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Abstract—We comparatively discuss a set of confidence mea-
sures for stereo analysis by testing a semi-global matching (SGM)
strategy. The aim is a prediction of (potentially) erroneous areas
in calculated disparity maps. The evaluation is done by using
the sparsification technique, which provides more information
than commonly used RMS or NCC measures. We also present
an approach for combining different confidence measures. This
allows us to discuss confidence estimates more in detail with
respect to disparity errors.

I. INTRODUCTION

Stereo matching is the computation of matching image
locations across images with a defined parallax. This is a very
active research area having newly designed algorithms pub-
lished frequently due to still unsatisfying results for particular
situations [10] when recording stereo images, for example over
hours, days or months in the context of vision-based driver
assistance. Performance evaluation on such long stereo image
sequences is still a challenging subject. The use of a “third-eye
strategy” provides one option, and it already helped to identify
challenging events in recorded stereo image sequences [10].

Available disparity ground truth (for a few stereo image
frames) supports performance rankings of stereo algorithms
by a single number, such as the root-mean squared error
(RMS) where error is defined by the absolute distance between
calculated stereo result and measured or calculated ground
truth [16]. Ground truth is either a rendered depth map of
potentially very high accuracy for synthetic scenes, or a mea-
sured disparity map obtained by using alternative sensors, for
example a structured lighting approach, or a laser range finder.
Those two sensors provide reasonably good depth estimates
also on untextured areas, though not, for example, on highly
specular surfaces.

Extensive stereo analysis studies in outdoor scenes cannot
be supported by structured light, and the use of laser range-
finders appears to be more suitable [12], [14]. High-accuracy
laser range-finder allow us to reconstruct static 3D scenes at
very high accuracy [9]. However, laser range-finder models
as applied for dynamic scenes do have insufficient spatial
resolution for high-accuracy depth recoveries, especially at
depth discontinuities [12]. Thus, calculating depth ground truth
in dynamic outdoor scenes is still a challenging subject.

In summary, available stereo images with accurate depth
ground truth are insufficient for challenging current stereo
matching algorithms due to their simplicity, singularity, or

missing diversity of situations or events, as they occur, for
example, when running a stereo imaging system for days
or months in a vehicle. As a result of currently used test
environments, stereo matching algorithms are tuned to perform
well on singular test images or very short sequences. The
test environment [2] provides video sequences of up to a few
hundreds of stereo frames.

The paper aims at contributing to stereo matcher testing on
long outdoor sequences, i.e. to cases where ground truth is not
available. Alternatively to measuring accuracy, we will discuss
the use of confidence measures.

Interestingly, current stereo matching of aerial images still
applies often a simple correlation-based scheme, just because
the correlation coefficient in block matching appears to be
a quality measure for a match: A coefficient close to one
indicates a “good match”, and disparity values at pixels with
small coefficients are discarded. This leads to sparse depth
maps.

Common confidence measures on dense depth maps use, for
example, the opening of local parabola fits on the matching
cost function, or the slope of an Okutomi fit [17], [5]. We
show that these local measure are actually not related to stereo
confidence.

A “more informative” confidence measure has been pro-
posed for 3D reconstruction in [11]. For more proposals of
confidence measures, see [8]. It appears that there is still a
need for a comprehensive evaluation of these measures. We
approach this by using the sparsification strategy, as used in
[1] for discussing optical flow techniques.

Due to space limits, we can only discuss one stereo matcher
in this article. The evaluation of depth confidence will be by
using results of a “very well” performing stereo matcher. Our
aim is to identify image areas posing substantial problems
to stereo matchers in general, not just to poorly performing
ones. We decided for semi-global matching (SGM) stereo
analysis [6] using a census data term as a cost function.
To our experience [10], this configuration performs “pretty
well” both on synthetic as well as on recorded images. This
evaluation is also in line with results reported in [7]. Moreover,
computational costs of this stereo matcher configuration are
sufficiently low. Realtime SGM is possible [3]. Figure 1
illustrates used test data.

Section II reflects some issues when comparing stereo
results using a laser range-finder, verifying our statements



Fig. 1: A synthetic (left) and a recorded scene. Disparity ground truth is only available for the synthetic scene.

above (see also [12]), thus highlighting the need of alternative
evaluations. Sections III and IV present confidence measures
used for evaluation. Many of those are based on the accu-
mulated SGM cost cube. Section V briefly explains the used
sparsification plots. Sections VI and VII contain results and a
discussion. Section VIII concludes.

