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Ground Truth Evaluation of Stereo Algorithms
for Real World Applications

Sandino Morales and Reinhard Klette

.enpeda.. group, Dept. Computer Science, University of Auckland, New Zealand

Abstract. Current stereo algorithms are capable to calculate accurate
(as defined, e.g., by needs in vision-based driver assistance) dense dispar-
ity maps in real time. They have become the source of three-dimensional
data for several indoor and outdoor applications. However, ground truth-
based evaluation of such algorithms has been typically limited to data
sets generated indoors in laboratories. In this paper we present a new ap-
proach to evaluate stereo algorithms using ground-truth over real world
data sets. Ground truth is generated using range measurements acquired
with a high-end laser range-finder. For evaluating as many points as pos-
sible in a given disparity map, we use two evaluation approaches: A direct
comparison for those pixels with available range data, and a confidence
measure for the remaining pixels.
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1 Introduction

Vision-based stereo algorithms are designed to generate three-dimensional (3D)
information from two-dimensional (2D) data recorded with two or more video
cameras. State-of-the-art stereo algorithms are capable to perform in real-time
“accurate” disparities for almost all the points visible in the input images. Cur-
rent applications for stereo algorithms, among many others, are vehicle naviga-
tion (robots [17], forklifts [21], wheelchairs [20], and so forth) or industrial safety
equipment.1

We are interested in the evaluation of stereo algorithms in the context of
vision-based Driver Assistance Systems (DAS) [11] for improving those tech-
niques. DAS requires that the detection of depth is accurate on every road,
under all kinds of weather conditions, and in any traffic context. Therefore,
stereo algorithms need to be evaluated in the real-world, and not only on data
representing a few seconds of recording but hours or days.

The evaluation of stereo algorithms is either based on ground truth data,
allowing direct comparisons between true disparity values and those obtained
with the algorithms; or it is performed in the absence of ground truth using
various ideas for still ensuring some kind of objective testing. For real-world

1 http://www.pilz.com/products/sensors/camera/f/safetyeye/



2 Sandino Morales and Reinhard Klette

video data it is the ultimate goal to provide ground truth as well. Synthetic
(i.e., computer generated stereo pairs) or engineered (i.e., images captured under
highly controlled conditions, using structured light for generating ground truth)
data do have their own characteristics [8], and do not cover the “challenges” as
occurring in real-world data.

Real-world data do not come (typically) with ground truth. Therefore, di-
verse methods have been proposed to evaluate the algorithms even in absence of
ground truth. In [1], the evaluation was done by measuring the number of suc-
cessfully matched pixels using a left-right consistency check [9]. Some authors
used an extra image (e.g., prediction error in [23]) or a third video sequence (see
the third view in [15]) as ground truth. Confidence measures are another exam-
ple of evaluation in the absence of ground truth [6, 16]. The idea is to measure
the reliability of the calculated disparity value for each pixel. Techniques, specif-
ically designed for DAS, were proposed in [14, 22]; these evaluation schemes can
only be applied if some conditions are satisfied in the recorded scenes.

We generate ground truth using precise depth measurements acquired with
a laser range-finder (LRF). The generation of ground truth (or of accurate 3D
models) using LRF’s has been investigated before [2, 10, 17]. However, those
publications do not report about the evaluation of stereo algorithms using laser
range data. Stereo algorithms are discussed together with laser range data in
[19] at selected feature areas.

The evaluation scheme in this paper analyzes stereo algorithms on recorded
video sequences based on available ‘sparse’ (but uniformly distributed) ground
truth and also applying a confidence measure for dealing with the ‘gaps’. We use
Velodyne’s HDL-64E S2 range-finder [24]. For the distance interval of interest
(about 5 to 120 m), the available accuracy is defined by possible errors of less
than 10 cm (the producer even sees the error at 1.5 cm at most in 5 to 120 m).

The obtained range data are insufficient for evaluating an entire dense dis-
parity map, e.g. a VGA image has 640×480 = 307, 200 pixels, and the used LRF
generates up to 24,000 points in the field of view of the reference camera in our
stereo set up; see Fig. 1. Thus, we combine two approaches for the evaluation.

