

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

X-RAY STRUCTURAL STUDIES

OF

SELECTED GROUP VIII METAL COMPLEXES

A THESIS PRESENTED TO THE UNIVERSITY OF AUCKLAND FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

BY

Karen Marsden

University of Auckland

APRIL 1981

TO MY MOTHER AND FATHER

ABSTRACT

This thesis describes the single crystal x-ray analyses of six novel organometallic osmium complexes and three complexes of the tridentate ligand 1,6-bis(diphenylphosphino)-*trans*-hex-3-ene with the transition metals iridium, rhodium and ruthenium.

The complexes of carbon monosulphide and carbon monotelluride with osmium, OsCl₂(CO)(CS)(PPh₃)₂ and OsCl₂(CO)(CTe)(PPh₃)₂, exhibit linear thio- and telluro-coordination similar to that of the carbonyl. The -CS and -CTe ligands exert strong *trans*-bond weakening influences.

In the *dihapto*-thioacyl complex of osmium, $OS(\eta^1 - O_2CCF_3)[C(S) - (p-tolyl)](CO)(PPh_3)_2$, the bidentate thioacyl is coordinated to the osmium through the carbon and sulphur atoms. This bonding involves a considerable degree of π -interaction between the C, S and Os atoms, concomitant with a lengthening of the C-S bond.

The dichlorocarbene complex, OsCl₂(CO)(CCl₂)(PPh₃)₂ is disordered in the crystalline state. Consequently, while the presence of the dichlorocarbene is verified, no unambiguous conclusions can be drawn from the associated geometry.

In the carbyne complex of osmium, $Os(C-p-tolyl)Cl(CO)(PPh_3)_2$, the osmium is in a trigonal bipyramidal environment with an approximately linear arrangement of the Os-C-R group. The Os-C_{carbyne} bond is short (corresponding to a bond order of *ca*. 3), confirming the formation of the C-*p*-tolyl group as a carbyne.

The formaldehyde ligand in the osmium complex, $Os(\eta^2-CH_2O)(CO)_2^{-}(PPh_3)_2$, is bonded to the osmium centre *via* both the carbon and oxygen atoms. The C-O bond of the formaldehyde lengthens considerably upon coordination, resulting in a bond order apparently less than 1. Also present in the crystal structure are molecules of water which are hydrogen bonded into pairs (0...O separation 2.56 Å). The $(H_2O)_2$ units do not hydrogen bond to any other atoms, but rather occupy hydrophobic interstices in the structure.

The three complexes of 1,6-bis(diphenylphosphino)-trans-hex-3-ene, (BDPH), $Ir^{III}Cl_3(BDPH)$, $Rh^{III}Cl_3(BDPH)$, and $Ru^{II}_Cl_2(CO)(BDPH)$ are isomorphous. The ruthenium complex is, however, disordered in the crystalline state. In each of the three structures the olefin of the BDPH moiety is only weakly bound to the metal, leaving the C=C double bond virtually unchanged from that of the free ligand. The olefin exerts a stronger *trans*-bond weakening influence than do the chlorine ligands in these complexes.

PREFACE

The content of this thesis is divided into two parts. The first contains the structural studies of six organometallic complexes of osmium, while the second comprises the structural studies of three complexes of the tridentate ligand 1,6-bis(diphenylphosphino)-transhex-3-ene with iridium, rhodium and ruthenium.

CONTENTS

Page

1

48

63

125

158

193

225

268

276

ABSTRACT	
PREFACE	
LIST OF FI	GURES
LIST OF TA	BLES
CHAPTER 1	INTRODUCTION - PART I ORGANOMETALLIC OSMIUM COMPLEXES
CHAPTER 2	DATA COLLECTION AND DATA PROCESSING
CHAPTER 3	OSMIUM COMPLEXES CONTAINING THIOCARBONYL AND TELLUROCARBONYL LIGANDS: OsCl ₂ (CO)(CS)(PPh ₃) ₂ . ¹ ₂ CH ₂ Cl ₂ AND OsCl ₂ (CO)(CTe)(PPh ₃) ₂
CHAPTER 4	THE CRYSTAL AND MOLECULAR STRUCTURE OF Os $(\eta^1 - O_2 CCF_3) [\eta^2 - C(S) (p-tolyl)] (CO) (PPh_3)_2$
CHAPTER 5	THE CRYSTAL AND MOLECULAR STRUCTURE OF Oscl ₂ (CO)(CCl ₂)(PPh ₃) ₂
CHAPTER 6	THE CRYSTAL AND MOLECULAR STRUCTURE OF Os(C-p-toly1)Cl(CO)(PPh ₃) ₂
CHAPTER 7	THE CRYSTAL AND MOLECULAR STRUCTURE OF Os (n ² -CH ₂ O) (CO) ₂ (PPh ₃) ₂ .H ₂ O
CHAPTER 8	INTRODUCTION - PART II MULTIDENTATE PHOSPHINE-OLEFIN LIGANDS
CHAPTER 9	RHODIUM, IRIDIUM AND RUTHENIUM COMPLEXES CONTAINING THE TRIDENTATE LIGAND 1,6-BIS (DIPHENYLPHOSPHINO) -TRANS-HEX-3-ENE:
	RhCl ₃ (BDPH) and

