
j

such that P
j

∩S
j

= �, P
j

∩A
j

≠ � ≠ S
j

∩A
j

, and U

j

= A
j

∪P
j

∪S
j

.

Then let

L

Sm+1 = (Sm+1 ×Um

) ∪ (A
m+1 ×Am

),
T

Pn−1 = (Un

× P
n−1) ∪ (An

×A
n−1),

and for each k, such that m + 1 < k < n, let
TL

Sk,Pk−1 = (Uk

× P
k−1) ∪ (Sk

×U
k−1) ∪ (Ak

×A
k−1)

(and if each of the sets S

i

and P

i

are clear from the context we will simply

write L

m+1, Tn

and TL

k

).

The regions can be seen schematically in Figure 3.2

�� ������ �� ��	�
 ��	�

��

������
������� �� 
� ��

��	�


�	�

��	�

��	�


�	�

��	�

Figure 3.2: A graphical representation of the regions defined in Definition

3.1.5.
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Definition 3.1.6. Suppose X and Y are Hausdor↵ continua, f ∶ X → 2Y is

an upper semicontinuous function, and G ⊂ X × Y is the graph of f . Suppose

U,C,D ⊂X × Y and C ⊂D ⊂ U . Then G �
U,C

D if G ∩U ⊂D and G ∩C ≠ �.
When it is clear from the context what the sets U and C are, we will drop

the subscripts and simply write G �D.

Definition 3.1.7. Let (X
i

, f

i

) be a generalised inverse sequence. Then {f
i

∶
i > 0} admits a Hausdor↵ cropping-sequence, or HC-sequence {(U

i

,A

i

) ∶ m ≤
i ≤ n}, over [m,n], if m,n ∈ N, m + 1 < n, and whenever m ≤ i ≤ n, there

exists a connected open set U

i

⊂ X

i

, a closed set A

i

⊂ U

i

⊂ X

i

, U

i

≠ X

i

,

G(f
m+1, . . . , fn) ∩ ⇧m≤i≤nAi

≠ �, and whenever m < j < n, there exist disjoint

nonempty sets P
j

, S

j

⊂ U
j

�A
j

such that P
j

∩S
j

= �, S
j

∩A
j

≠ � ≠ P
j

∩A
j

, and

the graphs G
i

of f
i

have the following properties:

1. G

m+1 �Um+1×Um,Am+1×Am L

m+1;

2. G

n

�
Un×Un−1,An×An−1 Tn

; and

3. if m + 1 < i < n then G

i

�
Ui×Ui−1,Ai×Ai−1 TLi

.

The collection of functions {f
i

∶ i > 0} admits an HC-sequence if there exist m,

n ∈ N such that {f
i

∶ i > 0} admits an HC-sequence over [m,n].
The definition of an HC-sequence is very similar to that of a C-sequence

in [GK]. The main di↵erence is that since we are now working with the more

general Hausdor↵ continua instead of intervals, notions of ‘top’ (T ), ‘bottom’

(B), ‘left’ (L), and ‘right’ (R) no longer make sense, so we only have the more

abstract T sets (which cover both T and B in the C-sequence case) and L sets

(which cover L and R). This is discussed further in Section 3.3.

The following lemma is a partial extension to Theorem 3.0.3.

Lemma 3.1.8. Let (X
i

, f

i

) be a generalised inverse sequence, suppose each f

i

is a surjective function, and {f
i

∶ i > 0} admits an HC-sequence {(U
i

,A

i

) ∶m ≤
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i ≤ n} over [m,n]. For each i, m ≤ i ≤ n, let V
i

= U
n−(i−m) and B

i

= A
n−(i−m),

and or each i, m < i ≤ n, let g
i

= f−1
n−(i−m)+1. Then {(Vi

,B

i

) ∶ m ≤ i ≤ n} is an

HC-sequence admitted by {g
i

∶m < i ≤ n}.
Proof. This result follows from the symmetry between the sets S

i

and P

i

in

the definition of an HC-sequence and Theorem 3.1.2.

3.2 Connected Generalised Inverse Limits

We will prove the main result of this chapter, Theorem 3.0.6 by proving each

direction of the equivalence separately, as Theorem 3.2.1 and Theorem 3.2.4.

The forward direction is relatively simple. Remember that due to Lemma 3.1.4

we can assume that the disconnection starts at the first factor space, X0.

Theorem 3.2.1. Let (X
i

, f

i

) be a generalised inverse sequence, suppose each

f

i

is a surjective function, the graph G

i+1 of f
i+1 is connected, and there exists

n > 1 such that {f
i

∶ i > 0} admits an HC-sequence over [0, n]. Then for each

i ≤ n, there exists an open set U
i

⊂ X

i

, a closed set A
i

⊂ U

i

⊂ X

i

, such that

U

i

≠X
i

, G
n

∩⇧
i≤nAi

= G
n

∩⇧
i≤nUi

≠ � and G
n

≠ G
n

∩⇧
i≤nAi

.

Proof. Suppose there exists an HC-sequence {(U
i

,A

i

) ∶ i ≤ n} over [0, n].
Since G1 � L1, x1 ∈ (S1 ∪A1), and hence, since G2 � TL2, x2 ∈ (S2 ∪A2).

Suppose 1 < k < n. If x
k

∈ (S
k

∪A
k

), then since G

k+1 � TLk+1, xk+1 ∈ (Sk+1 ∪
A

k+1). Hence by induction x

i

∈ S
i

∪A
i

if 0 < i < n.
Thus, since G

n

� T

n

, x
n−1 ∈ An−1 and x

n

∈ A
n

. Suppose 1 < k < n and

x

k

∈ A
k

, then since x

k−1 �∈ Pk−1 and G

k

� TL

k

, x
k−1 ∈ Ak−1. Thus for each i

such that 0 < i ≤ n, x
i

∈ A
i

, and since G1 � L1, x0 ∈ A0.

Thus G
n

∩⇧
i≤nAi

= G
n

∩⇧
i≤nUi

. Since we are dealing with an HC-sequence,

G
n

∩⇧
i≤nAi

≠ �, and since each f

i

is surjective, there exists �x0, . . . , xn

� ∈ G
n

such that x1 �∈ U1, and so G
n

�⊂ ⇧
i≤nUi

.
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For the next lemma, we will require a version of the ‘Boundary Bumping

Theorem’ from continuum theory. A proof can be found in [Nad, Theorem

5.6]. Here Bd(E) denotes the boundary of E.

Theorem 3.2.2 (Boundary Bumping Theorem). Let X be a continuum, and

let E be a nonempty proper subset of X. If K is a component of E, then

K ∩Bd(E) ≠ �.
To prove the backwards direction, first we prove the case where the dis-

connection happens over the first two functions, so the HC sequence happens

over three factor spaces.

Lemma 3.2.3. Let (X
i

, f

i

) be a generalised inverse sequence, and suppose

each f

i

is a surjective function, the graph G

i+1 of f
i+1 is connected, and there

exists a connected open set U
i

⊂ X
i

and a closed set A
i

⊂ U
i

⊂ X
i

, such that

U

i

≠X
i

, and

G2 ∩ (A0 ×A1 ×A2) = G2 ∩ (U0 ×U1 ×U2) ≠ �.
Then {f

i

∶ i ∈ N} admits an HC-sequence.

Proof. Let

A

′
0 = A0

A

′
2 = A2

B1 = f2(A2) ∩A1 ∩ f−11 (A0)
S1 = (U1 ∩ f−11 (U0)) �B1

P1 = (U1 ∩ f2(U2)) �B1

A

′
1 = U1 � (S1 ∪ P1).

Then we have

G2 ∩ (A0 ×A1 ×A2) = G2 ∩ (A0 ×B1 ×A2)
= G2 ∩ (U0 ×U1 ×U2) ≠ �.
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We claim that {(U
i

,A

′
i

) ∶ i ≤ 2} is an HC-sequence admitted by {f1, f2}.
Observe that ((A′1 �B1) ×U0) ∩G1 = � and (U2 × (A′1 �B1)) ∩G1 = �.
Suppose �x, y� ∈ (G1 ∩ (U1 ×U0)):
If x ∈ B1, then there exists z ∈ A2 such that x ∈ f(z), hence �y, x, z� ∈ G2,
and so y ∈ A0.

If x ∈ P1, then there exists z ∈ U2 such that x ∈ f(z), and hence �y, x, z� ∈
G2 ∩ U0 × U1 × U2, but x �∈ B1 giving a contradiction, so x �∈ P1, and thus

G1 � L1.

We can show similarly, by Lemma 3.1.8, that if �x, y� ∈ (G2 ∩ (U2 × U1)),
then y �∈ S1, and if y ∈ B1 then x ∈ A2, and so G2 � T2.

Suppose that S1 = �, then G1 ∩ (U1 ×U0) ⊆ A1 ×A0. Since U1 ≠X1,

W ∶= G1 ∩ ((X1 ×X0) � (A1 ×A0)) ≠ �.
Let K be a component of W , then by the Boundary Bumping Theorem (The-

orem 3.2.2), there exists a point p ∈W ∩A1 ×A0, but A1×A0 is a closed subset

of the open set U1 × U0, so p ∈ A1 ×A0 and p does not have a neighbourhood

in U1 ×U0. Thus S1 ≠ �.
Similarly, P1 ≠ �. Also, P1 ∩ S1 = �, since if there exists y ∈ P1 ∩ S1, then

there exist x ∈ U0 and z ∈ U2 such that �y, x� ∈ G1 and �z, y� ∈ G2, and hence

�x, y, z� ∈ G2, but y �∈ B1.

