

RESEARCHSPACE@AUCKLAND

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

GAS TRANSPORT AND STORAGE PROCESSES IN THE LACUNAR SYSTEM OF EGERIA DENSA PLANCH.

By BRIAN K. SORRELL

A Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy University of Auckland

October, 1987

ABSTRACT

(500 word limit, PhD Thesis regulations, 1987)

Aquatic macrophytes possess an internal lacunar system of proliferated intercellular airspaces. Lacunar gas exchange processes were investigated in Egeria densa Planch., a submerged freshwater angiosperm.

Investigations of oxygen exchange between <u>Egeria</u> shoot segments and the water revealed that up to 17% of the photosynthetically-produced oxygen is retained within the lacunae. A consequence of this partitioning, which results from the relatively low solubility of oxygen in water, is the development of internal lacunar pressures up to 20 kPa above atmospheric pressure. This storage of oxygen in <u>Egeria</u> casts doubts on oxygen-based measurements of productivity in aquatic macrophytes, unless both internal and external sinks are monitored. Pressurisation also revealed that storage is greater in static water than in flowing water, suggesting that boundary layer limitations to oxygen transfer can also affect partitioning.

Pressures fall to sub-atmospheric values in the dark, due to respiratory consumption of the internal oxygen. The Egeria respiratory gas exchanges in the dark demonstrated a steady concentration gradient between plant and water within an hour of darkening. However, the material steadily consumes approximately 30% of its respired oxygen from the lacunae, rather than the water. This oxygen supply is again due to the low oxygen solubility. The lacunae also assist the radial oxygen supply into the respiring tissue; it was found that the Michaelis-Menten constant for the respiratory response to oxygen tension in Egeria was some two to three times greater in material with infiltrated lacunae than in uninfiltrated material.

Oxygen storage in the stem lacunae resulted in a longitudinal (shoot to root) movement of this gas, which was monitored using a bicompartment apparatus. The root oxygen release rate varied with light intensity and water flow rate in a similar manner to the internal pressure changes. Further experiments, involving measurements of the oxygen flux rates in the Egeria rhizosphere, demonstrated that this root oxygen loss is capable

of effecting substantial diurnal oxygen fluctuations in the surrounding sediment. These processes may be interrupted by natural infiltration of the airspaces, but the factors involved here remain uncertain.

The mean internal oxygen transport rate in Egeria (6.28 µ10 h) was consistent with estimates of lacunar oxygen concentration gradients calculated from Fick's Law, suggesting that diffusion is the oxygen transport mechanism in Egeria. However, by connecting shoots into manometers, internal pressure gradients of some 0.9 kPa m were detected. These gradients were 10 -fold greater than the pressure gradient required to account for oxygen transport in Egeria, but were transient features, as the pressure equilibrated throughout the lacunar system 20 - 30 minutes after a dark/light change. Mass flow was therefore proposed as a transitory, but potentially significant, contribution to oxygen transport.

Root to shoot carbon dioxide transport was measured using 14 CO $_2$ tracing. The CO uptake (mean internal transport = 4.96 μ 1CO $_2$ h) represented < 10% of the total carbon fixed; the concentration of root-derived carbon in shoot tissue declined rapidly from the root insertion point.

These results are compared with those of previous studies, and the significance of the Egeria lacunar system assessed.

ACKNOWLEDGEMENTS

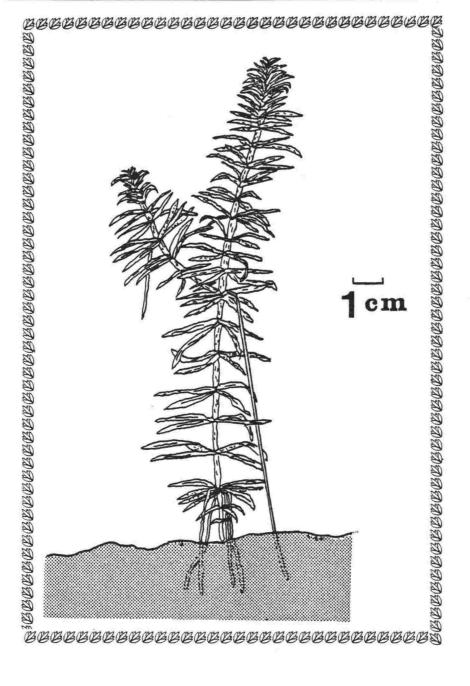
Throughout this project I received a U.G.C. Postgraduate Scholarship, and I gratefully acknowledge the three years' support of the committee.