II. EVALUATION USING LRF DATA

One option to generate ground truth for recorded sequences
is using depth measurements with a statistically independent
sensor such as a laser range-finder (LRF). Figure 3 illustrates
the approach of comparing stereo results with laser measure-
ments: For each pixel where a laser measurement is available,
the error to stereo estimates is computed.

We used a Velodyne laser scanner with 64 scanning lines.
The spatial density of measurements is not as high as in the
calculated stereo analysis results. Hence, only points with LRF

Fig. 3: Stereo result (top), LRF measurement (middle), and
difference between both.

Class Error range
1 0 – 0.5
2 0.5 – 1
3 1.0 – 2.0
4 2.0 – 5.0
5 5.0 – ∞

TABLE I: Definition of error classes.

measurement can be used for comparison. Major drawbacks of
laser measurements are the “rolling shutter” problem due to a
low scanning frequency of 2 Hz, ambiguous measurements on
translucent surfaces such as glass, and poor accuracy at depth
discontinuities due to viewing occlusions and difficulties in
precise calibration of the extrinsics.

The stereo result on the top of Figure 3 is colour coded,
green for close objects to red for distant objects. The green
box defines the region of interest for comparison. We avoid
border areas, especially those with objects that are known
to be too close for matching such as the car bonnet. In the
middle of the figure, laser points projected into the image
space (same image as in the top figure) indicate far (green)
and near (red) objects. Note the erroneous measurements in
the car windows. Finally, the bottom part of the figure shows
differences between stereo and laser measurements. They are
colour coded as follows: blue and cyan - disparity difference
less than 1, green - disparity difference between 1 and 2,
yellow - disparity error between 2 and 5, red - disparity error
more than 5 px. This corresponds to the five classes outlined
in Table I.

III. MEASURES BASED ON (ACCUMULATED) COST

For each calculated depth value, we want to assign a label
for the likelihood of being defined by a correct match. In some
applications, such as 3D reconstruction, subsequent processing
steps may use this information to assign a lower weight to
calculated depth values having a low confidence weight. For
an example of such a strategy, see [11].

Some of the measures used here are described more in
detail in [8], but this paper lacks a comprehensive evalua-
tion. No quantitative comparison of measure’s performance
is supported. We will provide such a technique based on
sparsification plots (to be detailed in the next section). Figure 2
illustrates the used measures.
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Fig. 2: Features (named on the right) for the synthetic and recorded scene as shown in Fig. 1. Darker grey values are associated
with higher confidence (i.e. with a smaller expected error).

Let d be a disparity. We denote by c(d) the accumulated
cost associated with disparity d. We also use the notation that
d0 is the disparity with the minimum cost, followed by d1

which has the second lowest cost. We also use a parameter σ

for scaling.
The following measures are defined for the used cost

function (to be computed for each pixel independently), see
[8] for measures (1) to (7), and [11] for (8):



1) Minimum of accumulated costs: c(d0)
2) Local curvature: −2c(d0) + c(d0 − 1) + c(d0 + 1)

3) Peak ratio: c(d0)c(d1)

4) Negative entropy metric:
−
∑
d p(d) log p(d) with p(d) = exp(−c(d0)/σ)∑

d
exp(−c(d)/σ)

5) Winner margin: ( c(d1)−c(d0)∑
d
c(d)

)

6) Nonlinear margin: exp c(d1)−c(d0)
2σ2

7) Maximum-likelihood metric:
exp(− (c(d0)−c(d1))2

2σ2 )∑
d

exp(− (c(d)−c(d1))2

2σ2 )

8) Shape of cost function:
∑
d 6=d0 exp− (c(d)−c(d0))2

σ2

Rationales for defining these measures are as follows:
1) Minimum of accumulated costs: High costs indicate

reduced similarity between patches in the search range. This
can be associated with a difficult matching situation. However,
in SGM the accumulated cost values are not independent from
cost values at neighbouring pixels.

2) Local curvature: This is one of the most commonly used
features in literature. The definition may vary slightly. It can be
the opening value of a parabola fit, or the slope of an Okutomi
fit for subpixel estimation.

3) Peak ratio: The peak ratio measures whether there is
another close candidate for matching. If the costs of both
candidates (which are considered to define local minima) are
very similar (i.e. their ratio is close to one), then matching is
ambiguous, and thus unreliable.

4) Negative entropy metric: This measure computes the
entropy of a cost measure that is transformed into a probability
distribution function. Cost functions producing only noise
carry little information (low entropy).

5) Winner margin: Here, not the cost ratio between the first
and the second minimum is used (as it was done in the peak
ratio feature), but the difference of these costs. Furthermore,
this number is put into relation with the sum of all costs. This
prefers cost functions with high overall costs, indicating that
there are few disparities with low cost (i.e. good matches).

