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Abstract

The aim of intensity modulated radiation therapy (IMRT) is to kill tumor cells while

at the same time protecting the surrounding tissue and organs from the damaging

effect of radiation. To achieve these goals computerized inverse planning systems

are used. Given the number of beams and beam directions, beam intensity profiles

that yield the best dose distribution under consideration of clinical and physical

constraints are calculated. This is called beam intensity optimization problem.

In this thesis, we first review existing mathematical models and computation

methods for the beam intensity optimization problem. Next, we formulate the beam

intensity optimization problem as a multiobjective linear programme (MOLP) with

three objectives. For clinical cases this optimization problem involves thousands of

variables and tens of thousands of constraints and existing methods such as multi-

objective simplex methods can not handle it. The rest of the thesis is dedicated to

developing methods to solve this large MOLP efficiently and to the application in

the beam intensity optimization problem.

Benson (1998c) argues that solving an MOLP in objective space needs less com-

putation time than solving it in decision space if the number of objectives of the

MOLP is much smaller than the number of variables. Moreover, the constraint

matrix of the problem relies on the calculation of dose deposited in tissue. Since

this calculation is always imprecise solving the MOLP exactly is not necessary in

practice. This motivates us to develop algorithms for solving an MOLP in objective

space approximately.

We summarize Benson’s outer approximation algorithm for solving MOLPs in

objective space and propose some small changes to improve computational per-
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formance. Then in order to approximate the true nondominated set we propose

a modification of Benson’s algorithm which is called an approximation version of

Benson’s algorithm. Our approximation algorithm computes an inner and an outer

approximation of the nondominated set. We prove that the inner approximation

provides a set of ε-nondominated points.

The geometric duality theory of Heyde and Löhne (2006) defines a dual to an

MOLP and it assures us to be able to find the nondominated set of the primal MOLP

by solving its dual MOLP. Based on this we develop a dual variant of Benson’s outer

approximation algorithm to solve the dual MOLP in objective space. We prove

that solving the dual provides a weight set decomposition. We compare the primal

algorithm and the dual algorithm on small illustrative and on radiotherapy examples.

Furthermore, we propose an algorithm to solve the dual MOLP approximately but

within specified tolerance. This approximate solution set can be used to calculate an

approximation of the nondominated set of the primal MOLP. We show that this set is

an ε-nondominated set of the original primal MOLP and provide numerical evidence

that this approach can be faster than solving the primal MOLP approximately.

Considering that the set of nondominated points is infinite, it is not very useful

from the planners’ point of view. We address the problem of finding well distributed

nondominated points for an MOLP. We propose a method which combines the global

shooting and normal boundary intersection methods. By doing so, we overcome the

limitation of normal boundary intersection method that parts of the nondominated

set may be missed. Discrepancy analysis of the nondominated points from a geome-

try point of view shows that this method produces evenly distributed nondominated

points. Moreover, the coverage error and the uniformity level can be measured.

Finally, we apply the algorithms developed to the beam intensity optimization

problem of 3D clinical cases with voxel size of 5mm and 3mm. A technique of

reducing the resolution in normal tissue has been used to reduce the computation

time. The results clearly illustrate the advantages of our methods.
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