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Abstract—Descriptive abilities of translation-invariant
Markov-Gibbs random fields (MGRF), common in texture
modelling, are expected to increase if higher-order interactions,
i.e. conditional dependencies between larger numbers of pixels,
are taken into account. But the complexity of modelling grows
as well, so that most of the recent high-order MGRFs are built
to a large extent by hand. At the same time it is very difficult
(if possible) to manually choose an efficient structure and
strengths of pixel interactions for modelling a particular texture.
This paper explores a possible extension of a computationally
feasible framework for learning generic translation-invariant
second-order MGRFs onto generic third-order models. Several
information-theoretical heuristic methods for automatic learning
of the latter are compared experimentally on a large and diverse
database of realistic textures in application to a practically
important problem of semi-supervised texture recognition and
retrieval. However it is shown that better generative abilities of
learnt models do not necessarily imply their higher discriminative
power, and also the increased difficulty of learning third order
order models may lead to worse generative performance.

I. INTRODUCTION

Translation-invariant Markov random fields are popular
for texture modelling and other computer vision tasks, under
which texture classes are regarded as stochastic processes with
Gibbs probability distributions (GPD); hence termed Markov-
Gibbs random fields (MGRF). Given a graphical structure
of local conditional dependencies (interactions) between pix-
els the GPD is factorised into potentials (factors), which
are functions of signals on complete subgraphs (cliques) of
mutually interacting pixels. So the conditional distribution
of a pixel depends only on the characteristic neighbourhood
set of interacting pixels: the union of all cliques it is a
member of. The true interaction structures are highly texture-
dependent (e.g. periodic and semi-periodic textures have long-
range interactions between repeated units), so the structure of
an MGRF texture model should be learnt; it is difficult to
manually choose the interactions.

While in earlier work MGRFs with second order (pairwise)
potentials were used nearly exclusively, recent research in-
creasingly uses MGRFs with higher-order interactions, which
are now widely recognised to be necessary for more expressive
models of natural images and textures [1–5], as opposed to
merely using larger neighbourhoods. Higher-order interactions
provide context not available at lower orders; thus it is neces-
sary to be able to infer higher-order interactions directly rather
than hoping to recover them after finding the most important
pairwise interactions (for example, three uniformly distributed
binary random variables related by the parity function a = b+c
mod 2 are pairwise independent). But higher orders increase
the difficulty of modelling as well, so that structures for
most of the recent popular high-order MGRF models for
image modelling, including those using responses of banks of

linear fixed-support filters (e.g. [4–6]), and those using “local
patterns” (e.g. [7]), were selected manually.

Outside of computer vision, inference of (non-spatially in-
variant) MGRF interaction structures has recieved considerable
attention, though there has been very little application to image
modelling. These two approaches are combined below to
study third-order MGRF texture models with learnt translation-
invariant structures, as a first step to higher orders. We con-
sider computationally feasible methods based on information-
theoretic heuristics for learning of generic third-order models,
in straightforward extension from earlier methods [1, 8, 9].

This paper quantitatively compares different structure es-
timation procedures in application to semi-supervised texture
discrimination where one texture class, represented by a train-
ing sample, is separated from other classes. This task is used
here in an attempt to evaluate empirically the sensitivity of
learning procedures to relevant visual features (statistics) of
textures, hence performance is not compared to state-of-the-
art texture discrimination algorithms, which usually focus on
a few distinguishing features. Likewise, it is shown that the
learnt third order models are considerably worse at discrim-
ination than simpler second order models, despite improved
texture synthesis results. Our focus is on fundamental aspects
of learning, rather than practical problems such as slight non-
homogeneity across an image (in contrast, rotation, scale, etc.).

A. Related work

Almost all practical algorithms for structure learning in
MGRFs have been restricted to pairwise models, as the number
of candidate factors grows exponentially in the order. For
higher orders it seems necessary to use heuristics to guide
the search and allow only a small amount of computation per
clique family considered, excluding the majority of theoreti-
cally stringent selection criteria.

A common structure learning approach is to search in
a space of candidate structures to maximise a score (usu-
ally penalised likelihood). To reduce computational costs, a
pseudolikelihood-based score was used in a rare application of
MGRF structure learning for texture modelling [10]; however
its practicality at higher orders is unclear. Another practical
score-based algorithm [11], introduced in a rather different
context, iteratively creates more complex features (GPD fac-
tors) by compounding an atomic set of features. This is similar
to many other iterative feature/potential selection procedures
with the innovation of gradually building higher-order factors,
an idea which may be applicable to MGRF texture modelling.

