

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

ASPECTS OF THE LIFE CYCLE, BIOLOGICAL PERFORMANCE AND

QUALITY OF THE BLACK LYRE LEAFROLLER

'Cnephasia' jactatana (Walker)

J. P. OCHIENG'- ODERO

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Zoology University of Auckland, New Zealand, September, 1988. I wish to record my gratitude to:

Professor E. C. Young of the Department of Zoology,

University of Auckland;

Dr. Pritam Singh of the Entomology Division, Department of Scientific and Industrial Research (DSIR), Auckland;For supervision, discussions and critical assessment of the thesis.

Mr. J. Longworth, Director, Entomology Division, DSIR;

For allowing the use of research facilities within the Division.

Dr's D. Steven, J. R. Clearwater, S. P. Foster, P. J. Wigley, P. R. Dentener, Mr. J.S. Dugdale, Mr. J. Maindonald and Mr. R. J. Redgewell of the DSIR;

Dr. R. D. Lewis of the Department of Zoology;

For consultation and advice on various techniques.

Professor T. R. Odhiambo, Director, International Centre of Insect Physiology and Ecology (ICIPE);

For granting the postgraduate fellowship under the Institutional Building and Interactive Research Unit's staff development scheme.

Staff of the Entomology Division, DSIR (especially

Insect Rearing section), staff of the Department of

Zoology and fellow students (especially the 'Entomology Group' of 1986-1988);

For various forms of assistance during the period of my stay in New Zealand (October 1985 - December 1988).

ABSTRACT

The thesis answers the general question of whether the quality of artificially reared insect species should be based on performance tests for intended use or whether quality should be based on a more holistic biological approach. The empirical research is carried out using the lepidopteran leafroller '*Cnephasia' jactatana* (Walker).

The thesis defines biological performance and quality in terms of the success of an insect population in survival and reproduction and regards the laboratory environment as an artificial habitat that insects must colonise in order to survive and reproduce. Changes in biological performance that occurred during 12 successive generations of laboratory rearing were due to selection, acclimatisation and domestication and not adaptation. Artificial colonisation is theoretically successful within a limited range of environmental factors. As the inherent genetic variability of the founder population determines the resilience of the population to changes in performance, the ranges of environmental factors during colonisation should be wide to 'capture' much of the variability.

Using body size (weight) as an aspect of overall quality, the thesis presents evidence that the final instar larva of C. *jactatana* has a threshold mechanism (larval critical weight, L_{CW}) that determines pupal and adult size. There is a proportionate

ii

decrease in weight from the maximum weight that a larva attains in the final instar (L_{MW}) to pupa (described as constant D_P) and to adult (DA). There is a direct relation between the latent feeding period (period between attaining an L_{CW} and L_{MW}), L_{MW}, pupal and adult size, and the reproductive performance (fecundity). Within the experimental conditions diet quality, temperature, photoperiod and artificial selection had no effect on the larval critical weight, D_P or D_A, the larval threshold mechanism in C. jactatana is probably a mechanical trigger that initiates pupation. Diet quality, temperature and thermophotoperiods affected pupal size, adult size and reproductive performance. Photoperiod had no significant effects on size and reproductive performance. Positive assortative selections for slow development and low pupal weight significantly decreased pupal and adult size, and reproductive performance. Selection for fast development and heavy pupal weight for three generations had no significant effect on size or reproductive performance. Larval critical weight is demonstrated as useful to define quality indices and predict the performance of laboratory reared insects.

The general conclusion of the thesis is that insect quality should be defined more in terms of the success in survival and colonising ability rather than solely on the success for 'intended role' or 'fitness for use'.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	i
ABSTRACT	ii
TABLE OF CONTENTS	iv
LIST OF TABLES AND FIGURES	x
LIST OF ABBREVIATIONS	xiv
CHAPTER 1 : INTRODUCTION	
1.1 Biological performance and the	
problem of insect quality	1
1.2 : The insect	7
1.2.1: Classification	8
1.2.2: Habit and host range	9
1.2.3: Economic importance	9
1.3 : Style of presentation of the thesis	11
CHAPTER 2 : LIFE CYCLE CHANGES IN 12 SUCCESSIVE	
GENERATIONS OF LABORATORY	
COLONISATION OF THE LEAFROLLER	
'Cnephasia' jactatana (WALKER)	
(LEPIDOPTERA: TORTRICIDAE) ON	
ARTIFICIAL DIET	
2.1 : Abstract	12
2.2 : Introduction	13
2.3 : Materials and methods	16
2.3.1: Laboratory rearing of the stock	
population	16