Since for every �x, y� ∈ (G1 ∩ (U1 × U0)), x �∈ P1 and if x ∈ B1 then y ∈ A0,

and G1 is connected, S1 ∩ B1 ≠ � by the Boundary Bumping Theorem, and

hence S1 ∩A′1 ≠ �. Similarly, P1 ∩B1 ≠ �, and hence P1 ∩A′1 ≠ �.
Thus {(U

i

,A

′
i

) ∶ i ≤ 2} is an HC-sequence admitted by {f1, f2}.

We can now use Lemma 3.2.3 to complete the proof of the backwards

portion of the main theorem.
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Theorem 3.2.4. Let (X
i

, f

i

) be a generalised inverse sequence, and suppose

each f

i

is a surjective function with a connected graph G

i+1. If for each i, m ≤
i ≤ n, there exists a connected open set U

i

⊂ X
i

, and a closed set A
i

⊂ U
i

⊂ X
i

,

such that U
i

≠X
i

, and

G(f
m+1, . . . , fn) ∩⇧m≤i≤nAi

= G(f
m+1, . . . , fn) ∩⇧m≤i≤nUi

≠ �,
then {f

i

∶ i ∈ N} admits an HC-sequence.

Proof. Without loss of generality, assume that n −m is minimal. That is, for

any p, q such that m ≤ p < q ≤ n and either p ≠m or q ≠ n,
G(f

p+1, . . . , fq) ∩ (Ap

×�×A
q

) ≠ G(f
p+1, . . . , fq) ∩ (Up

×�×U
q

).
By Lemma 3.1.4 we can also assume that m = 0, and by Lemma 3.2.3 assume

n > 2.
For each j such that 0 < j < n, let

B

j

= ⇡

j

(G
n

∩⇧
i≤nAi

)
P

j

= ⇡

j

(G(f
j+1, . . . , fn) ∩⇧j≤i≤nUi

) �B
j

S

j

= ⇡

j

(G
j

∩⇧
i≤jUi

) �B
j

Q

j

= U

j

� (B
j

∪ P
j

∪ S
j

)
A

′
j

= B

j

∪Q
j

.

Also, let A′0 = A0, and A

′
n

= A
n

.

We claim that {(U
i

,A

′
i

) ∶ i ≤ n} is an HC-sequence admitted by {f1, . . . , fn}.
Suppose �x, y� ∈ (G1∩(U1×U0)). Then x ∉ B1 if and only if x ∈ S1. Suppose

x ∉ B1 and x ∈ P1 then there exists �x1, . . . , xn

� ∈ (G(f2 . . . , fn)∩⇧1≤i≤nUi

) such
that x = x1 and hence

�y, x, x2, . . . , xn

� ∈ G
n

∩⇧
i≤nUi

),
but x �∈ A1 so we have a contradiction. Therefore, x �∈ P1, and S1 ∩ P1 = �.
If x ∈ B1, then there exists �x0, . . . , xn

� ∈ (G
n

∩ ⇧
i≤nAi

) such that x1 = x,
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hence �y, x, x2, . . . , xn

� ∈ (G
n

∩ ⇧
i≤nUi

, and so y ∈ A′0. Observe that for each

�x, y� ∈ (G1 ∩ (U1 ×U0)), x �∈ Q1. Thus G1 � L1.

If �x, y� ∈ (G
n

∩ (U
n

×U
n−1)), then we can show similarly, by Lemma 3.1.8,

that x �∈ S
n−1 ∪Qn−1, Sn−1 ∩ Pn−1 = � and if y ∈ B

n−1 then x ∈ B
n

, and hence

G

n

� T
n

.

Suppose 1 < j < n and �x, y� ∈ G
j

∩ (U
j

×U
j−1). Suppose x ∈ Pj

. Then there

exists

�x
j

, . . . , x

n

� ∈ (G(f
j+1 . . . , fn) ∩⇧j≤i≤nUi

)
such that x = x

j

. If y ∈ (B
j−1 ∪ Sj−1), then there exists

�x0, . . . , xj−1� ∈ (Gj−1 ∩⇧i<jUi

)
such that y = x

j−1, but then

�x0, . . . , xj−2, y, x, xj+1, . . . , xn

� ∈ (G
n

∩⇧
i≤nUi

)
giving a contradiction since x �∈ B

j

, so y �∈ (B
j−1∪Sj−1). Furthermore, y �∈ Q

j−1,
since x ∈ P

j

, and

�y, x, x
j+1, . . . , xn

� ∈ (G(f
j

. . . , f

n

) ∩⇧
j−1≤i≤nUi

),
implies that y ∈ P

j−1. Hence

G

j

∩ (P
j

× (B
j−1 ∪ Sj−1 ∪Qj−1)) = �.

If x ∈ B
j

and y ∈ S
j−1, then there exists

�x0, . . . , xj−1� ∈ (Gj−1 ∩⇧i≤j−1Ui

)
such that y = x

j−1, and there exists

�y0, . . . , yn� ∈ (Gn ∩⇧i≤nAi

),
such that y

j

= x. Hence �x0, . . . , xj−2, y, x, yj+1, . . . , yn� ∈ (Gn ∩⇧i≤nUi

), a con-

tradiction, and so G

j

∩ (B
j

× S
j−1) = �.
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If x ∈ Q
j

and y ∈ S
j−1, then again there exists �x0, . . . , xj−1� ∈ Gj−1 such

that y = x

j−1, but then �x0, . . . , xj−1, x� ∈ Gj and hence x ∈ S

j

. Similarly,

�x, y� �∈ (P
j

×Q
j−1) (in fact, we can show similarly that both G

j

∩ (Q
j

×B
j−1)

and G

j

∩ (B
j

×Q
j−1) are empty, but this is not required in order to construct

an HC-sequence.)

By the same argument as in the proof of Lemma 3.2.3, S1 ∩ B1 ≠ � and

P

n−1 ∩Bn−1 = �.
Suppose P

j

= �. Then
⇡

j

(G(f
j+1, . . . , fn) ∩ (Uj

×�×U
n

)) ⊆ A
j

.

Hence

(G(f
j+1, . . . , fn) ∩ (Uj

×�×U
n

)) ⊆ A
j

×�×A
n

,

giving a contradiction since

G(f
j+1, . . . , fn) ∩ (Aj

×�×A
n

) ≠ G(f
j+1, . . . , fn) ∩ (Uj

×�×U
n

).
Similarly, S

j

≠ �, otherwise
⇡

j

(G
j

∩ (U1 ×�×Uj

)) ⊆ A0 ×�×Aj

.

Suppose P

j

∩B
j

= �. Then we can choose an open set V ⊂ U
j

such that

B

j

⊂ V ⊂ V ⊂ U
j

and V ∩ P
j

= �. But then
G
n

∩⇧
i≤nAi

= G
n

∩ (U0 ×�×Uj−1 × V ×Uj+1 ×�×Un

) ≠ �,
and had we started with V in place of U

j

, we would obtain P

j

such that

P

j

∩B
j

= �. Thus, P
j

∩B
j

≠ �.
Similarly, by Lemma 3.1.8, S

j+1 ∩Bj+1 ≠ �.
Thus it follows that G

i

� TL(A′i×A′i−1)×(Ui×Ui−1) for each i, and {(U
i

,A

′
i

) ∶ i ≤
n} is an HC-sequence admitted by {f1, . . . , fn}.

We now prove the main theorem of this chapter, Theorem 3.0.6.
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Proof. Suppose that for each i ≥ 0, X
i

is a Hausdor↵ continuum, and f

i+1 ∶
X

i+1 → 2Xi is an upper semicontinuous surjective function with a connected

graph G

i+1.
If {f

i

∶ i > 0} admits an HC-sequence over [m,n], then {fm

i

∶ i > 0} admits

an HC-sequence over [0, n −m] and hence by Theorem 3.2.1, for each i ≤ n,
there exists an open set U

i+m ⊂Xi+m and a closed set A
i+m ⊂ Ui+m ⊂Xi+m, such

that U
i+m ≠Xi+m,

G(f
m+1, . . . fn) ∩⇧m≤i≤nAi

= G(f
m+1, . . . fn) ∩⇧m≤i≤nUi

≠ �
and

G(f
m+1, . . . fn) ≠ (G(fm+1, . . . fn) ∩⇧m≤i≤nAi

.

Hence

U = ⇧0≤i<mXi

×⇧
m≤i≤nUi

×⇧
i>nXi

is a basic open subset of ⇧
i∈NXi

containing the closed set

A = ⇧0≤i<mXi

×⇧
m≤i≤nAi

×⇧
i>nXi

,

such that lim←� (Xi

, f

i

) ∩U = lim←� (Xi

, f

i

) ∩A ≠ �, and lim←� (Xi

, f

i

) �⊂ U .