Another class of algorithms operate by conducting indepen-
dence tests; an example due to Margaritis and Bromberg [12]
for determining pairwise MGRF structures achieves robustness



to noise in the test results by maintaining a population of
candidate structures, and efficiency by choosing tests which
maximise the expected information gain. A promising ap-
proach by Abbeel et al. [13] considers whether to add each
possible factor, of arbitrary order, independently of all others,
and deduces parameters analytically. However, for each candi-
date factor the neighbourhood must first be inferred, currently
infeasible if it may be large. But this approach might be useful
for refining or pruning structures initially selected by less
discerning heuristics, such as those below.

A further pragmatic class of methods (see e.g. [14] for
a number of examples), which are similar to those in this
paper and are widespread in inferring neural wiring and
genetic expression interaction networks, use heuristics based
on mutual information to identify, without formal guarantees,
probable interacting sets of variables. Again these are almost
always second-order, though Margolin et al. [3] inferred third-
order interactions under the simplifying assumption that two
variables in each triple were conditionally independent.

Recently filter-based MGRFs [5] which also learn the filters
(with predetermined fixed supports), have been successfully
applied to texture modelling by Heess et al. [2]. The interaction
structure is learnt implicitly (via filter coefficients), but because
of learning difficulties and to keep computational feasibility the
filters have been restricted to small sizes not capturing distant
interactions, e.g. 7× 7 in [2].

Selection of second-order clique families for MGRF texture
models using model-based interaction maps [8] (see Sec-
tion II-B) is a very simple and cheap approach appropriate for
many classes of texture. Extending this to prevent selection
of redundant clique families by estimating the secondary
interactions induced by compounding of multiple families [1,
9] allows much finer characteristics of complex textures to be
recovered, however degrades performance on other textures.
The method in [1] is computationally cheap; this approach,
with several modifications, is used here for second-order clique
family selection and partially extended to the third order.

II. SELECTING CHARACTERISTIC INTERACTIONS

A. Notation

Let R ⊂ Z2 and α =
{
αi : αi ∈ Z2; 1 ≤ i ≤ d

}
be a finite

arithmetic lattice with coordinates r of nodes (pixels) and a list
of d coordinate offsets with α1 = (0, 0) fixed, respectively. An
order d clique family Cα in R is the set of all spatially repeated
cliques, or configurations of mutually interacting pixels in R,
with the offset pattern given by α:

Cα := {(r1, . . . , rd) :
r1, . . . , rd ∈ R; ri − r1 = αi; i = 1, . . . , d}

Let G : R → {0, . . . , Q − 1} be an image on R with Q
possible grey levels. Let G(α) denote the empirical distibution
(normalised d-th dimensional histogram) of grey levels of G
over the cliques of Cα.

A translation invariant generic MGRF model P of grey-
scale images with multiple pixel interactions is specified by a
Gibbs probability distribution over images on R given by

P (G|Λ) =
1

Z(Λ)
exp

(
−
∑
α∈A

Vα •G(α)|Cα|

)
(1)

where • denotes the dot product (momentarily treating the
operands as vectors) and Λ = (A,V) denotes the model
parameters: the interaction structure A of clique families and
corresponding potentials V = {Vα ∈ RQ|α|

: α ∈ A}. Z(Λ)
is a normalisation constant, and the negation of the expression
inside the exponential is the energy EΛ(G) of G. The order of
the model is defined as the maximum order of any of its clique
families. Given A and a training image Gobs, the potentials
of an MGRF P are to be estimated (e.g. using stochastic
approximation) such that the expected values of G(α) under
P are equal to G(α)

obs (the sufficient statistics). This is both the
maximum entropy distribution given the G(α)

obs [15] and the
Maximum Likelihood Estimate (MLE) of the Vα given Gobs.

The entropy of a probability distribution p : Ω → R is de-
fined (in the discrete case) as H(p) := −

∑
x∈Ω p(x) log p(x).