2.3.2: Life cycle studies on GPD and SBD diets	17
2.3.3: Aspects of the life cycle monitored	18
2.4 : Results	20
2.4.1: Colonisation on GPD diet	20
2.4.2: Sub-colonisation on SBD diet	23
2.5 : Discussion	24
2.5.1: Classical definition of adaptation	24
2.5.2: Ranges for colonisation	26
2.5.3: Adaptation or selection, acclimatisation	
and domestication ?	29
2.6 : Conclusion	33
CHAPTER 3 : CRITICAL, PUPAL AND ADULT WEIGHTS IN THE	
SIZE RELATED METAMORPHOSIS OF THE BLACK	
LYRE LEAFROLLER 'Cnephasia' jactatana	
(Walker) (LEPIDOPTERA: TORTRICIDAE)	
3.1 : Abstract	34
3.2 : Introduction	35
3.3 : Materials and methods	38
3.4 : Results	40
3.5 : Discussion	43
3.5.1: The larval critical weight (L_{CW})	43
3.5.2: The larval maximum weight (L_{MW})	43
3.5.3: L _{CW} , P _W , A _W and reproductive	
performance	46
3.5.4: Pupal and adult indices of quality	48

CHAPTER 4 : THE RELATIONSHIP BETWEEN LARVAL CRITICAL

vi

WEIGHT, LATENT FEEDING PERIOD AND

DIET QUALITY IN THE LARVAL METAMORPHOSIS

OF C. jactatana

	4.1 : Abstract	51
	4.2 : Introduction	52
	4.3 : Materials and methods	54
	4.4 : Results	55
	4.4.1: L _{CW} and diet quality	55
	4.4.2: Diet quality as a trigger for pupation	55
	4.4.3: Effect of diet quality during the	
	latent feeding period	56
	4.5 : Discussion	57
	4.5.1: Diet quality in the final instar as a	
	trigger for pupation	57
	4.5.2: Diet quality during latent feeding	
	period	60
	4.5.3: L _{CW} , L _{MW} and nutritional ecology	63
	4.5.4: Evaluation of artificial diets	65
	4.6 : Conclusion	66
CHA	PTER 5 : THE EFFECT OF THREE ABIOTIC FACTORS ON	
	THE LARVAL CRITICAL WEIGHT, LATENT	

FEEDING PERIOD, LARVAL MAXIMUM WEIGHT

AND FECUNDITY OF 'Cnephasia' jactatana

I. CONSTANT TEMPERATURE

5.1 : Abstract	67
5.2 : Introduction	68
5.3 : Materials and methods	70
5.4 : Results	71
5.5 : Discussion	73
5.5.1: Effect of temperature on the L_{CW}	73
5.5.2: Effect of temperature on the latent	
feeding period	74
5.5.3; Effect of temperature on the L_{MW}	75
5.5.4 : Temperature during the final instar and	
adult reproductive performance	76
5.6 : Conclusion	78
CHAPTER 6 : THE EFFECT OF THREE ABIOTIC FACTORS ON	
THE LARVAL CRITICAL WEIGHT, LATENT	
FEEDING PERIOD, LARVAL MAXIMUM WEIGHT	
AND FECUNDITY OF 'Cnephasia' jactatana	
(Walker) (LEPIDOPTERA: TORTRICIDAE).	
II. PHOTOPERIOD & III. THERMOPHOTOPERIOD	
6.1 : Abstract	80
6.2 : Introduction	81
6.3 : Materials and methods	83
6.4 : Results	85
6.5 : Discussion	88

6.5.1: Photoperiod and the L_{CW}	88
6.5.2: Photoperiod, latent feeding period and	
the L _{MW}	89
6.5.3: Thermophotoperiods, latent feeding	
period and L _{MW}	92
6.5.4: Photoperiods, thermophotoperiods, and	
reproductive performance	93
6.6 : Conclusion	94
CHAPTER 7 : POSITIVE ASSORTATIVE SELECTION FOR RATE	
OF DEVELOPMENT AND PUPAL WEIGHT IN	
'Cnephasia' jactatana (Walker)	
(LEPIDOPTERA: TORTRICIDAE) - A GENETIC	
TOOL FOR QUALITY IMPROVEMENT.	
7.1 : Abstract	96
7.2 : Introduction	97
7.3 : Materials and methods	99
7.4 : Results	101
7.4.1: Effect of positive assortative	
selections on the life cycle	101
7.4.2: Effect of positive assortative	
selections on the L _{CW}	103
7.4.3: Effect of positive assortative	
selections on the latent feeding period	
and L _{MW}	103
7.4.4: Effect of positive assortative	