Fig. 1. Sample image showing combined laser range-finder and image data. Ground
truth points (i.e., points acquired with the laser range-finder) are color encoded from
red (for close) to green (for further away).
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If ground truth data are available at a specific pixel, we perform a direct com-
parison between the calculated disparity value and the ground truth. For the
remaining points, we use a geometrical approach using “close” range readings
to generate a confidence measure. This approach allows us to evaluate stereo
algorithms for outdoor real-world data based on true measurements. Data sets
can be recorded in all kinds of weather where the LRF will work in, or road
conditions.

The main contributions of this paper are the measures proposed to evaluate
dense algorithms against sparse (less than 10%) ground truth. The data provided
contain sub-pixel accurate ground truth for real-world scenes, and this was not
available prior to the use of a laser range-finder. This data set has been made
publicly available for future research considerations, see [4].

The structure of this paper is as follows. In Section 2 we present the pro-
posed approach. We continue with experiments in Section 3, and finalize with
conclusions in Section 4.

2 Approach

We generate sparse ground truth disparity maps with the LRF, and perform the
evaluation by fusing a direct comparison approach (where true values from the
LRF were available) and a confidence measure (for the remaining points). See
Fig. 2 for a flow chart of the proposed approach.

Ground Truth Disparity Map Generation. We record range data of the
surrounding environment of the ego-vehicle (i.e. the vehicle carrying the stereo
camera and the LRF) using a high-end LRF [24]. The provided accuracy data
(precision of 1.5 centimeters within a range from one to 120 metres) needs to be
slightly corrected, and 10 cm can be used as an upper bound in our experiments.

The rotational architecture of the LRF allows us to obtain readings from 64
lasers in a full 360◦ rotation. Its optimum resolution (depending on the rotational
speed) is of 0.09◦ (horizontal) times 0.4◦ (vertical). The vertical field of view of
26.8◦ provides sufficient information for modeling the road and the objects that
would be of interest in a driving scene.

Assume for now that the coordinate systems of the LRF and the stereo
camera have been calibrated and aligned. Then, we are able to project the output
of the LRF (a set of 3D points) onto a 2D imageG using the (internal) parameters
of the stereo camera. The ground truth disparity value G(x) of a pixel x ∈ G is

Fig. 2. Flow chart of the used approach.
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defined by

G(x) =
f · b
Z(x)

(1)

where f denotes the focal length of the stereo camera, Z the distance from the
camera (at pixel x) in the depth direction, and b is the distance between the
optical centers of the cameras (the length of the baseline). For pixels where
there is no distance measure available, a distinctive negative value is assigned
(as disparity values are strictly positive). For the images that we use for our
experiments (i.e., 1024 × 334 ≈ 342, 000 pixels), we are able to obtain ground
truth values for almost 7% (about 24,000) of the pixels. These are the only points
we are able to perform a direct comparison.

In the context of DAS, the final goal is to analyze the performance of stereo
(or any) algorithms in outdoor dynamic environments. Thus, it does not make
sense to scan the same scene multiple times to get more range readings. Instead,
we use the available measurements to generate a confidence measure to evaluate
the remaining points.

Direct Comparison. Where range data is available we use the percentage
of badly calculated pixels (BCP) as quality metric. Let D be a disparity map
obtained with a given stereo algorithm, and G the generated ground truth image.
Let Ω denote the set of pixels in G and D such that G(x) > 0 (i.e., pixels with
a valid measurement from the LRF) and D(x) > 0 (i.e. pixels with invalid
disparities were also identified with a negative value). Let T be a predefined
tolerance threshold, and

δ(x) =

{
1, if |G(x)−D(x)| ≥ T
0, otherwise

(2)

Then, the BCP of D is as follows:

B =
100%
|Ω|

∑
x∈Ω

δ(x) (3)

where | · | denotes the cardinality of a set.
Confidence Measure. To complement the direct comparison (i.e., to eval-

uate also points where no range data are available), we use a simplified version
of the approach presented in [3]. In that paper, the authors used a probabilistic
scheme to deal with non organized point clouds generated by a LRF of small
objects under controlled conditions (i.e., indoor scenes).