The mutual information I of two random variables measures
the average amount of information gained about one variable
by learning the value of the other. There are a number of
different generalisations of mutual information. The simplest,
the total correlation (also known as the multi-information
or simply the mutual information) of a set of n random
variables with marginal distributions pi (1 ≤ i ≤ n) and
joint distribution p is defined as I(p) = I(p1, . . . , pn) :=
DKL(p ‖ p1 . . . pn) =

∑
H(pi)−H(p). Here, DKL(p ‖ q) :=∑

x∈Ω p(x) log p(x)
q(x) is the Kullback-Leibler divergence (KLD),

which naturally measures the distance of an approximating
probability distribution from the true distribution. However,
the KLD is not an ideal measure of agreement if both p and
q are empirical probability distributions: it is asymmetric, and
DKL(p ‖ q) is only defined if q(x) = 0 =⇒ p(x) = 0, which
is likely to be violated. The Jensen–Shannon divergence (JSD)
defined as

DJS(p ‖ q) :=
1
2

(
DKL

(
p ‖ p + q

2

)
+ DKL

(
q ‖ p + q

2

))
is then more appropriate. The JSD measures the discriminabil-
ity of two distributions, specifically, the average certainty with
which a sample can be ascribed to one or the other.

B. Pairwise clique selection

Theoretically, the KLD between the true distribution and
the maximum entropy distribution of an MGRF structure can
be employed as a loss function for choosing A. The priority is
to select the most relevant (characteristic) families; redundant
clique families may actually be helpful rather than harmful [1]
but increase computation costs. Rather than penalising com-
plexity, caps on the number of families were used. Our third
order models are built by first selecting second order potentials
to capture pairwise statistics of Gobs, as considered here.

A model-based interaction map (MBIM) [8] assigns a score
in R to each clique family in the width w search window of
all order d offset patterns with bounded maximum differences
δx, δy in any of the x, y offset coordinates; the set of unique
candidate offset patterns used was

W d
w := {(α1 = (0, 0), α2, . . . , αd) :

α1, . . . , αd ∈ Z2; αi−1 < αi; i = 2, . . . , d;
δx({αi}) ≤ w; δy({αi}) ≤ w}

where the pairs are compared in the lexicographical ordering.



Originally the score function of the family Cα used was the
partial energy εα: some estimate of the family’s contribution to
EΛ if were it included in an MGRF, such as using the approx-
imation V∗ from [16] to the MLE of V for the MGRF with
A = {α}. The partial energies attempt to gauge the strength
of interaction of a clique family Cα. These interactions might
be quantified more directly with the mutual information (MI);
I(G(α)

obs ). For some textures this better distinguishes weak
interactions with low εα scores from background noise, while
for many others there is no significant difference at all.

Given an MBIM, the simplest selection method is to take
the families with highest scores. But as mentioned before,
filtering out secondary interactions is necessary to capture
weaker but important interactions, which may be done by
sequential selection of cliques while attempting to account for
compound effects of the already selected cliques by estimating
them analytically [8] or by sampling [9]. Below, a variant of
the faster analytic option with information-theoretic measures
instead of partial energies is used. At step n ≥ 0 of the
algorithm with n already selected families Fn, for candidate
family Cα with α = {(0, 0), a} the expected marginal f

(α)
n

of Cα is approximated and the next clique family selected
is arg maxα∈W 2

w
DJS(G

(α)
obs ‖ f

(α)
n ).1 By finding sequences of

offsets (o1, . . . , ok), oi ∈ Fn, which sum to a and treating these
cliques as a Markov chain, the expected marginal due to this
chain is easily computed from the pairwise marginals. If there
is no such sequence, f

(α)
n is the product of its marginals. The

influences of different chains ought to be combined somehow
(e.g. taking the geometric mean), but currently only the path
of length at most 4 minimising the divergence is found.

C. 3rd order family selection

One would like to pick higher order families in the same
way as above; however the quick growth of the search space
prevents this from being practical. W 3

w is a four-dimensional
space, meaning that any local maxima are normally surrounded
by tens to thousands of high scoring small pertubations; the
large number of candidates should be reduced before consider-
ing more expensive selection criteria such as distribution diver-
gences. The simple solution is to prevent families nearby (as
points in Z2d) to already selected families from being selected
(Section III-C describes details). This roughly selects only
local maxima or families near the largest maxima. Sequential,
score-based selection similar to the 2nd-order method may then
be used: at step n, with n 3rd order clique families Gn already
selected, choose the family arg maxα∈W 3

w∧α 6∈Xn
S(α) where

S is a score function of 3rd order families and Xn is the set
of all families within some fixed distance of a member of Gn