I thank the Physiology Section technicians (Pam Buchan, Peter Guest, and Stuart Jackson) who willingly assisted the research in many ways. Special thanks are due to Stuart for writing a computer programme for rapid oxygen flux calculations. Additional technical assistance was provided by Nev Hutchison and Brian Wilson, who constructed many of the experimental chambers.

My fellow Postgraduate students were and are much-valued critics, commentators, and especially friends. I am particularly grateful to Henry Pak, Daryl Russell-Webb, Michelle and Peter Stevens, and Mark and Sandy

Rattray, for their enthusiastic support of my work.

The academic staff proved to be tirelessly interested in my research. I give particular thanks to J.E. Braggins for his assistance with the photomicroscopy and J.M.A. Brown for (always constructive!) criticism of my writing and proofreading skills.


I also thank Morten Søndergaard, a visiting scientist from Denmark, who taught me many valuable lessons in radiochemistry, and without whose expertise the radiocarbon experiments would not have been possible.

Above all, the cheerful and enthusiastic support of my supervisor Frank Dromgoole has been instrumental in the successful completion of this research. I thank him unreservedly for the endless interest and advice he showed in my work.

Special gratitude is due to family and friends, whose conviction that this project would succeed has always matched my own, and whose encouragement smoothed over the difficult times and made the last four years so enjoyable. I thank you all, but especially my parents, Len and Lois Sorrell, whose love and support I value so much, and who so helped me to concentrate on my research. My love to you both.

And finally, an extra thank you to the "Sunday Night Crew", who always made the best of a bad situation and whose enthusiasm was so infectious.

B.K.S. 20.9.87

Frontispiece: Drawing of a young <u>Egeria densa</u> Planch. plant, showing general plant form, branching pattern, and adventitious root formation.

CONTENTS

ABSTRACT	1-10
ACKNOWLEDGEMENTS	(
FRONTISPIECE	(
CONTENTS	
LIST OF FIGURES AND TABLES	(
CHAPTER 1: GENERAL INTRODUCTION	
1.1 THE LACUNAR SYSTEM	
1.2 FUNCTIONS OF THE LACUNAR SYSTEM	
1.3 CURRENT UNDERSTANDING OF GAS EXCHANGE IN AERENCHYMA	
1.4 OBJECTIVES	
CHAPTER 2: EGERIA DENSA PLANCH.: BACKGROUND AND	÷
DESCRIPTION OF LACUNAR STRUCTURE	
2.1 INTRODUCTION	

2.2 METHODS	12
2.2.1 Anatomical investigations	12
2.2.2 Experimental	12
2.3 DISTRIBUTION OF LACUNAE IN EGERIA	12
2.3.1 Stem internodes	13
2.3.2 Stem nodes	13
2.3.3 Leaves	17
2.3.4 Roots	17
2.3.5 Leaf-stem-root junctions	21
2.3.6 Flowers	21
2.4 MEASUREMENTS OF LACUNAR FREQUENCY AND DIMENSIONS	
IN EGERIA	21
2.5 EXPERIMENTAL RESULTS	24
2.5 EATERINATE RESOURS	
2.6 CONCLUSIONS	25
CHAPTER 3: OXYGEN TRANSPORT IN EGERIA. I. OXYGEN	
PRODUCTION, STORAGE, AND RELEASE	26
3.1 INTRODUCTION	27
3.2 MATERIALS AND METHODS	28
3.2.1 Oxygen exchange experiments	28
3.2.2 Lacunar oxygen measurements	31
3.3 RESULTS AND DISCUSSION	32
3.3.1 Egeria oxygen release rates	32
3.3.2 Effects of treatments applied to the shoot	
on root oxygen release	36
3.3.3 Internal and external shoot oxygen partial	
pressures	39
3.3.4 Dark storage capacity	41