Given three “close” pixels in the ground truth image G, we define a patch
PG ⊂ G and its 3D version PG by back projecting the three pixels into the 3D
space. Using the corresponding pixels in the disparity map D, we generate the
respective patches PD and PD. The evaluation is then made by comparing the
geometric properties of the 3D patches.

The selection of the three “close” pixels is as follows. Given a pixel x ∈ G∩Ω,
its closest neighbors are the points generated by the same laser beam Lx (recall
that the horizontal resolution of the LRF is 0.09◦) in the previous or in the
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next shot, followed by the points generated by one laser beam below or above
Lx (there are 64 lasers in the LRF). Thus, we choose to generate the patches
PG using two pixels from the same laser and one either from the laser above or
below (creating a triangle). A patch is only be defined if the disparity value of
all the selected pixels is within a predefined range. If the selected pixels are also
elements of Ω ∩ D, we generate the corresponding patch PD. This patch also
contains the pixels in D within the triangle defined by the three selected pixels.
Once both patches have been defined, we analyze the geometric properties of
their respective back projections (i.e 3D sets), PG and PD.

Let P ⊂ R3 be one of this patches, the centroid

c
(
P
)

=
1∣∣P ∣∣ ∑

x∈P

x (4)

is calculated, as well as the deviation of the points in P with respect to c(P ):

Dev
(
P
)

=

√√√√ 1∣∣P ∣∣− 1

∑
x∈P

(
x− c

(
P
))2

(5)

Note that x ∈ R3. Now, let PG and PD be corresponding patches in G and D,
respectively. The confidence measure is calculated based in the distance between
the centroid of the back projected patches, PG and PD, and the ratio of their
respective deviations. Let ∆P be the Euclidean distance between c

(
PG

)
and

c
(
PD

)
, and

ρ =
Dev

(
PG

)
Dev

(
PD

) (6)

Then, the confidence measure index for PD is calculated as

CM(PD) =
2ρ

ρ2 + 1

(
1− ∆P

∆max

)
(7)

where ∆max is the maximum possible Euclidean distance between the centroids.
The range of CM is [0, 1] ⊂ R; where a value close to one indicates that both

patches are geometrically alike, and thus that the disparity results are reliable.
Low values imply a low confidence in the calculated disparity values. To obtain a
high confidence value (i.e., a value close to one), it is necessary that the centroids
of both patches are close to each other and the ratio ρ of the variances is close
to one.

The first factor in Eq. (7) penalizes the index more if ρ < 1, as it is expected
that PG would be a more homogeneous set than PD. See Fig. 3 for an example
of two pairs of analyzed patches in a sample 3D scene as viewed from above.

3 Experiments

Our experimental data set was captured using the LRF and two grey-scale (12
bits per pixel) cameras, all mounted in the same ego-vehicle. The cameras were
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Fig. 3. A 3D test scene from the containers sequence (see Section 3) as viewed from
above. Left: The red dots are the points returned with the LRF within the field of view
of the reference camera. The grey points are the back projected points from a sample
disparity map. Right: The gray points in here represent the LRF points. The projection
of the highlighted blue points define two patches in the ground truth image; while the
green and purple dots are the back projection of the two corresponding patches in the
sample disparity map.

placed behind the windshield, while the LRF was attached to a rack on the roof.
The coordinate system from the LRF was calibrated according to the external
parameters of the reference camera (the left camera) of the stereo set up using
the method proposed in [13], where a closed-form solution of the Perspective-
n-Point problem was presented. We use the internal parameters of the stereo
camera to project the 3D points from the LRF to generate the ground truth
image.

For defining the patches, we use a disparity threshold of one, so that they
were generated with points that are really close to each other. The threshold for
the BCP quality metric was set to one.

Data Set. We illustrate the presented approach by using three sequences
recorded in “simple” environments. The objective of using these sequences is to
“grow” a first experience using this approach and to validate if there is a good
correlation between the direct comparison and the confidence measure’s indexes.