(we used an L2 distance of 3). Three score functions were
tried: the simplest, STC = I(G(α)

obs ) using total correlation,
as well as the L1 distance, S1 = ||G(α)

obs − g
(α)
n ||1, and the

JSD, SJS = DJS(G
(α)
obs ‖ g

(α)
n ), between actual G(α)

obs and
estimated g

(α)
n marginals. It may be practical to estimate the

g
(α)
n through compositions of 2nd- and 3rd-order cliques, but

the much simpler alternative used was to learn a 2nd-order
MGRF model after selecting 2nd-order families using the

1This means that instead of I as the score function as above an approxima-
tion DJS(p1,2 ‖ p1p2) to I(p1, p2) = DKL(p1,2 ‖ p1p2) is actually used.
In practice these MBIMs are very nearly identical after non-linear scaling.

sequential algorithm, sampling from that to approximate g
(α)
0 ,

and further assuming g
(α)
n ≈ g

(α)
0 .

III. EXPERIMENTS

A. Experimental setup

Experiments in this paper were conducted with a set of 136
grey-scale digitised photographs of natural and approximately
spatially homogeneous textures sourced from several popular
databases. MeasTex2 is a framework of standardised testcases
and procedures for evaluating texture discriminators, which
includes a database (“NewTex”) of natural textures, and also
specifies a suitable subset of the MIT VisTex3 database in its
testcases. We used the 58 VisTex and 34 NewTex textures
which were part of at least one MeasTex testset, and selected
44 textures from the Brodatz album [17].

Rather than create contrast invariant models using e.g.
grey level difference or ordinal histograms, each image was
simply preprocessed with the contrast-limited adaptive his-
togram equalization (CLAHE) [18] using the implementation
available in scikit-image, with 16×16 tiles and a contrast
clipping limit of 0.03, and then quantised to Q = 8 grey
levels. Without CLAHE, misclassification rates were much
lower due to the ease of distinguishing a training image from
other images merely by their first-order histograms. After
quantisation each image was split into 128×128 pieces and one
of the centre blocks selected as the training piece. Modelling
was not assisted by scaling the images to shorten interaction
lengths.

Each clique family selection procedure investigated was
executed given only the training piece of each texture as
Gobs. An MGRF P (G|Λ) was then obtained with the MLE
potentials learnt by starting with V∗ from [16], and its straight-
forward extension to third-order potentials, and fine tuning
using stochastic approximation with Gibbs sampling from the
MGRFs. The set of energies ei = {EΛ(Gi) : Gi ∈ T } of
all the pieces T of the training texture is then used to define
a simple classification rule: G is classed as belonging to the
texture if mini ei ≤ EΛ(G) ≤ maxi ei. The misclassification
(false positive) rate of a model against all the pieces of every
other texture image in the database was computed, and the
whole procedure repeated to produce and evaluate one MGRF
per texture four times. The mean misclassification rate across
models and the range of the mean over the four runs are stated.

Although not totally realistic for practical texture clas-
sification this testing methodology is very challenging as it
punishes overfitting (inability to cope with small differences
across the texture image such as a slight twisting) by requiring
a 100% recognition rate for the training texture, and requires
generalisation with no negative examples provided.

B. Second order models

It was found empirically that across different textures,
background noise in the MI-based 2nd order MBIM is up to
about 0.015 bits (for a 128 × 128 image). So the termination
rule used for sequential selection was either once a clique

2http://www.texturesynthesis.com/meastex/meastex.html
3http://vismod.media.mit.edu/vismod/imagery/VisionTexture/



Source

2nd order

MI (I(G( )
obs))

2nd order
families
selected

2nd order

||G( )
obs g ( )

0 ||1
2nd order

I(G( )
obs) I(g ( )

0 )
3rd order
max SJS

3rd order
max S1

3rd order
max STC

10 families
selected
using SJS

10 families
selected
using S1

10 families
selected
using STC

Fig. 1. Various second- and third-order MBIMs for a number of textures. All images are shown are 81× 81 (w = 40); larger values are darker, using a linear
scale. First column shows part of the training image used, after CLAHE preprocessing. Second column is the mutual information MBIM. The third column
shows the 2nd order families selected sequentially (each appears as two dots). 2nd order MGRF models with these structures are then learnt and sampled from
to estimate expected 2nd and 3rd order marginal distributions g