6) Nonlinear margin: The difference to the winner margin
is that there is no weighting with the sum of all costs, making
it computationally much cheaper. A nonlinear transformation
is applied for obtaining a suitable range of values.

7) Maximum likelihood metric: This metric is part of the
negative entropy metric (see above). Instead of computing the
entropy, this metric is parametrized with a value for assumed
noise. The underlying idea is again to convert the costs into a
probability density function.

8) Shape of cost function: Here, the aim is to implement a
measure being low if the cost function has a singular, “sharply
defined” minimum and high if the cost function is flat or has
more than one pronounced minimum.

IV. MEASURES NOT BASED ON COST

The following measures can be defined without knowledge
of the cost function values. They are based on image intensity,

depth map, or both.

9) Disparity variance: Variance image of the disparity map
with a specified patch window size. The very simple idea is
to assume that errors in stereo mostly occur at depth discon-
tinuities or noisy patches. The problem with this measure is
that actually correctly estimated depth edges also have a high
variance.

10) Foreground fattening (also referred to as surface overex-
tension): This occurs at depth discontinuities with a contrast
change in the image. It is rather difficult to model in general.
An analysis for the sum of squared difference costs can be
found in [13]. We propose the following in this paper: For a
pixel at location (x, y) with associated disparity dr, consider
a patch around this location of the same size as the one used
for cost calculation, and another patch of the same size at
location (x − i, y). Here i is half of the horizontal extent of
the cost calculation block size (i.e. i = 3). The associated
disparity at location (x− i, y) be dl. Our confidence measure
is now

∣∣(dl − dr)× (ς(I(x−i,y))− ς(I(x,y))
∣∣. Here ς(I(x,y))

is the variance of the image patch with the same size and
location as the cost calculation window at location (x, y). –
The idea behind this definition is that foreground fattening
occurs at disparity discontinuities with contrast change at the
same location of the image.

11) Normalized cross correlation: We also include the
(usual) matching measure used in local stereo matching for
confidence estimates. Intuitively, if the correlation between
patches is not close to one, the match might be “bad”.

12) Error compared to ground truth.

V. EVALUATION OF CONFIDENCE MEASURES

These 12 measures have advantages and disadvantages. It
appears to be desirable to find a way to combine selected
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Fig. 4: Sparsification plot for 12 measures on the used syn-
thetic sequence; see Fig. 1, left. Plot values are averaged over
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measures for obtaining “stronger” results. We tried to do so by
supervised learning using a Gaussian mixture model for these
measures. Classes of confidence are defined by the deviation
of stereo results from ground truth (if there is ground truth
available). We define five classes for magnitudes of stereo
errors as shown in Table I.

For a more detailed description of the learning procedure,
using an expectation maximization scheme, we refer to [4],
where the idea was applied to the classification of optical flow
errors.

The evaluation scheme of [15] is ranking algorithms by
accumulating an error metric over three different fixed subsets
of pixels. These subsets are (1) all pixels except border areas,
(2) areas near occlusions and depth discontinuities, and (3)
areas excluding occlusions and depth discontinuities.

A confidence measure for recorded images should indicate
itself which image areas are “problematic”, as ground truth
for depth discontinuities or semi occlusions is not available in
general. Thus, we use subsets of pixels which are included in
the error measures as follows:

Initially, an error measure and a confidence measure are
computed for all pixels. Next, a certain fraction of all pixels
(e.g. 1%) is filtered out, and the error metric is computed on
the remaining percentile. The fraction to be filtered out in each
iteration, is determined by the confidence measure (i.e. the 1%
of pixels with lowest confidence score are excluded).

The process terminates when all pixels are excluded. The
values of the error measure (the average absolute error per
pixel in our case) for each filtering stage constitute a spar-
sification plot. If ground truth is available, it is possible to
plot an optimal line by using the error to ground truth instead
of the confidence measure for filtering. Then, a “more con-
vincing” quantitative comparison of performance for different
confidence measures can be produced: The closer the plot of
a measure to the optimal line, the better the measure performs
in detecting errors.

VI. RESULTS

The sparsification plot in Fig. 4 indicates the performance
in detecting stereo errors on a synthetic sequence. Although
not reaching the optimal curve, the following features show
good performance: Minimum of accumulated costs, disparity
variance, maximum likelihood metric, shape of cost function,
and left-right consistency check. The following features do
not perform better than excluding pixels randomly: Nonlinear
margin, winner margin, negative entropy metric, foreground
fattening, and normalized cross correlation.