Suppose there exists a connected basic open set

U = ⇧0≤i<mXi

×⇧
m≤i≤nUi

×⇧
i>nXi

in ⇧
i≥0Xi

containing a closed set

A = ⇧0≤i<mXi

×⇧
m≤i≤nAi

×⇧
i>nXi

,

such that lim←� (Xi

, f

i

) ∩U = lim←� (Xi

, f

i

) ∩A ≠ �, and lim←� (Xi

, f

i

) �⊂ U . Then by

Lemma 3.1.4,

lim←�(Xi

, f

i

)
i≥m ∩ (⇧m≤i≤nUi

×⇧
i>nXi

)
= lim←�(Xi

, f

i

)
i≥m ∩ (⇧m≤i≤nAi

×⇧
i>nXi

)
and hence by Theorem 3.2.4 {f

i

∶ i >m} admits an HC-sequence over [0, n−m].
Thus {f

i

∶ i > 0} admits an HC-sequence over [m,n].
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3.3 Connectedness of Sets U

i

, A
i

, S
i

and P

i

If each set X
i

is a closed interval, then a C-sequence as defined in [GK] gives an

HC-sequence in the current setting. A C-sequence as defined in [GK] imposes

stronger properties on the various sets involved. In particular, each of the sets

J

i

, K
i

(which are the analogue to S

i

, P
i

) and A

i

is connected. The following

examples show that in general we can’t expect that if there is an HC-sequence

then there is an HC-sequence in which any of these sets is connected.

Recall from Chapter 1 that for each i > n, f

i

is the identity function,

then lim←� (Xi

, f

i

) is homeomorphic to G
n

. Thus we need only consider finite

sequences of functions.

Example 3.3.1. Let T be the triod consisting of three line segments in R2

that meet at the point �14 ,0� as shown in Figure 3.3.

���

���

�
� ��

����

Figure 3.3: The triod space T in Example 3.3.1.

Let X0 =X2 = [0,1], and let X1 = T . Define f1 ∶X1 → 2X0 by

f1(�x, y�) =
���������������

{0, x} if x ≤ 1
4

[0,1] if x = 1
{0} otherwise,

and f2 ∶X2 → 2X1 by
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f2(x) =
���������������

{�0,0�} if x < 3
4{�0,0�, �3x − 2,4x − 3�, �3x − 2,3 − 4x�} if 3

4 ≤ x < 1
T x = 1.

See Figures 3.4 and 3.5 for the graphs G1 of f1 and G2 of f2.

�
� ��

�
��

Figure 3.4: The graph G1 of f1 in Example 3.3.1.

Let U0 = �18 , 38�, U1 = ��18 , 38� × �−18 , 18�� ∩ T , U2 = �58 , 78� , A0 = {14}, A1 =
{�14 ,0�}, A2 = {34}, S1 = (U1 ∩ f−11 (U0)) �A1 = {�x,0� ∶ 18 < x < 1

4} and
P1 = (U1 ∩ f2(U2)) �A1

= ��3x − 2,4x − 3� ∶ 3
4
< x < 7

8
� ∪ ��3x − 2,3 − 4x� ∶ 3

4
< x < 7

8
� .



3.3. CONNECTEDNESS OF SETS U

I

, A
I

, S
I

AND P

I

75

���� �
� �

Figure 3.5: The graph G2 of f2 in Example 3.3.1.

Then G1 � R1 and G2 � T2 with respect to these sets, and hence {(U
i

,A

i

) ∶
i ≤ 2} is an HC-sequence where P1 is the union of the two disjoint sets {�3x −
2,4x − 3� ∶ 34 < x < 7

8} and {�3x − 2,3 − 4x� ∶ 34 < x < 7
8}.

Then if {(V
i

,B

i

)} is any HC-sequence, we have that B
i

⊃ A
i

for each i ≤ 2,
and since V

i

is open, and V

i

⊃ B
i

, then P

i

will contain points from two arcs in

the triod, so P

i

will be disconnected.

Note that any HC-sequence admitted by {f−12 , f

−1
1 } will render S1 discon-

nected.

Example 3.3.2. Let C = {c
↵

∶ ↵ ∈ c} ⊂ �14� × �18 , 38� be a Cantor set embedded
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in R2, and let X0 be the subset of R2 indicated in Figure 3.6, namely, the

union of the the line segments with end points:

�0,0� and �1,0�,
�1,0� and �1,1�,
�1,1� and �34 , 14�, and
�0,0� and c

↵

for each ↵ ∈ c.

�

��

Figure 3.6: The space X0 in Example 3.3.2.

Let X1 =X2 = [0,1], define f1 ∶X1 →X0 by f1(x) = {�x0, x1� ∈X0 ∶ x0 = x},
and let f2 be the function whose graph is that shown in Figure 3.7.
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�

��

��� �
�

Figure 3.7: The function f2 in Example 3.3.2.

Let U0 = ��18 , 38� × �19 , 49�� ∩ X0, U1 = �18 , 38�, U2 = �58 , 78� , and let A0 =
��14� × �18 , 38�� ∩X0, A1 = �14�, and A2 = �34�. Then clearly {(U

i

,A

i

) ∶ i ≤ 2} is
an HC-sequence, A0 is disconnected, and U0 is disconnected.

Furthermore, for any HC-sequence {(V
i

,B

i

) ∶ i ≤ 2} (and hence

{��1�4, c
↵

� ,1�4,3�4� ∶ ↵ ∈D} ⊆ (B0 ×B1 ×B2) ∩ G(f1, f2)
for some D ⊆ c), it must be the case that B0 is a neighbourhood of some point

�14 , a� where a ∈ �18 , 38�, and hence both B0 and V0 say, are disconnected.

Example 3.3.2 demonstrates that the clopen subset of an inverse limit that

is “trapped” by an HC-sequence need not be a component, and can in fact be
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a Cantor set. The following example shows that this can be the case even if

our spaces are intervals.

Example 3.3.3. Let X0 = X1 = X2 = [0,1], let f1 ∶ X1 → 2X0 be the function

whose graph is shown in Figure 3.6 (the graph of f1 is space X0 in Exam-

ple 3.3.2), and let f2 ∶ X2 → X1 be the function whose graph is that shown in

Figure 3.7.

The set W = ��x, 14 , 34� ∈ G(f1, f2) ∶ x ≠ 0� is a Cantor set. Any one of the

points in W can be captured by an HC sequence {(U
i

,A

i

) ∶ i ≤ 2}, but the

definition of an HC-sequence requires that A0×A1×A2 includes other members

of W , and hence for any HC-sequence {(V
i

,B

i

) ∶ i ≤ 2}, it must be the case

that B0 is a neighbourhood of some point �14 , a� where a ∈ [18 , 38], and hence

(B0 ×B1 ×B) ∩ G(f1, f2) contains a Cantor set.

3.4 Consequences

In this chapter we have generalised the notion of a C-sequence to that of an

HC-sequence. This gives a su�cient condition on the graphs that is often easy

to recognise for the inverse limit to be disconnected.

Connectedness is a central property in the study of generalised inverse

limits. Theorem 1.2.2 states that a generalised inverse limit will always be

compact, hence a generalised inverse limit will be a continuum if and only if

it is connected. Knowing if a particular generalised inverse limit is connected

is therefore very useful to a researcher, even when looking at other properties.

For example, one of the main current areas of study is indecomposability, which

will require the inverse limit to be connected. Any conditions that guarantee

indecomposability will therefore also require the inverse limit to be connected,

and so will need to incorporate some result to guarantee connectedness.

Further work is required to extend this result to characterise disconnected

generalised inverse limits completely. A starting point is to generalise the main
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result in [GK3], where the result is given for factor spaces being intervals.
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Chapter 4

Path Connectedness

Related to the question of the connectedness of generalised inverse limits is the

question of path connectedness. There are important di↵erences between the

two properties in this context. As we saw in Chapter 1 from Theorem 1.2.5,

if lim←�(Xi

, f

i

) is disconnected, then G
n

must be disconnected for some n ∈ N.
This is not the case for path connectedness, for example the usual tent map

f( 1
2
,1), whose graph is shown in Figure 1.1, has G

n

homeomorphic to an arc for

all n ∈ N, but lim←�f( 1
2
,1) is homeomorphic to the indecomposable buckethandle

continuum, which is not path connected.

Of course, for lim←�(Xi

, f

i

) to be path connected, it is necessary that G
n

is

path connected for all n ∈ N, so this means that in addition to ensuring that G
n

is path connected for all n ∈ N, there is the separate problem of finding when

lim←�(Xi

, f

i

) is path connected. This chapter deals with the latter problem.

Throughout this chapter we assume for all n that G
n

is path connected, and

look for conditions that will ensure lim←�(Xi

, f

i

) is path connected.

The main theorem that will be proved in this section is the following (some

of the terms will be defined in Section 4.1.

Theorem 4.0.1. For all i ≥ 0, let I
i

= [0,1], and for all i ≥ 1 let f
i

∶ I
i

→ 2Ii−1

be upper semicontinuous. Let a and b ∈ lim←�(Ii, fi). Then there exists a path

81
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in lim←�(Ii, fi) between a and b if and only if for every n ∈ N, for every open

interval U ⊂ I
n

, there is an upper bound k ∈ N such that for all l ∈ N, where
l ≥ n, there exists a finite extension sequence (�l

i

∶ i ≤ l) for (a,b) such that �l

n

covers U fewer than k times.