24

 $\frac{|f|}{f}$

selections on the reproductive

performance	104
7.5 Discussion	104
7.6 Conclusion	107
CHAPTER 8 : GENERAL CONCLUSION	109
APPENDIX A.1 : STANDARD REARING PROCEDURE USED	
IN THE LABORATORY MANAGEMENT OF C. jactatana	
A.1.1: Adult management	113
A.1.2: Egg management	114
A.1.3: Larval management	116
A.1.4: Pupal management	117
APPENDIX A.2 REGULAR QUALITY ASSESSMENT TESTS FOR THE	
LABORATORY COLONY OF C. jactatana	
A.2.1: Quality in adults	119
A.2.2: Quality in eggs	120
A.2.3: Quality in larvae	121
A.2.4: Quality in pupae	121

A.2.5: Quality in the rearing process	122
REFERENCES	124

CHAPTER 2

Table 2.1: Life cycle over successive generations of laboratory rearing of *C. jactatana* on GPD diet

 Table 2.2: Life cycle over successive generations
 of sub-colonisation of *C. jactatana* on

SBD diet

Figure 2.1: Random mating system used for rearing C.

jactatana 12 successive generations

Figure 2.2: Larval and pupal survival over 12

successive generations

Figure 2.3: Sex synchronism in generation 12 and wild

C.jactatana

Figure 2.4: Fecundity of C.jactatana over 12

successive generations

Figure 2.5: Ranges for colonisation

CHAPTER 3

Figure 3.1: Summary of events in the final instar

larva leading to pupation

Figure 3.2: Changes in wet weight of the final instar

larvae of C. jactatana

Figure 3.3: Relation between pupal weight and

fecundity in C. jactatana

Figure 3.4: Sequential model of weight changes from

the final instar to adult C. jactatana

CHAPTER 4

Table 4.1: Effect of diet quality on the final

instar of C. jactatana

Table 4.2: Diets evaluated for the rearing of C.

jactatana

Figure 4.1: Cumulative daily wet weight gain in the

final instar of C. jactatana

CHAPTER 5

Table 5.1: Effect of temperature on the final

instar of C. jactatana

Figure 5.1: Scatterplots of pupal weights of

C. jactatana reared under 7 constant

temperatures

CHAPTER 6

Table 6.1: Effect of photoperiod in the final

instar of C. jactatana

Table 6.2: Effect of thermophotoperiod in the final

instar of C. jactatana

Figure 6.1: Effect of photoperiod on the final instar

duration of C. jactatana

CHAPTER 7

 Table 7.1 Effect of three generations of positive

 assortative selections on the life cycle

of C. jactatana

- Table 7.2 Effect of positive assortative selections

 on final instar of C. jactatana
- Figure 7.1 Pupal weights over three generations of positive assortative selection in *C*.

jactatana

Figure 7.2 Distribution of pupation times over three generations of assortative selection for fast rate of development

- Figure 7.3 Distribution of pupation times over three generations of assortative selection for slow rate of development
- Figure 7.4 Distribution of pupation times over three generations of assortative selection for heavy pupal weight.
- Figure 7.5 Distribution of pupation times over three generations of assortative selection for low pupal weight.

APPENDIX

Table A.1 Head capsule (width) measurements (mm) of larval instars of *C. jactatana*

reared on GPD artificial diet at 18 ±1°C,

75 ±5%RH, LD 18:6

Table A.2 Containers used in the rearing management of *C. jactatana* xiii

Table A.3 Environmental conditions used in the rearing management of *C. jactatana*

Table A.4 Composition of dietary concentrations of

a general purpose diet (GPD, Singh,

1983) evaluated for the rearing of C.

jactatana

Table A.5 Composition of sheep nut - bean based

diet (SBD, modified after Shorey and

Hale, 1965 and Thomas, 1968)

Figure A.1 The relation between larval critical weight and final instar size in C. jactatana.

Figure A.2 Frequency distribution of larval critical weight of medium sized final instar larvae of *C. jactatana*.

LIST OF ABBREVIATIONS

A _{CW}	Adult critical weight	
Aw	Adult weight	
D _A	Decrease in weight from larval	
	maximum weight to adult	
D _P	Decrease in weight from larval	
	maximum weight to pupa	
GPD	General purpose diet	
	*	
L _{CW}	Larval critical weight	
L _{MW}	Larval maximum weight	
P _{CW}	Pupal critical weight	
P _R	Pupation rate index	
$\mathbf{P}_{\mathbf{W}}$	Pupal weight	
SA	Adult synchronism index	
SBD	Sheep nut bean-based diet	

S_P Pupal synchronism index