(α)
0 . Two other second order MBIMs follow, visualising errors in g

(α)
0 . Third order MBIMs and

offset sets are visualised by flattening: each clique is drawn three times with each choice of point to place at the origin; so each appears as six points. For the
MBIMs the maximum value plotted at each point is shown. The last three columns show ten 3rd order families selected using the three score functions to the
left.

family with an MI below 0.015 bits is to be selected, or
when the cap (set at 40) is reached. The sequential selection
algorithm was compared (with a window size of w = 40)
against several simpler baseline algorithms: firstly, a fixed
number (30) of the families with the highest MI; secondly
a simple threshold on the MI of µ+ k ∗σ as in [8] with a cap
of 40 clique families; k = 4 was appropriate. This selected
on average 32 and at least 6 offsets. Discrimination results are
presented in Table I. Although the sequential selection does
not do better on average than the others, it selected on average
only ten families, so had a third the computational cost.

C. Feasible selection of higher-order families

For third order families a width 40 window was again used,
giving |W 3

40| = 4, 032, 760 candidates. The search for high
scoring clique families can be sped up by first iterating over the
search space with a step size of 2 pixels in each dimension (or
similarly by scaling the training image and sampled images to
50%), reducing the space to 1/16th the size, and then searching
the vicinities of the highest–score solutions found.

However, this approach does not scale well to higher orders
except by using increasingly larger step sizes, as the number of
families grows as O(w2(d−1)/d!) where w is the window size
(divided by the step size) and d is the order. Already at 4th-
order and a step size of 2 about an hour of computation would
be required, and any step size larger than 3 is likely to miss im-
portant families. Therefore, a far more scalable approach was
investigated, of guiding the search by estimating the higher-
order score functions with functions of scores of sub-cliques.
For the clique family defined by α = ((0, 0), α2, α3) with
sub-families Y := {((0, 0), α2), ((0, 0), α3), ((0, 0), α3−α2)}
two estimates/indicators for SX(α) were used: the sum SΣ

X =

TABLE I. DISCRIMINATION WITH SECOND-ORDER MODELS.

Total average misclassification rate (range of averages across four runs):
30 families with highest I (a),

4σ thresholding of I (b), and sequential selection (c)
(a) 13.4 (12.7-14.5)% (b) 13.1 (12.8-13.4)% (c) 13.0 (12.4-13.4)%

TABLE II. DISCRIMINATION WITH THIRD-ORDER MODELS USING k3

THIRD-ORDER CLIQUE FAMILIES.

Total average misclassification rate (range of averages across four runs):
Selection of the third-order cliques using: STC (a), S1 (b), and SJS (c)

k3 (a) (b) (c)
10 14.0 (14.0-14.1)% 16.4 (15.8-17.4)% 17.5 (17.3-17.6)%
20 14.8 (14.8-14.9)% 17.9 (17.6-18.5)% 19.5 (19.0-20.1)%

With 3rd order potentials split
10 14.6 (14.4-15.0)% 13.7 (13.0-14.0)% 15.9 (15.4-16.3)%
20 16.2 (15.9-16.5)% 13.2 (12.8-13.4)% 18.5 (17.9-19.3)%

∑
β∈Y SX(β) and the maximum Smax

X = maxβ∈Y SX(β).
Ideally the clique families with the highest scores would be
(large) subsets of those with the highest indicators. Figure 2
shows that this is the case for SΣ

TC and SΣ
1 , which provide

excellent heuristics, but that SΣ
JS is not as good a guide for

SJS. A better estimate of SJS will therefore likely be needed.
Other plots, not shown here, also show that the maximums are
strongly correlated with the 3rd-order score for all three score
functions, so a (weaker) threshold on this could also be used
as an additional criterion for earlier pruning.

However recall that a collection of variables may be pair-
wise independent yet have non-zero total correlation, although
for the small collection of textures used to create Figure 2 this
effect did not appear. Thus SΣ

TC can not be truely as reliable as
indicated by the figure, though it may in practice for naturally
occurring textures still be an effective indicator.



Fig. 2. Plots of estimates SΣ
TC, SΣ

1 , SΣ
JS against STC, S1, SJS for clique

families chosen from MBIMs of ten different textures either randomly (blue
dots) or using the step size 2 approach to find a superset of the highest scores
(red dots). The true and estimated scores for each texture have been normalised
to the same scale.