This theorem links the path connectedness of a generalised inverse limit to

a condition on the path connectedness of its finite Mahavier product approxi-

mants, G
n

for each n ≥ 1.
The method for proving Theorem 4.0.1 is as follows. First we show that

the question of whether a path exists between two points a and b ∈ lim←�(Ii, fi)
can be reduced to whether there exists a sequence of paths in the individual

graphs that have the property that the coordinates of these paths will line up

in such a way that they will create a path in lim←�(Ii, fi). This sequence is called
a limit extension, and is properly defined later. This step is relatively straight

forward.

For the second step, we show that there is a limit extension if and only if for

each open U ⊂ I
n

, there is an upper bound k such that there is an arbitrarily

long finite extension sequence that covers U less than k times (many of these

terms are more rigorously defined later). The forward direction of this step

is trivial. For the reverse direction, we concentrate on individual graphs, and

show that if there is an arbitrarily long number of finite extension sequences

that cover each open set less than some maximum number of times (for that

set), then the paths on each graph can be reparameterised to what are known

as well parameterised functions. These well parameterised functions will then

converge to a path in each graph, by the Arzelá Ascoli Theorem. These paths

have the necessary properties to be a limit extension, and hence correspond to

a path in the inverse limit.

In the next section we will introduce some definitions and preliminary lem-

mas required for proving the main theorem in the following section. In the final

section we give some examples of the application of this theorem to deciding
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whether a generalised inverse limit is path connected.

4.1 Paths and Coverings

In this chapter the norms used are the usual ones, ie if x ∈ R2 then ��x�� =�
x

2
1 + x2

2, and if f ∶ [0,1] → [0,1] × [0,1] is a continuous function, then ��f �� =
sup{��f(x)�� ∶ x ∈ [0,1]}.

Throughout this chapter, we will assume all spaces X

i

= I

i

= [0,1]. The

concept of a cover of a set is used throughout this chapter, and is defined as

follows:

Definition 4.1.1. Let  be a cardinal, I1 = I2 = [0,1], f ∶ I2 → 2I1 an upper

semicontinuous set valued function with graph G, U ⊂ I1 (resp. U ⊂ I2) an

open interval, and � ∶ [0,1] → G a continuous function. Then we say � covers

U  many times if there are exactly  many components {C
↵

∶ ↵ < } of

�

−1((U × I2) ∩G) (resp. �

−1((U × I1) ∩G)) such that ⇢

I1 ○ �(C↵

) = U (resp.

⇢

I2 ○ �(C↵

) = U). Each of these components C
↵

is called a covering of U .

The following lemmas about coverings will be useful later.

Lemma 4.1.2. Let I1 = I2 = [0,1], f ∶ I2 → 2I1 an upper semicontinuous

set valued function with graph G, let � ∶ [0,1] → G be continuous, and let

x, y ∈ [0,1] with x < y. Suppose U = (a, b) ⊂ (⇢
I1 ○ �(x),⇢I1 ○ �(y)) (or U ⊂

(⇢
I2 ○ �(x),⇢I2 ○ �(y))). Then ��[x,y] covers U at least once.

Proof. Suppose U ⊂ I2. Define g ∶ [x, y] → I2 by g = ⇢

I2 ○ ��[x,y], so g is a

continuous function from a compact interval to a compact interval. Suppose

g(x) < g(y), then (a, b) ⊂ (g(x), g(y)), and g(x) < b. Then by the intermediate

value theorem, there exists s ∈ (x, y] such that g(s) = b. Let
d = inf{s ∈ (x, y] ∶ g(s) = b}.
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Then as g is continuous, d > x. Also, we have (by the intermediate value

theorem again) there exists t ∈ [x, d) such that g(t) = a. Let
c = sup{t ∈ [x, d) ∶ g(t) = a}.

As g is continuous, g(c) = a, g(d) = b, and c < d.
Furthermore, for all z ∈ (c, d), we have that g(z) ∈ (a, b). To justify this

claim, suppose there exists z ∈ (c, d) such that g(z) < a. Then by the interme-

diate value theorem, there exists z

′, where c < z < z′ < d such that g(z′) = a,
contradicting c = sup{t ∈ [x, d) ∶ g(t) = a}. Similarly for g(z) > b.

Therefore, we have (c, d) is a covering of U .

The proof works entirely the same if g(y) < g(x), or if U ⊂ I1.
Lemma 4.1.3. Let I1 = I2 = [0,1], f ∶ I2 → 2I1 an upper semicontinuous set

valued function with graph G, let U be an open interval in I1 or I2, and let

 be some cardinal. Suppose a continuous function � ∶ [0,1] → G covers U 

many times. Then  is finite.

Proof. Suppose  is infinite. Let U = (a, b) for a, b ∈ I2. Then �

−1(U × I1)
must be open, so it is a union of  many disjoint intervals. Furthermore, the

endpoints of these intervals correspond to (infinite) subsets of �−1({a} × I1)
and �

−1({b} × I1), call these A and B respectively. Suppose (a0, a1, . . . ) is a

monotone injective infinite sequence of points in A (one will exist as there are

 many disjoint intervals in �

−1(U)), then this sequence converges, to a point

c ∈ [0,1]. Then since between any two points a
n

and a

n+1 there is a point in

B, call it b
n

, we can construct a sequence (b0, b1, . . . ) that also converge to c.

But if � is continuous, both (�(a0),�(a1), . . . ) and (�(b0),�(b1), . . . ) converge
to the same point, �(c). But in fact they converge to two distinct points, that

are at least a distance of �a − b� apart, so we have a contradiction and � is not

continuous.

The proof works similarly if U ⊂ I1.
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The next definition introduces the terms ‘pairwise joining property’ and

‘limit joining property’. They are important concepts, and used throughout

the chapter.

Definition 4.1.4. Let (I
i

, f

i

) be a generalised inverse sequence. Suppose

(�
i

∶ [0,1]→ G

i

∶ i ∈ N) is a sequence of continuous functions. We say (�
i

,�

i+1)
have the pairwise joining property if ⇢

i,i

○ �
i

(t) = ⇢
i+1,i ○ �i+i(t) for all t ∈ [0,1].

The sequence (�
i

∶ [0,1]→ G

i

∶ i ∈ N) has the limit joining property if (�
i

,�

i+1)
have the pairwise joining property for all i ∈ N.
Lemma 4.1.5. Let (I

i

, f

i

) be a generalised inverse sequence. Suppose for all

i ≥ 1, we have �

i

∶ [0,1] → G

i

is a path in G

i

where �

i

(0) = �a
i

, a

i−1� and
�

i

(1) = �b
i

, b

i−1�, and the sequence (�
i

) has the limit joining property. Then

there exists a path � ∶ [0,1] → lim←�(Ii, fi) where �(0) = a = (a0, a1, a2, . . . ) and
�(1) = b = (b0, b1, b2, . . . ).
Proof. We have that � ∶ [0,1]→ lim←�(Ii, fi) defined by �(t) = (�0(t), . . . ,�j(t), . . . )
is a well defined function, as for all j ≥ 0, we have �

j

(t) ∈ f
j+1(�j+1(t)). It re-

mains to show that � is continuous. Let U be a basic open set in the image

of �. As U is a basic open set, it is restricted at finitely many coordinates,

call the projection of U onto the ith coordinate U

i

. As each �

i

is a path, the

inverse image of each U

i

is open in [0,1], and the intersection of the inverse

image of the union of the sets U
i

for all i is the inverse image of U (for a point

p ∈ lim←�(Ii, fi) to be in U , each coordinate of p must be in the corresponding

U

i

). As each U

i

= I
i

for all but finitely many spaces, the inverse image of U
i

is [0,1] for all but finitely many spaces, and hence the inverse image of U is

open, so � is continuous and hence a path.

The converse of Lemma 4.1.5 is also true, as if we have a path � ∶ [0,1] →
lim←�(Ii, fi), then the projections p

i

∶ [0,1] → G

i

will be continuous for all i ≥ 0,
and for all j ≥ 1, ⇢

j,j

○ p
j

(t) = ⇢
j+1,j ○ pj+1(t). Therefore, we can extend Lemma

4.1.5 to an equivalence:
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Lemma 4.1.6. Let (I
i

, f

i

) be a generalised inverse sequence. There exists

a path � ∶ [0,1] → lim←�(Ii, fi) where �(0) = a = (a0, a1, . . . ) and �(1) = b =
(b0, b1, . . . ) if and only if for all i ≥ 1, there exists a path �

i

∶ [0,1] → G

i

in

G

i

where �

i

(0) = �a
i

, a

i−1� and �

i

(1) = �b
i

, b

i−1�, and the sequence (�
i

) has the

limit joining property.