The size of the images is of 1024 × 334 pixels, reduced to 930×289 due to
the rectification procedure for stereo analysis. Range data were recorded using
the five revolutions per second configuration of the LRF, in order to obtain the
maximum number of measurements (around 24,000 pixels with positive value
in the ground truth image). All the sequences are stop-and-go ones, in order
to minimize synchronization issues between the camera (set to 20 frames per
second) and the LRF. Developing and approach to generate ground truth in
dynamic scenes is out of the scope of this paper. Sample frames of each sequence
are shown in Fig. 1 and 4.

Wall sequence. Recorded while driving towards a wall that covers the entire
field of view of the cameras. In the lower right corner of the images there is a
small car and a trailer. Both objects are only present in the first part of the
sequence.

Wall-trailer sequence. Recorded while driving towards the same wall as in
the wall sequence. In this case there is a trailer that covers almost half of the
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reference and match image. This sequence turned out to be a good example for
miscalculated disparities, as the trailer’s cover has areas with no texture at all.
There are also two areas below the trailer where it is possible to see the road
behind the trailer.

Container sequence. In this scene two different kinds of containers are present,
one with a square base and two with a circular one. There is also a small part of
a building with an intensity that it is very similar to the intensity of the curved
containers so we are expecting “not so good” results from the stereo algorithms
for this sequence. There are also two staircases with thin handrails that even the
LRF had problems to detect.

Results. The stereo algorithms used in this work are briefly identified below.
We use a local standard dynamic programming (DP) stereo algorithm [18]. Two
global algorithms: belief propagation stereo (BP), with a coarse-to-fine approach
[5] and a quadratic cost function [7], and a graph cut (GC) [12] algorithm.
Finally, a semi-global matching (SGM) approach with mutual information as the
cost function [9] was also used.

The algorithms are tested with respect to pixel accuracy. But, the approach
presented here, as well as the data set, are well suited to test sub-pixel accuracy
disparities. We are not aware of an existing real-world data set that can evaluate
the performance of sub pixel accurate algorithms. See Table 1 for a summary of
the results for all algorithms and both sequences.

Wall sequence. For this sequence, we expect the disparity values to get better
as the ego-vehicle approaches the wall. This is due to the inverse proportionality
of distance to disparity, thus small errors in disparity have a large effect at large
distances. The algorithms behave as expected with respect to the BCP index;
the percentage of badly calculated pixels decreases as the ego-vehicle gets closer
to the wall. SGM had a high peak among the last five frames, where it has a
poor performance on the road area. For CM, an average of 14,500 patches were
analyzed (so above 50% of of the points in the disparity maps were considered for
the evaluation). For GC and SGM, the CM index showed a consistent behavior
with BCP, even the same peak for SGM in the last five frames can be identified
here. The DP algorithm showed a relatively constant CM index. But, there is a
low peak in the last five frames (the same set of frames that made SGM have
a high BCP peak). In these frames the disparities obtained for the wall are not
as homogeneous as it is expected, this can be barley detected with the BCP
index. For BP, the CM index decreases over the sequence, in contrast with the
behavior of the BCP index, an this indicates that there are less miscalculated
points (according to the low BCP score) but the miscalculations are larger.

Fig. 4. Sample images of the wall (left) and container (right) sequences. For a sample
image of the wall-trailer sequence see Fig. 1.
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Wall Wall-Trailer Containers

CM
BCP

CM
BCP

CM
BCP

Alg. Avg. “> 0.9” “< 0.5” Avg. “> 0.9” “< 0.5” Avg. “> 0.9” “< 0.5”

BP 0.43 4.2 64.6 28.5 0.43 6.0 63.2 33.5 0.44 4.8 64.1 29.5
DP 0.49 7.1 56.8 14.8 0.47 10.1 56.5 22.1 0.51 13.9 54.1 16.3
GC 0.29 0.5 85.8 35.1 0.34 0.6 82.2 38.7 0.28 0.7 88.2 42.6

SGM 0.37 3.2 67.9 35.3 0.38 2.5 75.9 50.2 0.36 2.4 76.6 59.5

Table 1. Summarized results for the three sequences with both quality metrics. The
results for the confidence measure (CM) are presented as the average over the entire
sequence (first column), and the percentage of the number of patches with an index
below 0.5 (second respective column), again over the entire sequence. For BCP is only
shown the average percentage over each one of the sequences.