RuCl₂(CO) (BDPH)

APPENDIX I	TRIPHENYLPHOSPHINE LIGANDS	352
APPENDIX II	STRUCTURE FACTOR TABLES:	
	OsCl ₂ (CO)(CS)(PPh ₃) ₂ . ¹ ₂ CH ₂ Cl ₂	360
	OsCl ₂ (CO)(CTe)(PPh ₃) ₂	374
	$O_{S}(n^{1}-O_{C}CCF_{2})[n^{2}-C(S)-(p-tolyl)](CO)(PPh_{3})_{2}$	385
	$OSC1_{\circ}(CO)(CC1_{\circ})(PPh_{\circ})_{\circ}$	396
	$Os(2^{-n-tolvl})Cl(CO)(PPh_{o})$	402
	$O_{3}(e^{2}-CH_{0})(CO)$ (PPh) = H=0	410
	$OS(1) = CH_2O(100) + CO(2)(1113) + 2002 + 2000 + $	423
x 1	IrCI ₃ (BDPH)	434
	RhCl ₃ (BDPH)	441
	RuCl ₂ (CO) (BDPH)	441
REFERENCES	т.	449
PUBLICATIONS THESIS	RESULTING FROM THE RESEARCH IN THIS	470
ACKNOWLEDGEM	ENTS	471

LIST OF FIGURES

COMPOUN	ND:	OsCl ₂ (CO)(CS)(PPh ₃)2.2CH ₂ Cl ₂	
Figure	3.1.1	Inner Coordination Geometry	88
	3.1.2	Inner Coordination Sphere with 50% Probability Boundaries	89
	3.1.3	A General View of the Molecule with Phenyl Ring Labelling	90
P	3.1.4	A Stereoscopic View of the Molecular Packing	91
COMPOU	ND:	OsCl_2(CO) (CTe)(PPh_3)_2	
Figure	3.2.1	Inner Coordination Geometry	92
	3.2.2	Inner Coordination Sphere with 50% Probability Boundaries	93
	3.2.3	A General View of the Molecule with Phenyl Ring Labelling	94
	3.2.4	A Stereoscopic View of the Molecular Packing	95
COMPOU	ND:	$Os(\eta^1 - O_2CCF_3)[\eta^2 - C(S) - (p-tolyl)](CO)(PPh_3)_2$	
Figure	4.1	Inner Coordination Geometry	138
	4.2	Inner Coordination Sphere with 50% Probability Boundaries	139
	4.3	A General View of the Molecule with Phenyl Ring Labelling	140
	4.4	A Stereoscopic View of the Molecular Packing	141
COMPOU	ND:	OsCl ₂ (CO) (CCl ₂) (PPh ₃) ₂	
Figure	5.1	Inner Coordination Geometry	173
	5.2	Inner Coordination Sphere with 50% Probability Boundaries	174
	5.3	A General View of the Molecule with Phenyl Ring Labelling	175
	5.4	A Stereoscopic View of the Molecular Packing	176

COMPOUND:		$Os(C-p-toly1)Cl(CO)(PPh_3)_2$	
Figure	6.1	Inner Coordination Geometry	205
	6.2	Inner Coordination Sphere with 50% Probability Boundaries	206
	6.3	A General View of the Molecule with Phenyl Ring Labelling	207
	6.4	A Stereoscopic View of the Molecular Packing	208
COMPOU	ND:	$Os(\eta^2 - CH_2O)(CO)_2(PPh_3)_2$	
Figure	7.1	Inner Coordination Geometry	245
	7.2	Inner Coordination Sphere with 50% Probability Boundaries	246
	7.3	A General View of the Molecule with Phenyl Ring Labelling	247
	7.4	A Stereoscopic View of the Molecular Packing	248
	7.5	A Stereoscopic View of the Environment of the Water Dimer in $Os(\eta^2CH_2O)(CO)_2(PPh_3)_2$	249
	7.6	A Stereoscopic View of the Environment of the Water Dimer in $RuI_2[CHN(CH_3)(p-CH_3C_6H_4)](CO)-$	
		$(CN - p - CH_3C_6H_4) (PPh_3)_3$	250
COMPO	JND:	IrCl ₃ (BDPH)	
Figure	9.1.1	Inner Coordination Geometry	301
	9.1.2	Inner Coordination Sphere with 50% Probability Boundaries	302
	9.1.3	A General View of the Molecule with Phenyl Ring Labelling	303
	9.1.4	Relative Orientation of the C=C	304
	9.1.5	A Stereoscopic View of the Molecular Packing	305
COMPO	UND:	RhCl ₃ (BDPH)	

Figure 9.2.1 Inner Coordination Geometry 306

-	-		100
μ	а	α	ρ
•	-	~	~

s.