This lemma then means we only need to look at paths through the graphs

of the corresponding bonding functions to establish whether there is a path in

the inverse limit. We can now justify our assumption that each graph is path

connected, as if it isn’t the inverse limit will be not path connected, by Lemma

4.1.6. The following is a corollary of Lemma 4.1.6.

Corollary 4.1.7. Let (I
i

, f

i

) be a generalised inverse sequence. Suppose for

all n ∈ N we have G
n

is both connected and path connected. Then lim←�(Ii, fi)
is not path connected if and only if there exists a = (a0, a1, a2, . . . ) and b =
(b0, b1, b2, . . . ) such that there is no sequence of paths (�

i

∶ [0,1] → G

i

) with
�

i

(0) = �a
i

, a

i−1� and �

i

(1) = �b
i

, b

i−1� that have the limit joining property.

Proof. Suppose there is an appropriate sequence of continuous functions (�
i

∶
[0,1] → G

i

) that have the limit joining property. Then by Lemma 4.1.6,

lim←�(Ii, fi) is path connected. Conversely (also by Lemma 4.1.6), if lim←�(Ii, fi)
is path connected, there exists a sequence of continuous functions (�

i

∶ [0,1]→
G

i

) with the limit joining property.

4.2 Paths in Generalised Inverse Limits

We begin with some terminology that will be used extensively in this section.

Definition 4.2.1. Suppose (I
i

, f

i

) is a generalised inverse sequence, and the

graph G

i

of each function f

i

is path connected. Let a = (a0, a1, a2, . . . ), b =
(b0, b1, b2, . . . ) ∈ lim←�(Ii, fi).



4.2. PATHS IN GENERALISED INVERSE LIMITS 87

Given n ∈ N, a finite extension sequence of length n for (a,b) is a finite

sequence (�n

i

∶ [0,1]→ G

i

∶ i ≤ n) of continuous functions, such that for all i ≤ n
�

n

i

(0) = �a
i

, a

i−1�, �n

i

(1) = �b
i

, b

i−1�, and �

n

i

and �

n

i+1 have the pairwise joining

property.

A limit extension for (a,b) is an infinite sequence of paths (�
i

∶ [0,1] →
G

i

∶ i ∈ N) from a to b that have the limit joining property.

Note that a limit extension will not always exist. By Lemma 4.1.6 we have

that there is a path between a and b if and only if there is a limit extension

for (a,b). But as we are assuming that G
n

is path connected for all n ∈ N, a
finite extension sequence of length n will exist for all n ∈ N.

The next few lemmas make use of the well known Arzelá Ascoli Theorem.

The following (standard) terminology is used.

Given a collection of continuous functions F = {f
↵

∶ [0,1] → [0,1] × [0,1] ∶
↵ ∈ A} for some indexing set A, we say that F is equicontinuous if for every

" > 0, there exists @ > 0 such that for all x ∈ [0,1], and all f ∈ F , if y ∈ [0,1],
and �x − y� < @, then ��f(x) − f(y)�� < ". Also, a collection F is totally bounded

if there exists M > 0 such that for all f ∈ F , and all x ∈ [0,1], we have

��f(x)�� <M .

From the condition on F given above, that the codomain is [0,1] × [0,1],
it is clear that in this context every collection F = {f

↵

∶ [0,1]→ [0,1] × [0,1] ∶
↵ ∈ A} is totally bounded (M = 2 will su�ce). Now we present the Arzelá

Ascoli Theorem (a proof can be found in [Be]). Here C(I) denotes the space

of continuous real valued functions defined on a compact interval, however as

noted in [Be], the proof is virtually identical if the codomain is changed to Rd,

and in particular (for our purposes), R2.

Theorem 4.2.2 (Arzelá, Ascoli). If F is a totally bounded , equicontinuous

family of functions in C(I), then every sequence in F contains a subsequence

that converges in norm to an element of C(I).
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To prove the main result of the chapter, we need to introduce the concept

of a well parameterised function. This will be done over the the next few

lemmas and definitions. We begin with the definition of a reparameterisation

of a path.

Definition 4.2.3. If X is a topological space and � ∶ [0,1]→X is a continuous

function, we say that �′ ∶ [0,1]→X is a reparameterisation of � if there exists

a continuous function f ∶ [0,1] → [0,1] with fixed points 0 and 1 such that

�

′ = � ○ f .
Note that if � ∶ [0,1] → I

n

× I
n−1 is a path (where I

n

= I
n−1 = [0,1]), and

a set U ⊂ I
n−1 (or U ⊂ I

n

) is covered by a collection of sets {C
↵

∶ ↵ ∈ A} for
�, f ∶ [0,1] → [0,1] is a homeomorphism, and �

′ is a reparameterisation of �

where �

′ = � ○ f , then U will be covered by a collection of sets {C ′
�

∶ � ∈ B}
(with respect to �

′), and there will be a bijection between {C
↵

∶ ↵ ∈ A}, and
{C ′

�

∶ � ∈ B}. This bijection is simply given by the homeomorphism f , ie the

bijection b ∶ {C ′
�

∶ � ∈ B} → {C
↵

∶ ↵ ∈ A} is given by b(C ′
�

) = f(C ′
�

). In this

case we say that C ′
�

and b(C ′
�

) are corresponding covering.

The next lemmas will help us to reparameterise certain paths into well

parameterised paths.

Lemma 4.2.4. For some n ∈ N, let S be a collection of n disjoint open subin-

tervals of [0,1], S = {U
i

= (a
i

, b

i

) ∶ i ≤ n}, such that �
i≤nUi

= [0,1]. For each

i ≤ n, let m

i

∈ R+, and suppose that ∑
i≤n(bi − ai) ⋅ 1

mi
= 1. Then there is a

piecewise linear homeomorphism f ∶ [0,1] → [0,1] such that for all x ∈ U
i

,

where i ≤ n, the slope of the function f at f−1(x) is m

i

.

Proof. Note that as the indexing of the set S is arbitrary, we can assume

(possibly after reindexing) S is indexed such that if i < j then if x ∈ U
i

and

y ∈ U
j

, then x < y, ie they are indexed ‘in order’.

Note that as the closure of the union of the sets in S gives the whole line

[0,1], a1 = 0, and b

n

= 1, and the union of the sets in S gives the whole line
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[0,1] minus a finite set of points, namely the points b1 = a2, . . . , bn−1 = an.
Let f be the function with the graph G(f), where G(f) is the union of

line segments L
i

, where i ≤ n, defined inductively as follows: let L1 be the line

between �0,0� and �(b1 − a1) ⋅ 1
m1

, b1�. Then for k ≤ n, if L
k−1 is defined, and

L

k−1 is the line segment between �l
k−1, ak−1� and �tk−1, bk−1�, let Lk

be the line

segment between �t
k−1, ak� and �tk−1 + (bk − ak) ⋅ 1

mk
, b

k

�.
Then f ∶ [0,1] → [0,1] is well defined (as ∑

i≤n(bi − ai) ⋅ 1
mi
= 1), piece-

wise linear (n pieces), continuous (as for i < n the line segments L

i

, L
i+1 are

connected), injective (the slope is always strictly positive), and surjective (as

∑
i≤n(bi − ai) ⋅ 1

mi
= 1, f(1) = 1 and f is continuous), and the inverse f

−1 is

continuous (as f is piecewise linear and continuous).

Therefore, f ∶ [0,1] → [0,1] is a homeomorphism with the necessary prop-

erties.

If S ⊂ [0,1] is a set of real numbers, we denote by �S� the sum of the lengths

of the open intervals in S.

Lemma 4.2.5. Let n ∈ N, I
n

= I
n−1 = [0,1], fn ∶ In → 2In−1 an upper semicon-

tinuous set valued function with graph G

n

, and let � ∶ [0,1] → G

n

be a path.

Let U = {U
↵

⊂ I
n

∶ ↵ ≤ k1} ∪ {U↵

⊂ I
n−1 ∶ k1 < ↵ ≤ k} be a finite collection of

k open intervals of I
n−1 and I

n

. Let C = {C
i

∶ i ≤ m} be the collection of all

coverings of all sets in U for �, with m ∈ N. To each covering C

i

, assign a

positive real number l

′
i

such that ∑
i≤m l

′
i

≤ 1
2 .

Then there exists a reparameterisation of �, call it �′, such that �′ = � ○ f
where f is a piecewise linear homeomorphism, and for each i ≤m, the covering

C

i

of � has a corresponding covering C

′
i

of �′, such that C ′
i

has length at least

l

′
i

.

Proof. Firstly, note that as there are m many coverings C
i

, and the indexing

is arbitrary, we can assume that each C

i

is indexed by increasing value of li
l

′
i
,
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ie l1
l

′
1
≤ l2

l

′
2
≤ ⋅ ⋅ ⋅ ≤ lm

l

′
m
, where l

i

= �C
i

�.
For each i ≤ m, let C

i

= (a
i

, b

i

). Then let {t
j

∶ j ≤ p} be the collection

of all endpoints of the intervals C

i

, such that t1 < t2 < ⋅ ⋅ ⋅ < t

p

. Now, let

A ∶= {(t
j

, t

j+1) ∶ (tj, tj+1) ⊂ C

i

for some i ≤ m}. Then A is a finite disjoint

collection of open intervals of [0,1], say A has cardinality q ∈ N, and A = {A
i

∶
i ≤ q}, ordered such that if x ∈ A

i

and y ∈ A
i+1, then x < y. Then we have

�
↵≤q A↵

= �
i≤mC

i

, and A

↵

is the intersection of a number of the coverings

C

i

, hence a subset of C
i

for at least one i ≤ m. Intuitively, we have ‘taken

intersections’ of the coverings C
i

, for i ≤m.