Wall-trailer sequence. As expected, most of the algorithms have problems
with the trailer’s cover, as it is almost textureless. With respect to BCP, the
algorithms had a similar performance, showing the worst results at the end of
the sequence, when the trailer occupied almost the half of the stereo images. The
exception was SGM. SGM handles this area better than the other algorithms.
Its BCP index showed an improvement on its performance in the last part of
the sequence. However, this algorithm had a poor performance in the road area
making it the worst performing algorithm.

The results for CM show a good correlation with BCP. The confidence index
decreases for DP and BP as the trailer is getting closer to the cameras, but
increases for SGM. The GC algorithms did not follow the same pattern as with
BCP; the last frames are the ones with highest CM value (but still very low). This
can be explained as in the first half of the sequence, where the two areas below
the trailer are visible; as this sequence goes forward, one of these zones goes out of
the field of view of the cameras. The GC algorithms had more trouble detecting
those background zones than the other algorithms. This can be detected with
the CM index. However, the BCP index keeps going higher indicating that the
disparity maps are still affected by the trailer’s cover, but that the accuracy of
the disparity values are better. The average number of patches calculated for
this sequence was 14,300 (almost 50% of the points).

Container sequence: While both staircases and the building on the right side
are present in the stereo images, the results for all the metrics for DP, GC and
SGM show a failure. They all have problems detecting the thin structures from
the staircases and the almost equal intensities of the circular containers on the
right and the building next to it.

The BP algorithm behaved differently, but consistently for the two metrics.
Its best performance is on the first part of the sequence, and starts decreasing
from frame five. It looks like it had more trouble than the others with an almost
saturated background area that grows as the sequence goes forward.

The GC and SGM algorithms swap their ranking under different metrics, see
Table 1. For BCP and SGM, the GC algorithm had a better performance than
SGM. This does not represent a drawback for our approach as one metric counts
the number of pixels that were miscalculated (BCP) while the other one focuses
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Fig. 5. Results for the wall-trailer sequence. Left: Results for CM, a value close to one
indicates a high confidence in the disparity map. Right: Plot for the BCP, larger values
implies a larger number in the miscalculated points.

on how accurate the disparity values are (CM). The average number of analyzed
patches for this sequence was 14,600 implying that there were evaluated more
than 50% of the pixels in the disparity map.

4 Conclusions and Future Work

In this work we present a ground truth-based approach to evaluate stereo al-
gorithms over real-world sequences. We evaluate the algorithms by comparing
the calculated disparity maps against ground truth images generated using a
high-end LRF. As the ground truth images are not dense enough to evaluate
all the pixels in the disparity maps, we follow two evaluation criteria: Where
ground-truth data are available, we use a well-known quality metric to evaluate
the corresponding disparity values. For the remaining points, we use a confidence
measure that compares the geometric properties of corresponding point sets in
the ground truth images and in the disparity maps. We also include a few exper-
iments to show the effectiveness of the presented approach. In the experiments
we noticed a good correlation between the measures used.

Using the direct comparison approach, we were capable to evaluate around
7% of the pixels in a disparity image. However, when we also use the confi-
dence measure, we could evaluate the majority of the points. The exact number
depends on the scene.

The obtained evaluation results need to be addressed in work aiming at
improvements of stereo matching algorithms. We have a lot more experimental
data, and those accumulated data will help further to identify weakness and
strength of particular matching strategies, cost functions, or further algorithmic
“ingredients” of stereo matching.

Acknowledgements: The first author thanks Dr. Uwe Franke for the oppor-
tunity to be a part of his research team at Daimler A.G. for six months, and Dr.
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