By combining measures it is possible to slightly outperform
any single measure in the top 3% of erroneous pixels.

The confusion matrix in Table II suggests that classification
based on Gaussian mixture models trained on “favourable”
measures seems to work well for small errors (below 0.5 px)
and large errors (above 5 px). However it does not outperform
all the individual measures.

The LRF data consists of 65 frames that were manually
selected such that the laser measurement was visually in
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Fig. 5: Sparsification plot of five measures on recorded se-
quence and sparsification results of classification derived from
these measures. Comparison for stereo results is done with
measurements from a laser range-finder as illustrated in Fig.
3.

Fig. 6: Colour coded error image and classification results
using six features and a Gaussian mixture model with two
splits, trained in three iterations. Colour coding for error
classes is as follows: blue - less than 0.5 px error, cyan -
0.5 px to 1 px error, yellow - 1 px to 2 px error, green - 2 px
to 5 px error, red - more than 5 px error.

good accordance with the corresponding image, i.e. laser
measurements of “obviously poor quality” is not part of the
evaluation.

The comparison of measure’s performance, shown in Fig. 5,
suggests that none of the measures that work well on the
synthetic scene have any contribution in the recorded scene
when compared to the LRF data.

VII. DISCUSSION

The measures listed in Sections III an IV have a perfor-
mance comparable to a right-left consistency check. However,
some of these are computationally much cheaper. The peak
ratio, for example, only needs to find the second smallest local
minimum of the accumulated costs.

The bad performance of the parabola fit measure can be
explained as follows: A cluttered cost function has a sharp



c=0 c=1 c=2 c=3 c=4
k=0 19560298 64397 18663 16497 87124
k=1 843612 128005 36957 31428 106371
k=2 923537 85864 76631 61198 139531
k=3 863632 34761 28635 112344 222802
k=4 75439 16135 13245 30326 944184
c=k 87.8% 38.9% 44.0% 44.6% 62.9 %

TABLE II: Confusion matrix of classification results for all
pixels of one image from the City01 sequence (average of
200 frames): k is the classification result, and c the correct
class.

local peak (high curvature) at its minimum location, but it is
very likely that there not just a single one. In contrary, an
unambiguous global minimum does not necessarily have high
curvature. The normalized cross correlation between image
patches as a confidence measure is problematic for a number
of reasons: Patches of homogeneous image regions may have
high correlation in synthetic images, but low correlation in
recorded images due to sensor noise. Results are therefore
arbitrary. The foreground fattening measure may not be suc-
cessful as it can fail to properly locate the erroneous pixel.

There is a general weakness of sparsification plots that
should be mentioned: If a measure tends to overestimate an
error, it can still indicate good performance. For example,
the disparity variance is high even on correctly computed
disparity steps. Then, a wrong removal is not obvious in the
sparsification plot.

The LRF comparison suggests that the chosen measures
may not work at all on recorded sequences. However, a visual
comparison of stereo errors with the measure images cannot
confirm this assumption. In consequence, sparsification plots
are not suitable for comparison of LRF measurement with
stereo results. This is due to the poor quality of laser data as
explained in Section II. They are “most dramatic” on disparity
discontinuities. As most stereo errors occur in such areas,
the LRF measurements would have to be excluded in those,
leaving no relevant data for comparison.

On recorded images we observed (visually) good results
also for the winner margin and negative entropy measures
(see Fig. 2). This, however, cannot be shown accurately due to
missing ground truth. Yet, it indicates that the characteristics
of the presented measures on synthetic data do not allow
conclusions about their performance on real world data; a
statement already made similarly for other evaluations in [10].

The unsatisfactory result of classification is likely due
to poor fitness of data to the Gaussian mixture model. In
particular, we observed large intra-class variances that result
in more or less arbitrary decisions for a specific class. It may
be worthwhile to examine the results of different classification
methods such as support vector machines, or to attempt the
definition of more discriminative measures.

The advantage of classification is given by a quantification
of stereo errors. These cannot be deduced from the measures
themselves due to their continuous nature.

VIII. CONCLUSION

We used a method that allows to quantitatively compare
confidence measures defined by a chosen SGM stereo analysis
configuration. However, such evaluation can be done only on
synthetic data. The characteristics of errors are substantially
different from those ones on recorded data. In particular, errors
occurring can be all attributed to the well known class of
foreground fattening [13]. However, foreground fattening is
not addressed by SGM accumulation; SGM depth maps from
recorded data “clearly” contain foreground fattening problems.
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