3.3.5 Oxygen transport mechanisms	
CHAPTER 4: OXYGEN TRANSPORT IN EGERIA. II. ROLE OF	
LACUNAR GAS PRESSURES	3.02
4.1 INTRODUCTION	_
4.2 MATERIALS AND METHODS	2
4.2.1 Lacunar pressure measurements	·
4.2.2 Pressure gradients and exchange rates	5 4
4.3 RESULTS AND DISCUSSION	
4.3.1 Lacunar gas pressures	45
4.3.2 Mass flow theory	
4.3.3 Mass flow measurements	i di dis
CHAPTER 5: ROLE OF EGERIA LACUNAE IN DARK METABOLISM	4.7
5.1 INTRODUCTION	
5.2 MATERIALS AND METHODS	7-4
5.2.1 Effect of water oxygen tension on oxygen	
uptake 5.2.2 Contribution of lacunar oxygen to dark	
respiration	
5.2.3 Effect of prior illumination on dark	
respiration	
5.2.4 Measurement of oxygen exchange between lacuna	
	*~

J.J RESULIS	
5.3.1 Effect of water pO and lacunar airspaces on	'a'' li
oxygen consumption	73
5.3.2 Effect of prior illumination on oxygen	
consumption	79
5.3.3 Oxygen equilibration between lacunae and water	79
5.4 DISCUSSION	79
5.4.1 Effect of external O and radial diffusion on	
oxygen consumption 2	79
5.4.2 Role of oxygen storage in the lacunar system	86
5.3 CONCLUSIONS	91
CHAPTER 6: CARBON DIOXIDE TRANSPORT IN THE LACUNAR	
SYSTEM	93
6.1 INTRODUCTION	94
	06
6.2 MATERIALS AND METHODS	96
6.2.1 CO injection experiments	96
14	00
6.2.2 ¹⁴ CO tracing experiments	98
6.2.3 Chlorophyll distribution	100
	100
6.3 RESULTS	100
6.3.1 Contribution of root CO to shoot 0	
release	100
6.3.2 Rates of C fixation from shoots and roots	102
6.3.3 Gradients of root-derived CO in the shoot	102
6.4 DISCUSSION	106
6.5 CONCLUSIONS	114

CHAPTER 7: RESPONSE OF THE LACUNAR SYSTEM TO PRESSURE CHANGES	115
7.1 INTRODUCTION	116
7.2 MATERIALS AND METHODS	117
7.2.1 Infiltration in nature	117
7.2.2 Water movement in the lacunar system	117
7.2.3 Lacunar response to pressure changes	118
7.3 RESULTS AND DISCUSSION	120
7.3.1 Infiltration in nature	120
7.3.2 Water movement in the lacunar system	122
7.3.3 Lacunar response to pressure changes	124
7.4 CONCLUSIONS	129
CHAPTER 8: RHIZOSPHERE OXIDATION BY <u>EGERIA</u> <u>DENSA</u>	133
8.1 INTRODUCTION	134
8.2 MATERIALS AND METHODS	136
8.2.1 Sediment collection and plant collection	
and growth	136
8.2.2 Platinum electrode system	138
8.3 RESULTS	138
8.3.1 Spatial variations	138
8.3.2 Diurnal variations	140
8.3.3 Root surface deposits	140

8.5 CONCLUSIONS	147
CHAPTER 9: SUMMARY AND FINAL DISCUSSION	149
9.1 INTRODUCTION	149
9.2 OXYGEN PARTITIONING AND THE STORAGE ERROR IN	
PRODUCTIVITY ESTIMATES	149
9.3 LONGITUDINAL GAS TRANSPORT	153
9.3.1 Gas gradients and transport rates	153
9.3.2 Gas transport mechanisms	155
9.3.3 Rhizosphere oxidation	161
9.3.4 The effectiveness of oxygen transport	162
9.4 RADIAL GAS TRANSPORT	163
9.5 EGERIA GAS TRANSPORT AND STORAGE MODEL	165
9.7 FINAL CONCLUSIONS	165
REFERENCES	168
APPENDICES	184
APPENDIX I: COLLECTION AND GROWTH OF MATERIAL	
GROWTH AND EXPERIMENTAL MEDIA	185
APPENDIX II: PUBLICATIONS	188
APPENDIX III: GAS EXCHANGE THROUGH MULTIPERFORATE SEPT	A 192