* .

2

Figure	9.2.2	Inner Coordination Sphere with 50% Probability Boundaries	307
	9.2.3	A General View of the Molecule with Phenyl Ring Labelling	308
	9.2.4	Relative Orientation of the C=C	309
	9.2.5	A Stereoscopic View of the Molecular Packing	310
COMPOU	ND:	RuCl ₂ (CO) (BDPH)	
Figure	9.3.1	Inner Coordination Geometry	311
	9.3.2	Inner Coordination Sphere with 50% Probability Boundaries	312
,	9.3.3	A General View of the Molecule with Phenyl Ring Labelling	313
	9.3.4	Relative Orientation of the C=C	314
	9.3.5	A Stereoscopic View of the Molecular Packing	315

a.

*

LIST OF TABLES

COMPO	UND:	$OsCl_2(CO)(CS)(PPh_3)_2$. $\frac{1}{2}CH_2Cl_2$	
Table	3.1.1	Crystal Data	97
	3.1.2	Parameters Associated with Data Collection	98
	3.1.3	Weighting Scheme Analysis as a Function of F obs	99
	3.1.4	Weighting Scheme Analysis as a Function of $\sin^2\theta/\lambda^2$	100
	3.1.5	Positional and Isotropic Thermal Parameters with Standard Deviations	101
	3.1.6	Anisotropic Thermal Parameters with Standard Deviations	103
	3.1.7	Calculated Hydrogen Atom Positions	104
	3.1.8	Interatomic Distances (Å) with Standard Deviations	105
¥	3.1.9	Intermolecular Approaches < 3.5 Å with Standard Deviations	106
	3.1.10	Interatomic Angles (°) with Standard Deviations	107
	3.1.11	Least-Squares Planes	109
COMPC	VIND .	O_{SC1} (CO) (CTe) (PPh_)	
COMPC			111
Table	3.2.1	Crystal Data	112
	3.2.2	Parameters Associated with Data Collection	
	3.2.3	Weighting Scheme Analysis as a Function of $F_{ m obs}$	113
	3.2.4	Weighting Scheme Analysis as a Function of $\sin^2 \theta/\lambda^2$	114
	3.2.5	Positional and Isotropic Thermal Parameters with Standard Deviations	115

		*	
Table	3.2.6	Anisotropic Thermal Parameters with Standard Deviations	117
	3.2.7	Calculated Hydrogen Atom Positions	118
	3.2.8	Interatomic Distances $(\overset{O}{A})$ with Standard Deviations	119
	3.2.9	Intermolecular Approaches < 3.5 Å with Standard Deviations	120
	3.2.10	Interatomic Angles (°) with Standard Deviations	121
	3.2.11	Least-Squares Planes	123
COMPC	UND:	$Os(\eta^1 - O_2CCF_3)[\eta^2 - C(S) - (p - toly1)](CO)(PPh_3)_2$	
Table	4.1	Crystal Data	143
	4.2	Parameters Associated with Data Collection	144
	4.3	Weighting Scheme Analysis as a Function of F obs	145
	4.4	Weighting Scheme Analysis as a Function of $\sin^2 \theta / \lambda^2$	146
	4.5	Positional and Isotropic Thermal Parameters with Standard Deviations	147
	4.6	Anisotropic Thermal Parameters with Standard Deviations	149
	4.7	Calculated Hydrogen Atom Positions	150
	4.8	Interatomic Distances (Å) with Standard Deviations	151
	4.9	Intermolecular Approaches < 3.5 $\stackrel{0}{A}$ with Standard Deviations	152
	4.10	Interatomic Angles (°) with Standard Deviations	153
	4.11	Least-Squares Planes	155
COMI	POUND:	OsCl ₂ (CO) (CCl ₂) (PPh ₃)	
Tab	le 5.1	Crystal Data	178
	5.2	Parameters Associated with Data Collection	179
	5.3	Weighting Scheme Analysis as a Function of Fobs	180

		-	
Table	5.4	Weighting Scheme Analysis as a Function of $\sin^2\!\theta/\lambda^2$	181
	5.5	Positional and Isotropic Thermal Parameters with Standard Deviations	182
	5,6	Anisotropic Thermal Parameters with Standard Deviations	184
	5.7	Calculated Hydrogen Atom Positions	185
	5.8	Interatomic Distances (Å) with Standard Deviations	186
	5.9	Intermolecular Approaches < 3.5 $\stackrel{0}{A}$ with Standard Deviations	187
	5.10	Interatomic Angles (°) with Standard Deviations	188
	5.11	Least-Squares Planes	190