Now, for all ↵ ≤ q, we define D

↵

∶= {k ∶ A
↵

⊂ C
k

}, and

m

′
↵

∶=min
i∈D↵

�4, li
l

′
i

�
Looking at it another way (and in a way that will commonly be used),

1
m

′
↵
=max

i∈D↵ �14 , l′ili�.
Claim: ∑

↵≤q 1
m

′
↵
⋅ �A

↵

� < 3
4 .

To prove this, first define, for i ≤m,

B

i

∶= {↵ ≤ q ∶ A
↵

⊂ C
i

,A

↵

�⊂ C
k

for k < i}.
Then for all i, j ≤m, B

i

∩B
j

= �, and �
i≤mB

i

= {↵ ∶ ↵ ≤ q}.
Now, define l

∗
k

= ∑
↵∈Bk
�A

↵

�. Then ∑
k≤m l

∗
k

≤ 1, and l

∗
k

≤ l
k

. Then we have

for k ≤m:

�
↵∈Bk

1

m

′
↵

�A
↵

� =max�1
4
,

l

′
k

l

k

� ⋅ l∗
k

=max� l∗k
4
,

l

′
k

⋅ l∗
k

l

k

� .
Then as ∑

k≤m l

′
k ⋅l∗k
lk
≤ ∑

k≤m l

′
k

< 1
2 , and ∑k≤m l

∗
k
4 ≤ 1

4 , we have:

�
↵≤q

1

m

′
↵

⋅ �A
j

� = �
k≤m �↵∈Bk

1

m

′
↵

⋅ �A
↵

� = �
k≤m

max� l∗k
4
,

l

′
k

⋅ l∗
k

l

k

� < 3

4
.

This completes the proof of the claim.

Now, let L = � �
i≤mC

i

�. We have two cases:
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1. L < 1. In this case, we have U ∶= [0,1] � �
j≤q Aj

has nonempty interior,

so let V be the collection of components of the interior of U . Then

V = {V
i

∶ i ≤ r} for some r ∈ N, where each V

i

is an open interval. Then

∑
i≤r �Vi

� = 1 −L. Let
L

∗ =�
j≤q

1

m

′
j

⋅ �A
j

� < 3

4
.

Let p = q + r, and for j ≤ q, let D
j

= A
j

and m

j

= m′
j

, and for q < j ≤ r,
let D

j

= V
j−q and m

j

= 1−L
1−L∗ . Then

�
j≤p

1

m

j

⋅ �D
j

� =�
j≤q

1

m

′
j

⋅ �A
j

� + �
q<j≤p

1 −L∗
1 −L ⋅ �Vj

� = L∗ + 1 −L∗
1 −L ⋅ (1 −L) = 1.

2. L=1. In this case, we have �
j≤mA

j

= [0,1], so for each j ≤ q, let D
j

= A
j

,

and let p = q. Again, let
L

∗ =�
j≤q

1

m

′
j

⋅ �A
j

� < 3

4
.

Then for all j < p, let m
j

=m′
j

, and m

p

= �Ap��Ap �
m′p +(1−L∗)

.

Then

∑
j≤p 1

mj
⋅ �D

j

� = ∑
j<p 1

m

′
j
⋅ �D

j

� + �Ap �
m′p +(1−L∗)�Ap� ⋅ �A

p

�
= ∑

j≤p 1
m

′
j
�D

j

� + (1 −L∗) = L∗ + (1 −L∗) = 1.
In either case, 1 −L∗ > 1

4 and 1 −L < 1, so 1−L
1−L∗ < 4. Also, ∑j≤p 1

mj
⋅ �D

j

� = 1,
and {D

i

∶ i ≤ p} is a disjoint collection of open sets such that �
i≤pDi

= [0,1].
So by Lemma 4.2.4, there is a piecewise linear homeomorphism f , such that f

has slope m

j

for x ∈ A
j

. Also, note that as m
j

≤m′
j

for all j ≤ q, and 1−L
1−L∗ < 4,

the maximum slope of f is 4, and the slope of f is always positive. Then given

a covering C

k

for � of length l

k

, the slope of f at any point x ∈ f−1(C
k

) is
at most lk

l

′
k
, so C

′
k

= f

−1(C
k

) is a corresponding covering for C

k

, and (where

A

′
i

= f−1(A
i

)), we have �C ′
k

� = ∑{i∶Ai⊂Ck}A′i = ∑{i∶Ai⊂Ck} 1
mi
⋅A

i

≥ l

′
k
lk
∑{i∶Ai⊂Ck}Ai

=
l

′
k ⋅lk
lk
= l′

k

, so C

′
k

has length at least l′
k

.
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If � ∶ [0,1] → G

n

is a path and �

′ a reparameterisation of � such that

�

′ = � ○ g where g is a piecewise linear homeomorphism, then we say that �′ is
a linear reparameterisation of �. Note that the reparameterisation constructed

in Lemma 4.2.5 is a linear reparameterisation.

We can now define a well parameterised path.

Definition 4.2.6. Given n ∈ N, suppose I

n

= [0,1], then for i ≥ 1, let Sn

i

be

the collection of open intervals in I

n

of length 1
2i defined by

S

n

i

= �( j
2i
,

j + 1
2i
) ⊂ I

n

∶ j ∈ {0, . . . ,2i − 1}� .
Definition 4.2.7. Let n ∈ N, I

n

= I

n−1 = [0,1], fn ∶ [0,1] → 2[0,1] an upper

semicontinuous set valued function with corresponding graph G

n

, a path � ∶
[0,1] → G

n

, and an open interval U ⊂ I
n

, or U ⊂ I
n−1, we define the covering

number of U for �, denoted K

�

(U) to be the number of times that � covers

U .

Note that from Lemma 4.1.3, the covering number K

�

(U) will always be

finite.

Definition 4.2.8. Let n ≥ 1, let I

n

= I

n−1 = [0,1], let f

n

∶ I
n

→ 2In−1 be an

upper semicontinuous set valued function with graph G

n

, and � ∶ [0,1] → G

n

a continuous function. Let k = (k1, k2, k3, . . . ) be a sequence of non-negative

integers. Then we say that � is well parameterised with respect to k if for each

i ∈ N, and for each S ∈ Sn−1
i

∪ Sn

i

, each covering of S for � has length at least
1

2⋅2⋅2i⋅2n⋅2i⋅ki . If the sequence k is obvious, or if we only need to know that a

path � is well parameterised with respect to some k, we will often simply say

that � is well parameterised.

The 2n that appears in the denominator of the fraction appears because

eventually we will want to apply the following lemma, which deals with repa-

rameterising a path in one graph, to paths in a sequence of graphs. The

sequence k will be related to the covering numbers of the sets Sn

i

.
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Lemma 4.2.9. For some n ≥ 1, let I

n

= I

n−1 = [0,1], f

n

∶ I
n

→ 2In−1 an

upper semicontinuous set valued function with graph G

n

, and � ∶ [0,1] → G

n

a continuous function. Let k = (k1, k2, k3, . . . ) where for each i ≥ 1, k

i

≥
max{K

�

(S) ∶ S ∈ Sn−1
i

∪ Sn

i

}. Then there exists �

′ ∶ [0,1] → G

n

such that �′ is
well parameterised with respect to k, and a reparameterisation of �.

Proof. Let l ∈ N, and let U
l

∶= {Sm

j

∶ 1 ≤ j ≤ l,m ∈ {n,n − 1}}. Then U
l

is a

collection of 2 ⋅ ∑1≤j≤l 2j open sets. Let {C
↵

∶ 1 ≤ ↵ ≤ p} be the collection of all

coverings of all sets in U
l

.

Finally, for each ↵ ≤ p, let l′
↵

= 1
2⋅2⋅2j ⋅2n⋅2j ⋅kj , where C↵

is a covering of � of a

set S ∈ Sm

j

∈ U
i

. Then we have:

�
1≤↵≤p

l

′
↵

≤ �
1≤j≤l

2 ⋅ 2j ⋅ k
j

⋅ 1

2 ⋅ 2 ⋅ 2j ⋅ 2n ⋅ 2j ⋅ k
j

= 1

2 ⋅ 2n ⋅ �1≤j≤l
1

2j
≤ 1

2 ⋅ 2n < 1

2
.

Here the first inequality comes from possibly overestimating the number

of coverings (there are p many), by taking the number of open sets in U
l

, and

multiplying by the maximum number of coverings a set can have (which is less

than or equal to k

j

).

So by Lemma 4.2.5, there is a linear reparameterisation �

′
l

= � ○ f
l

of �,

where f

l

is a piecewise linear homeomorphism with a maximum slope of 4,

and each covering C

′
↵

of �′
l

of a set in S

m

j

(where j ≤ l) has length at least
1

2⋅2⋅2j ⋅2n⋅2j ⋅kj .
So if for all i ∈ N we construct such a �

′
i

= � ○ f
i

, we have a sequence of

homeomorphisms (f
i

) that are totally bounded and equicontinuous (as the

maximum slope is 4), so by the Arzelá Ascoli Theorem (Theorem 4.2.2), there

is a subsequence of (f
i

), call it (f
ik
), such that (f

ik
) converges to a continuous

function f .

