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ABSTRACT
(500 word limit, PhD Thesis regulations, 1987)

Aquatic macrophytes possess an internal lacunar system of proliferated
intercellular airspaces. Lacunar gas exchange processes were investigated

in Egeria densa Planch., a submerged freshwater angiosperm.

Investigations of oxygen exchange between Egeria shoot segments and the
water revealed that up to 177 of the photosynthetically-produced oxygen is
retained within the lacunae. A consequence of this partitioning, which
results from the relatively low solubility of oxygen in water, is the
development of internal lacunar pressures up to 20 kPa above atmospheric
pressure. This storage of oxygen in Egeria casts doubts on oxygen-based
measurements of productivity in aquatic macrophytes, unless both internal
and external sinks are monitored. Pressurisation also revealed that
storage is greater in static water than in flowing water, suggesting that
boundary layer limitations to oxygen transfer can also affect
partitioning.

Pressures fall to sub-atmospheric values in the dark, due to
respiratory consumption of the internal oxygen. The Egeria respiratory
gas exchanges in the dark demonstrated a steady concentration gradient
between plant and water within an hour of darkening. However, the
material steadily consumes approximately 307 of its respired oxygen from
the lacunae, rather than the water. This oxygen supply is again due to
the low oxygen solubility. The lacunae also assist the radial oxygen
supply into the respiring tissue; it was found that the Michaelis-Menten
constant for the respiratory response to oxygen tension in Egeria was some
two to three times greater in material with infiltrated lacunae than in
uninfiltrated material.

Oxygen storage in the stem lacunae resulted in a longitudinal (shoot to
root) movement of this gas, which was monitored using a bicompartment
apparatus. The root oxygen release rate varied with light intensity and
water flow rate in a similar manner to the internal pressure changes.
Further experiments, involving measurements of the oxygen flux rates in

the Egeria rhizosphere, demonstrated that this root oxygen loss is capable
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of effecting substantial diurnal oxygen fluctuations in the surrounding
sediment. These processes may be interrupted by natural infiltration of
the airspaces, but the factors involved here remain uncertain.

The mean internal oxygen transport rate in Egeria (6.28 )1102 h ) was
consistent with estimates of lacunar oxygen concentration gradients
calculated from Fick's Law, suggesting that diffusion is the oxygen
transport mechanism in Egeria. However, by connecting shoots into
manometers, internal pressure gradients of some 0.9 kPa m were detected.
These gradients were 10 -fold greater than the pressure gradient
required to account for oxygen transport in Egeria, but were transient
features, as the pressure equilibrated throughout the lacunar system 20 -
30 minutes after a dark/light change. Mass flow was therefore proposed as
a transitory, but potentially significant, contribution to oxygen
transport.

Root to shoot carbon dioxide transport was measured using 14CO
tz?cing. The CO2 uptake (mean internal transport = 4.96 plCO2
h ) represented < 10%Z of the total carbon fixed; the concentration of
root-derived carbon in shoot tissue declined rapidly from the root
insertion point.

These results are compared with those of previous studies, and

the significance of the Egeria lacunar system assessed.
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Frontispiece: Drawing of a young Egeria densa Planch. plant,
showing general plant form, branching pattern, and adventitious

root formation.
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