D. Third order models

Figure 1 visualises 2nd- and 3rd-order MBIMs computed
using different scoring functions, and the families selected as
a result. It can be seen that all scores pick out quite different
offsets (see Figure 4 for more examples); actually SJS prefers
offsets on the edge of the MBIM, S1 ones close to the origin,
and STC chiefly only those where all sub-cliques have high MI.
These tendencies suggest all the scores have undesired biases.

If third order clique families with a low I are allowed to
be selected dramatic over-fitting can occur; Figure 3 shows
an example of an energy map (showing the contribution to
EΛ(G) due to each pixel) of a model with such families,
with a complete failure to generalise due to learning random
fluctuations in G(α). Based on empirical experiments we used
a stopping condition like that for second order clique selection,
requiring that I(G(α)) ≥ 0.25 bits. Before this cutoff is
reached usually thousands of families qualify, so we compared
performance with caps of 10 or 20 3rd-order families.

Table II presents results, which should be compared to
the 13.0% misclassification rate before the 3rd order families
are selected as a baseline. We also compare performance
with models learnt with the same structures except with each
3rd-order clique family replaced with (‘split’ into) the three
corresponding 2nd-order sub-clique families. Not only do all

Fig. 3. Part of VisTex image Fabric.0018 and its energy map for a model
with 20 poorly chosen 3rd order clique families. The visible square is the
128× 128 piece of the image from which the model was learnt.

the models have higher than baseline misclassification rates
despite typically much better generative abilities (see the next
section), but the ‘split models’ perform better in the case of
S1 and SJS. For STC the large overlap with existing 2nd-order
families means that little is added over the baseline by the split
cliques, so it seems likely that the split STC models show worse
performance because of the removal of third order statistics.

E. Texture synthesis

Figure 4 shows samples of texture synthesis using models
with up to 20 3rd-order clique families, as well as split
models for a direct comparison of the effect of including
third order statistics. Models using third order families selected
with S1 or SJS nearly always outperform those selected with
STC, which often do worse than the baseline, in reversal of
the discrimination results. Splitting the 3rd order potentials
may worsen (e.g. D66, D33) or have little effect (e.g. D101,
D103) on the synthesis results, or actually show a significant
improvement (e.g. D20). Selecting and then splitting third
order potentials seems to find pairwise interactions which are
useful yet would not be selected directly (e.g. D103, D20,
D66). The apparent biases in the offsets preferred by the
score functions seem to result in one outperforming another
depending on the behaviour suiting each texture, rather than
one being generally superior.

IV. DISCUSSION AND CONCLUSION

This paper explored a computationally feasible approach
to learning generic third-order MGRFs for texture modelling.
However, contrary to the common expectation, the third-order
models constructed did not evenly outperform their second-
order counterparts. It seems that dilution of the most significant
statistical differences between textures with additional poten-
tials harms discrimination in our case where it increases the
range of ei (see Section III-A). Also, for most of the evaluated
third-order models the ability to discriminate between textures
decreased on average even when compared to the ‘split’
models differing only in ability to capture third order statistics,
indicating that the larger number of parameters per potential
made parameter learning or generalisation more difficult, e.g.
caused overfitting due to noise. However, incorporating third-
order statistics is unnecessary for other textures. That the
adequate order of an MGRF model depends on classes of tex-
tures involved and related computational problems to be solved



Fig. 4. Texture synthesis results. From left: training texture samples (of D101, D103, D20, D66, D33); selected 2nd order clique families and results; and for
each of SJS, S1, STC: selected 3rd order cliques families (left), result (centre), and result with 2nd order models after breaking the triples into pairs (right).

is trivial common knowledge. Therefore, feasible learning of
challenging higher-order MGRF models is of theoretical and
practical interest irrespective to their successes or failures in
applications to individual problems.

Future work will need to overcome first the problems which
have been encountered with third-order models. More efficient
non-parametric and/or parametric estimates of distributions
(e.g. [19]) are likely to be helpful to represent higher-order
Gibbs potentials instead of the vector-based representation
used here. In this way their robustness to noise can be
improved. Further options for scoring functions and changes
to the iterative procedure used should be investigated, too.

Once these problems are adequately solved, our goal is to
extend the feasible model identification framework, presented
in this paper, onto fourth- and higher-order MGRF models.
At present, scoring based on L1 histogram distances seems to
have the best results and ease of estimation. Combining the
heuristic factor selection approaches evaluated in this paper
as a pruning step before the use of otherwise impractical
structure selection frameworks, such as in [13], is a particularly
promising direction to be explored.
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