APPENDIX IV: ADDITIONAL INFORMATION CONCERNING THE RESPIRATORY RESPONSE TO OXYGEN IN VASCULAR AQUATIC MACROPHYTES 195 APPENDIX V: INORGANIC CARBON ANALYSIS 206 APPENDIX VI: MEASUREMENTS OF SEDIMENT OXIDATION 209

LIST OF FIGURES AND TABLES

FRONTISPIECE	(v)
CHAPTER 2	
Figure 2-1: Shoot lacunae	14
Figure 2-2: Longitudinal sections of Egeria shoots	15
Figure 2-3: Nodal diaphragms	16
Figure 2-4: Egeria leaves	18
Figure 2-5: Root airspaces	19
Table 2-1: Abundance of lacunar airspaces in Egeria d	ensa 22
Table 2-2: Dimensions of lacunar airspaces in Egeria	densa 23
CHAPTER 3	
Figure 3-1: Bi-compartment apparatus for monitoring of	
Egeria densa oxygen exchange	29
Figure 3-2: Root and shoot oxygen release by Egeria de	nsa 33
Figure 3-3: Effect of the shoot boundary layer on oxyg	en
exchange between the root and shoot of an	
<u>Egeria</u> <u>densa</u> plant	40
Figure 3-4: Examples of long-term oxygen exchange in t	he
dark between the lacunae of Egeria densa a	
the root and shoot media	42
Table 3-1: Measurements of root oxygen loss rates of	
various wetland plants	34
Table 3-2: Comparison of Egeria densa oxygen exchange	
rates	35
1466	33

Table 3-3: Effects of changes in the shoot chamber	
conditions on root oxygen loss rates of	
Egeria densa	37
Table 3-4: Percentage change in steady-state root oxyg	en
loss rates of Egeria densa	38
	College C
CHAPTER 4	
Figure 4-1: Apparatus for measuring pressure gradients	in
Egeria densa stems	51
Figure 4-2: Time course of lacunar pressure development	: in
an <u>Egeria</u> <u>densa</u> shoot	52
Figure 4-3: Effect of water flow on lacunar gas pressur	e of
Egeria densa shoots	54
Figure 4-4: Time course of lacunar pressure development	: in
two branches of an Egeria densa plant	61
Table 4-1: Lacunar gas pressures of ten Egeria densa	
shoots, in relation to water flow	53
Table 4-2: Lacunar gas pressures in the light and dark	c - i
for five <u>Egeria</u> <u>densa</u> shoots	56
Table 4-3: Pressure gradients and rates of pressure	
exchange measured in the Egeria densa	
lacunar system	62
Table 4-4: Predicted resistances to mass flow and	
diffusion in Egeria densa shoots	64
CHAPTER 5	
Figure 5-1: Response of dark 0 consumption to 0	
concentration by three Egeria densa	
samples	74
Figure 5-2: Response of Egeria densa dark 0 consumption	on
to high 0 concentrations	75