Note that as each f

i

is a homeomorphism, it is strictly increasing (ie if

x < y, f
i

(x) < f
i

(y)), and so f is increasing (ie if x < y, f(x) ≤ f(y)).
Claim: �′ ∶= � ○ f is well parameterised with respect to k.
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To prove this, for j ∈ N, let S ∈ Sm

j

, and let C
↵

be a covering of S for �, and

suppose C

↵

has length l

↵

. Then C

↵

has a corresponding covering C

′
↵

for �

′.
Suppose (with a view to contradiction) that C ′

↵

has length l

∗
↵

< l′
↵

= 1
2⋅2⋅2j ⋅2n⋅2j ⋅kj .

Let C
↵

= (a, b), and f

−1((a, b)) = (c, d), ie �(c, d)� = l∗
↵

< l′
↵

.

From the construction of each f

i

(from Lemma 4.2.5), for all f
i

where i ≥ j,
and for all x ∈ (a, b), the slope at f−1

i

(x) is at most l↵
l

′
↵
.

As the sequence (f
i

) converges to f (uniformly), given " > 0, there exists

N ∈ N such that for all n ≥ N , �f
n

(c) − a� < ", and �f
n

(d) − b� < ". Now, let

" ∶= l↵−l∗↵⋅ l↵l′↵
2 (which is greater than 0 as l∗

↵

< l′
↵

).

Now, given the " just defined, we have that there exists N ∈ N such that

for n ≥ N , �f
n

(c) − a� + �f
n

(d) − b� < 2", so (by two applications of the triangle

inequality) we have:

�f
n

(c) − f
n

(d)� ≥ �a − b� − �f
n

(c) − a� + �f
n

(d) − b� > �a − b� − 2"
= l

↵

− (l
↵

− l∗
↵

⋅ l↵
l

′
↵
) = l∗

↵

⋅ l↵
l

′
↵
.

This means that �f
n

(c)−f
n

(d)� > �c−d�⋅ l↵
l

′
↵
, but this is impossible, as the slope

of f
n

at x for x ∈ (c, d) is no more than l↵
l

′
↵
. Therefore, we have a contradiction,

so we conclude C

′
↵

has length at least l

′
↵

, completing the proof of the claim,

and the proof of the lemma.

The preceding lemma reparameterised a path on one graph to a well pa-

rameterised function. The next lemma extends this to reparameterise a finite

extension sequence of arbitrary length so each path in the sequence is well

parameterised.

Corollary 4.2.10. Let (I
i

, f

i

) be a generalised inverse sequence, a and b ∈
lim←�(Ii, fi), and let n ∈ N. Suppose (�n

i

∶ i ≤ n) is a finite extension sequence

for (a,b). Let k = (k1, k2, k3, . . . ) where for each i ≥ 1, k
i

≥ max1≤j≤n{K�j(S) ∶
S ∈ Sj−1

i

∪ Sj

i

}. Then there exists a finite extension sequence (�n

i

′ ∶ i ≤ n) for
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(a,b), such that for each i ≤ n, we have �

n

i

′ is well parameterised with respect

to k, and a reparameterisation of �n

i

.

Proof. Let (�n

i

∶ i ≤ n) be a finite extension sequence. Then any reparameteri-

sation f given to �

n

i

to obtain a well parameterised �

n

i

′ must also be given to

�

n

j

for all j ≤ n, in order to maintain the pairwise joining property.

For 1 ≤ i ≤ n and l ∈ N, let U i

l

∶= {Sm

j

∶ 1 ≤ j ≤ l,m ∈ {i, i − 1}}. Then each

U i

l

is a collection of 2 ⋅ ∑1≤j≤l 2j open sets. Let {C
↵

∶ ↵ ≤ p} be the collection of

all coverings of all sets in U i

l

for all i ≤ n.
Finally, let l′

↵

= 1
2⋅2⋅2j ⋅2i⋅2j ⋅kj , where C↵

is a covering for �n

i

of a set S ∈ Sm

j

∈ U i

l

.

Then we have (as in Lemma 4.2.9):

�
↵≤p l

′
↵

≤ �
1≤i≤n �1≤j≤i2 ⋅ 2j ⋅ kj ⋅

1

2 ⋅ 2 ⋅ 2j ⋅ 2i ⋅ 2j ⋅ k
j

≤ �
1≤i≤n

1

2 ⋅ 2i < 1

2
.

Then using the same method as in the proof of Lemma 4.2.9, we can create

a sequence of functions (f
l

) that converge to f such that �n

i

′ = �n

i

○ f is well

parameterised with respect to k for all i ≤ n, and as we have used the same

function to reparameterise all paths in the finite extension sequence, we have

that (�n

i

′ ∶ i ≤ n) is a well parameterised (with respect to finite extension

sequence of length n between a and b.

We now have the necessary tools to prove the following lemma, from which

together with Corollary 4.1.7, Theorem 4.0.1 will follow.

Lemma 4.2.11. Let (I
i

, f

i

) be a generalised inverse sequence, and let a =
(a0, a1, a2, . . . ) and b = (b0, b1, b2, . . . ) ∈ lim←�(Ii, fi). Then a limit extension for

a and b exists if and only if for every n ∈ N, for every open interval U ⊂ I
n

,

there is an upper bound k ∈ N such that for all l ∈ N, where l ≥ n, there exists a

finite extension sequence (�l

i

∶ i ≤ l) for (a,b) such that �l

n

covers U less than

k times.
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Proof. Suppose (�
i

∶ i ∈ N) is a limit extension for (a,b). For every l ∈ N there

is a finite extension sequence (�l

i

∶ i ≤ l) for (a,b), which is obtained from

the limit extension (�
i

∶ i ∈ N) by ‘forgetting’ all coordinates greater that l, so

�

l

i

= �
i

for each 1 ≤ i ≤ l. Then as each �

l

i

is a continuous function, by Lemma

4.1.3 for every open interval U ⊂ I
i

there exists a k ∈ N such that �
i

covers U

less than k times.

For the converse, let n ∈ N. Let k = (k0, k1, k2 . . . ), where for each i ∈ N,
k

i

is the maximum number of times a set in S

n

i

or Sn−1
i

is covered by �

l

n

in a

finite extension sequence for l ≥ n. Then we have that for all l ∈ N, where l ≥ n,
there exists a finite extension sequence (�l

i

∶ i ≤ l) for (a,b), and for each i ∈ N,
�

l

n

covers each S ∈ Sn

i

less than k

i

times, and also �

l

n

covers S ∈ Sn−1
i

less than

k

i

times. Therefore, by Corollary 4.2.10, we can assume each �

l

i

in the finite

extension sequence is well parameterised with respect to k.

Now, for all l ≥ n we have a finite extension sequence (�l

i

∶ i ≤ l) that is well
parameterised with respect to k. Let C

n

be the sequence of functions defined

by C
n

∶= (�l

n

∶ [0,1] → G

n

∶ l ≥ n). So C
n

is an infinite sequence of totally

bounded functions. We will now show the functions in C
n

are equicontinuous.

Let " > 0, f ∶ [0,1] → G

n

∈ C
n

, and x ∈ [0,1]. As f = �l

n

for some l ≥ n, f
is well parameterised with respect to k. Let i ∈ N be such that 1

2i−2 < ". Let

@

"

= 1
2⋅2⋅2i⋅2n⋅2i⋅ki , and let y ∈ [0,1] such that �x − y� < @

"

.

Suppose ��f(x) − f(y)�� ≥ ", ie f(y) ∉ B
"

(f(x)). Then we have that either

�⇢
n,n

○f(y)−⇢
n,n

○f(x)� > "

2 , or �⇢n,n−1○f(y)−⇢n,n−1○f(x)� > "

2 . WLOG, suppose

�⇢
n,n

○ f(y)−⇢
n,n

○ f(x)� > "

2 . Then as the interval (⇢
n,n

○ f(y),⇢
n,n

○ f(x)) ⊂ I
n

has length greater than "

2 , and
1
2i < "

4 , there exists an interval S ∈ Sn

i

such that

S ⊂ (⇢
n,n

○ f(y),⇢
n,n

○ f(x)) ⊂ I
n

. But then by Lemma 4.1.2, f �[x,y] covers S.
But as f is well parameterised, every covering of s must have length at least

1
2⋅2⋅2i⋅2n⋅2i⋅ki , so �x−y� ≥ 1

2⋅2⋅2i⋅2n⋅2i⋅ki , contradicting our assumption that �x−y� < @
"

.

Hence the functions in C
n

are equicontinuous, and so by the Arzelá Ascoli

Theorem (Theorem 4.2.2), there is a subsequence of C
n

that converges to a
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function �

n

∶ [0,1]→ [0,1] × [0,1]. Then we have:

�

n

is continuous, as the convergence is uniform,

the image of �
n

is contained in G

n

, as this is the case for each function

in the sequence, and G

n

is closed, and

�

n

(0) = �a
n+1, an�, and �

n

(1) = �b
n+1, bn�, as �

l

n

(0) = �a
n+1, an�, and

�

l

n

(1) = �b
n+1, bn� for all l ≥ n.