 $\underline{\text{COMPOUND:}} \quad Os(C-p-tolyl)Cl(CO)(PPh_3)_2$

210 Crystal Data Table 6.1 Parameters Associated with Data Collection 211 6.2 212 Weighting Scheme Analysis as a Function of F 6.3 Weighting Scheme Analysis as a Function of 6.4 $\sin^2 \theta / \lambda^2$ 213 Positional and Isotropic Thermal Parameters 6.5 214 with Standard Deviations Anisotropic Thermal Parameters with Standard 6.6 216 Deviations 217 Calculated Hydrogen Atom Positions 6.7 Interatomic Distances (A) with Standard 6.8 218 Deviations Intermolecular Approaches < 3.5 Å with Standard 6.9 219 Deviations Interatomic Angles (°) with Standard Deviations 220 6.10 222 Least-Squares Planes 6.11

COMPO	JND:	$Os(\eta^2 - CH_2O)(CO)_2(PPh_3)_2 \cdot H_2O$	
Table	7.1	Crystal Data	252
	7.2	Parameters Associated with Data Collection	253
	7.3	Weighting Scheme Analysis as a Function of F	254
	7.4	Weighting Scheme Analysis as a Function of $\sin^2\theta/\lambda^2$	255
	7.5	Positional and Isotropic Thermal Parameters with Standard Deviations	256
	7.6	Anisotropic Thermal Parameters with Standard Deviations	258
	7.7	Calculated Hydrogen Atom Positions	259
	7.8	Interatomic Distances $(\overset{O}{A})$ with Standard Deviations	261
	7.9	Intermolecular Approaches < 3.5 $\stackrel{0}{A}$ with Standard Deviations	262
	7.10	Interatomic Angles (°) with Standard Deviations	263
	7.11	Least-Squares Planes	265
COMPC	OUND:	IrCl ₃ (BDPH)	
Table	9.1.1	Crystal Data	317
	9.1.2	Parameters Associated with Data Collection	318
	9.1.3	Weighting Schemé Analysis as a Function of F obs	319
	9.1.4	Weighting Scheme Analysis as a Function of $\sin^2\theta/\lambda^2$	320
	9.1.5	Positional and Isotropic Thermal Parameters with Standard Deviations	321
	9.1.6	Anisotropic Thermal Parameters with Standard Deviations	322
	9.1.7	Hydrogen Atom Positions	323
	9.1.8	Interatomic Distances (Å) with Standard Deviations	324

		-	Page
Table	9.1.9	Interatomic Angles (°) with Standard Deviations	325
	9.1.10	Least-Squares Planes	326
COMPO	UND:	RhCl ₃ (BDPH)	
Table	9.2.1	Crystal Data	328
	9.2.2	Parameters Associated with Data Collection	329
	9.2.3	Weighting Scheme Analysis as a Function of F obs	330
	9.2.4	Weighting Scheme Analysis as a Function of . $\sin^2\theta/\lambda^2$	331
	9.2.5	Positional and Isotropic Thermal Parameters with Standard Deviations	332
	9.2.6	Anisotropic Thermal Parameters with Standard Deviations	333
	9.2.7	Hydrogen Atom Positions	334
	9.2.8	Interatomic Distances $(\stackrel{O}{A})$ with Standard Deviations	335
	9.2.9	Interatomic Angles (°) with Standard Deviations	336
	9.2.10	Least-Squares Planes	337
COMPO	DUND:	RuCl ₂ (CO) (BDPH)	
	9.3.1	Crystal Data	339
	9.3.2	Parameters Associated with Data Collection	340
	9.3.3	Weighting Scheme Analysis as a Function of F obs	341
	.9.3.4	Weighting Scheme Analysis as a Function of $\sin^2\theta/\lambda^2$	342
10	9.3.5	Positional and Isotropic Thermal Parameters with Standard Deviations	343
	9.3.6	Anisotropic Thermal Parameters with Standard Deviations	344
	9.3.7	Hydrogen Atom Positions	345
	9.3.8	Interatomic Distances (A) with Standard	346

	р.	Page
Table 9.3.9	Interatomic Angles (°) with Standard Deviations	348
9.3.1	0 Least-Squares Planes	350
Table A	Os-P Distances and P-Os-P Angles for Some Osmium Complexes	84
Table B	Os-Cl Distances for Some Osmium Complexes	85
Table C	Os-Carbonyl, and C-O Distances and Os-C-O Angles for Some Osmium Complexes	86