Figure 5-3:	Response of dark 0 consumption to 0	
	concentration by three infiltrated Egeria densa	77
Figure 5-4.	Double-logarithmic plots of Egeria densa	
rigure 3-4:		
	O consumption responses to O 2 concentration	78
Figure 5-5:		,,,
rigure 3-3:	Change in rate of Egeria densa 0 consumption from medium following illumination	81
Figure 5-6:	Oxygen exchange between <u>Egeria</u> densa shoot	
	segments and the external liquid	82
Figure 5-7:	Egeria densa oxygen exchange rates measured	
	5 min. after a known pO differential was set up	
	between the lacunae and water	83
Table 5-1:	Estimates of critical oxygen pressues, response	
	slope, KmO values, and Vmax for Egeria densa	
	samples	76
Table 5-2:	Comparison of 0 uptake rate of intact Egeria	
	densa samples with their rates after infiltration	80
Table 5-3:	Estimates of macrophyte densities and lacunar 0	
	consumption in some freshwater environments	90
	CHAPTER 6	
	Carbon dioxide transport experiments	97
Figure 6-2:	Profiles of tissue concentration of C derived	
	from root chamber along Egeria densa shoots	105
Table 6-1:	Photosynthetic O release by Egeria densa	
	resulting from the shoot and root C sources	101
Table 6-2:	Rates and percentages of CO fixation from 2	
	the roots by Egeria densa	103

Table 6-3:	Rates of carbon fixation from the root	
	chamber into Egeria densa roots	104
Table 6-4:	Total chlorophyll estimations in Egeria	
	densa tissue	109
Table 6-5:	Comparison of photosynthetic carbon uptake from	
	the roots by various aquatic macrophytes	111
Maria Paris Paris		44
	CHAPTER 7	
Figure 7-1:	Piezometer apparatus	119
Figure 7-2:	Percentage infiltration of the lacunar system	
	down an Egeria densa stem	121
Figure 7-3:	Photograph of an <u>Egeria densa</u> stem segment	
	after attempting draw methyl red solution	
	into the lacunar system	123
Figure 7-4:	Volume changes of Egeria densa shoot	
	segments under applied pressure	126
Figure 7-5:	Percentage volume changes observed during two	
	sequential applications and release of external	
	pressure for three Egeria samples	127
Figure 7-6:	Combined compression and expansion responses	
	of Egeria densa shoot segments to hydrostatic	
	pressure	130
Table 7-1:	Sudan IV staining of air-filled and infiltrated	
	Egeria densa stems	125
	CHAPTER 8	
Figure 8-1:	Plan view of glass tank used for sediment	
	oxygen flux measurements	137
Figure 8-2:	Examples of the change with sediment depth	
	of the oxygen flux Egeria densain the	
	rhizosphere	139

	Figure 8-3:	Examples of oxygen flux transects taken	
		through the Egeria densa rhizosphere	142
	Figure 8-4:	Examples of diurnal oxygen flux fluctuations	
		in the <u>Egeria</u> <u>densa</u> rhizosphere	143
	Table 8-1:	Mean oxygen flux values measured at 4 cm depth	
		in the <u>Egeria densa</u> rhizosphere	141
		CHAPTER 9	
	Figure 9-1:	A schematic model of oxygen exchange for	
		Egeria densa	166
	Table 9-1:	Comparison of longitudinal gas transport	
		strategies in various types of wetland species	157
r i	11.5		
		APPENDICES	
	Figure A-1:	Response of dark 0 consumption to 0	
		concentration by three intact Potamogeton	
		crispus samples	198
	Figure A-2:	Response of dark 0 consumption to 0	
		concentration by three infiltrated	
		Potamogeton crispus samples	199
	Figure A-3:	Response of dark 0 consumption to 0	
		concentration by three intact Myriophyllum	
		triphyllum samples	200
	Figure A-4:	Response of dark 0 consumption to 0	
		concentration by three infiltrated 2	
		Myriophyllum triphyllum samples	201
	Figure A-5:	Combustion apparatus for C analysis of	
		plant samples and acid release apparatus	
		for TIC analysis	207

Figure A-6:	Current-voltage curves obtained for a Pt	
	electrode in various media	214
Table A-1:	Recipe used for growth medium of Egeria densa	187
Table A-2:	Effects of piercing the internodes and vaccum	
	application on gas exchanges of Egeria densa	197
Table A-3:	Comparison of estimates of slope, KmO2, and Vmax	
	for the oxygen responses of Myriophyllum	
	triphyllum and Potamogeton crispus	203
Table A-4:	Comparison of 0 uptake rate for intact	
	Potamogeton crispus and Myriophyllum triphyllum	
	samples with their rates after infiltration	205