Hence �

n

∶ [0,1] → G

n

is a path from �a
n+1, an� to �bn+1, bn� in G

n

. Note

that such a path obtained from convergent finite extension sequences is not in

general unique, as there may be another subsequence of C
n

that converges to

a di↵erent path �

′ ∶ [0,1] → G

n

. This means that in general, picking a �

n

for

each n ∈ N will not give a limit extension (�
n

∶ n ∈ N). It is, however, possible
to select a sequence (�

n

∶ n ∈ N) that is a limit extension, using the following

process.

Firstly, consider �1, which is obtained as the limit of a subsequence of C1.
This subsequence is then (�l

1 ∶ l ∈ N1), whereN1 is a strictly increasing sequence

in N. The sequence C1 was obtained from a sequence of finite extension se-

quences of well parameterised functions, and the convergent subsequence used

only certain of these finite extension sequences, the finite extension sequences

(�l

i

∶ l ∈ N1).
Now, we have a sequence of well parameterised functions inG2, (�l

2 ∶ l ∈ N1).
Just like above, these will have a convergent subsequence, (�l

2 ∶ l ∈ N2), where
N2 ⊂ N1. These will converge to a path �2 in G2 between �a2, a1� and �b2, b1�.
Furthermore, �1 and �2 have the pairwise joining property. To see this, note

that for each k ∈ N2, there is a pair of paths �k

1 and �

k

2 in G1 and G2 respectively

that have the pairwise joining property (as they are in the same finite extension

sequence (�k

i

∶ i ≤ k)), so ⇢1,1 ○ �l

1(x) = ⇢2,1 ○ �l

1(x) for l ∈ N2, for each x ∈ [0,1].
Therefore in the limit ⇢1,1 ○ �1(x) = ⇢2,1 ○ �2(x) for all x ∈ [0,1], so �1 and �2

have the pairwise joining property.
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Repeating this process for all n ≥ 1, we have a subsequence of finite exten-

sion sequences (�k

n

∶ k ∈ N
n

) that converge to a path �

n

∶ [0,1] → G

n

that will

have the pairwise joining property with �

n−1 ∶ [0,1]→ G

n−1.
So, by induction over N, we have for all n ∈ N, each �

n

is a path in G

n

from

�a
n

, a

n−1� to �bn, bn−1�, and �

n

and �

n+1 have the pairwise joining property.

Therefore, (�
n

∶ n ∈ N) is a limit extension for (a,b).

The proof of Theorem 4.0.1 then follows from Lemma 4.1.6 and Lemma

4.2.11.

4.3 Examples

In this section we will apply Theorem 4.0.1 to some examples.

Example 4.3.1. The first example is the inverse limit of the function f ,

where f has as its graph the union of a line between �0,0� and �1,1�, and a

line between �0,1� and �1,0�. The graph of f is shown in Figure 4.1.

Let a = (a0, a1, a2, . . . ) and b = (b0, b1, b2, . . . ) ∈ lim←�f . We will define induc-

tively a finite extension sequence of length l for each l ∈ N. For �1
1 , define �

1
1 �[0, 12 ]

by the (constant speed) path between �a1, a0� and �12 , 12�, and �

1
1 �[ 12 ,1] by the

(constant speed) path between �12 , 12� and �b1, b0�. Then define �

1
1 ∶ [0,1]→ G1

as the union of �1
1 �[0, 12 ] and �

1
1 �[ 12 ,1]. This is then a finite extension sequence of

length 1. Note that each open set in I0 and I1 is covered a maximum of two

times.

Now suppose we have a finite extension sequence of length n, and there is

a path �

n

n

with the property that �n

n

�[0, 1
2
] is a (constant speed) path between

�a
n

, a

n−1� and �12 , 12�, and �

n

n

�[ 1
2
,1] is a (constant speed) path between �12 , 12� and�b

n

, b

n−1�. Then we define �

n+1
n+1 as being the union of �n+1

n+1 �[0, 12 ], a (constant

speed) path between �a
n+1, an� and �12 , 12�, and �

n+1
n+1 �[ 12 ,1], a (constant speed)
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�

� �

Figure 4.1: The graph of f in Example 4.3.1.

path between �12 , 12� and �bn+1, bn�. Then �

n

n

and �

n+1
n+1 will have the pairwise

joining property (as each section of the path was at constant speed), so we can

extend the finite extension sequence (�n

i

∶ i ≤ n) to a finite extension sequence

(�n+1
i

∶ i ≤ n + 1), where for each i ≤ n we have �

n+1
i

= �n

i

. Furthermore, each

path in the sequence will only cover each open set a maximum of two times.

So for all l ∈ N there is a finite extension sequence such that each open set

in I

n

for n ≤ l is covered a maximum of two times. Therefore, by Theorem

4.0.1 we have a path in lim←�f between a and b, and as a and b were arbitrary,

we can conclude that lim←�f is path connected.
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That Example 4.3.1 is path connected becomes more obvious when it is

known that lim←�f is homeomorphic to a ‘Cantor star’ (ie a cone over a Cantor

set) [In2, Example 2.7].

Example 4.3.2. This example is the inverse limit of the function g, where g

has as its graph the union of a line between �0,0� and �1, 12�, and a line between

�0,1� and �1, 12�. The graph of g is shown in Figure 4.2.

�

��

Figure 4.2: The graph of g in Example 4.3.2.

Let a = (a0, a1, a2, . . . ) and b = (b0, b1, b2, . . . ) ∈ lim←�f . Again we will induc-

tively define a finite extension sequence of length l for each l ∈ N. For �1
1 we

can use any path between �a1, a0� and �b1, b0�. By Lemma 4.1.3, each open set
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in I0 and I1 is only covered finitely often by �

1
1 .

Suppose we have a finite extension sequence (�n

i

∶ i ≤ n) of length n. As

g is injective in the sense that for each y ∈ [0,1] there is a unique x ∈ [0,1]
such that y ∈ f(x), we can define a path �

n+1
n+1 that has the pairwise joining

property with �

n

n

, and do this without making any changes to �

n

n

. Therefore,

we can extend (�n

i

∶ i ≤ n) to a finite extension sequence of length n + 1, and
keep �

n+1
i

= �n

i

for all i ≤ n. As �

n+1
n+1 is continuous, all open sets in I

n+1 are

covered finitely often.

So although sets in I

n

are possibly being covered increasingly often as n

increases, for each n there is a limit to how many times any open set U ⊂ I
n

will be covered. Hence, by Theorem 4.0.1, lim←� g will be path connected.

The final example is an inverse limit of a single valued bonding function,

whose inverse limit is not path connected.

Example 4.3.3. This example is the inverse limit of the function h, where h

has as its graph the union of a line between �0,0� and �14 ,1�, a line between

�14 ,1� and �12 , 12�, and a line between �12 , 12� and �1,1�. The graph of h is shown

in Figure 4.3.

Let a = (0,0,0, . . . ) and b = �12 , 12 , 12 , . . . � ∈ lim←�h, and consider a path

between these two points. Consider �1 in a limit extension sequence (�
i

∶ i ≥ 1)
that gives rise to this path, and the interval U = �12 ,1� ⊂ I0. Then �1 clearly

must cover U at least twice. Now consider �2. This must have the pairwise

joining property with �1, so for this to occur, we must reparameterise �1 to

pass through the point �1,1�. Then �1 must cover U at least four times. Then

it is not hard to see that with every additional path we add to increase the

length of the finite extension sequence by one, U must be covered at least two

more times. So there is no finite k such that U is covered less than k times

by an arbitrarily long finite extension sequence. Therefore, by Theorem 4.0.1,

lim←�h is not path connected.
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�

��

Figure 4.3: The graph of h in Example 4.3.3.

As shown in [IM2, Example 103], lim←�h from Example 4.3.3 is homeomor-

phic to a the closure of a sin 1
x

curve.

4.4 Further Work

The main theorem in this chapter gives a condition that reduces the problem

of path connectedness in generalised inverse limits to a condition on the finite

approximants G
n

. It would be of great interest if this could be extended to

conditions on the graphs of the functions that will guarantee the conditions

on the G
n

approximants.
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The other main extension that can be done is to find conditions that guar-

antee that the finite approximants will be path connected. This is what was

assumed throughout this chapter, but it is not a trivial problem. Perhaps this

could be incorporated with the proposed conditions mentioned in the previous

paragraph.

The factor spaces used in this chapter have all been compact intervals.

There does not seem any reason why Theorem 4.0.1 cannot be extended to

compact Hausdor↵ spaces. This may even be possible using a very similar

method of proof to the one in this chapter, for example there is an extension of

the Arzelá Ascoli Theorem to compact Hausdor↵ spaces in [DS]. Most other

concepts used in the proof can probably be generalised, at least to metric

spaces.
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complete classification of generalized tent maps inverse limits, Topology

and its Applications 160 (2013) 63-73.
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applications of, 7
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