

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

STUDIES WITH ORGANORUTHENIUM COMPLEXES

OF

SUBSTITUTED ARENES

A Thesis Presented to the University of Auckland for the degree of

Doctor of Philosophy

by

Sally Anne Coulson

Department of Chemistry University of Auckland

1

December 1993

CONTENTS

ABSTRACT		i
INTRODU	JCTION	
1.	Background	1
2.	Dibenzo[b,e][1,4]dioxins	6
3.	Benzimidazoles	11
4.	Reactions of carbonyl-arene complexes	14
5.	Silyl enol ethers	19
CHAPTER	ξ 1	

1.1	Starting material			
1.2	(η ⁶ -Haloarene)ruthenium complexes			
1.3	Nucleo	Nucleophilic substitution reactions		
1.4	Preparations of nitrogen-substituted dibenzo[b,e][1,4]dioxins			
1.4.1	(η ⁶ -Nitrogen-substituted arene)ruthenium complexes 42			
	A)	Benzenamine complexes	43	
	B)	Amide complexes	44	
	C)	Silyl protecting groups	47	
	D)	N,N-Dimethylbenzenamine complexes	51	
	E)	N,N-Di-2-propenylbenzenamine complexes	53	
	F)	Imine complexes	55	
	G)	Phthalamide complexes	59	
	H)	Azobenzene and azoxybenzene complexes	60	
	I)	t-Butyl propanoate complexes	66	
	J)	Azide complexes	70	
	K)	Ether protecting groups	71	
1.4.2	Preparations of dibenzo[b,e][1,4]dioxin complexes			
1.4.3	Liberations of dibenzo[b,e][1,4]dioxins			
1.5	Preparation of			
	2-(2-acetylaminoethyl)dibenzo[<i>b</i> , <i>e</i>][1,4]dioxin 87			

1.6	Preparations and reactions of nitrogen-substituted	
	1,2-benzenediols	90
CHAPTE	ER 2	
2.1	5-Bromo-1-methylbenzimidazole	98
2.2	Benzimidazole and 1-methylbenzimidazole	107
2.3	1-Acetylbenzimidazole	109
CHAPTE	ER 3	
3.1	Preparations and reactions of complexes of	
	benzaldehyde and 1-phenylethanone	111
3.2	Preparations and reductions of substituted	
	1-phenylethanone complexes	122
3.3	Preparations and reductions of bicyclic ketone	
	complexes	126
3.4	Attempted preparation of a trialkylsilyl substituted	
	1-phenylethanone complex	132
3.5	Reactions with other nucleophiles	134
CHAPTE	ER 4	
4.1	Silyl enol ethers	138
4.2	Organotin enolates	143
4.3	Comparison of lithium, silicon and tin enolates	145
4.4	Attempted use of an alkylstannane	147
4.5	Reduction of the carbonyl group	149

SUMMARY

150

EXPE	RIMEN	ITAL	151
1.	Preparation of the starting material		
2.	Prepar	ations of halobenzene complexes	154
3.	Nucleo	ophilic substitution of halobenzene complexes	160
4.	Prepar	ations of nitrogen-substituted benzene complexes	
	A)	Benzenamine complexes	164
	B)	Amide complexes	166
	C)	Silyl protecting groups	169
	D)	N,N-Dimethylbenzenamine complexes	173
	E)	N,N-Di-2-propenylbenzenamine complexes	174
	F)	Imine complexes	176
	G)	Phthalamide complexes	179
	H)	Azobenzene and azoxybenzene complexes	181
	I) t	-Butyl propanoate protecting groups	186
	J) .	Azide complexes	191
	K)	Ether protecting groups	192
5.	Prepar	ations of dibenzo[b,e][1,4]dioxin complexes	193
6.	Liberations of dibenzo[b,e][1,4]dioxins		
7.	Prepar	ration of	
	2-(2-a	cetylaminoethyl)dibenzo[b,e][1,4]dioxin	199
8.	Preparations of nitrogen-substituted 1,2-benzenediols		
	A)	Attempted preparation of	
		2-acetylaminodibenzo[b,e][1,4]dioxin	203
	B)	Preparation of	
		2-(2-acetylaminoethyl)dibenzo[b,e][1,4]dioxin	
		via N-[2-(3,4-dihydroxybenzene)ethyl]acetamide	206
9.	Benzin	midazole complexes	
	A)	5-Bromo-1-methylbenzimidazole	209
	B)	1-Methylbenzimidazole	212
	C)	1-Acetylbenzimidazole	212
	D)	Benzimidazele	214

10.	10. Preparations and reactions of carbonyl-substituted benzene ruthenium complexes		
	A)	Preparations of carbonyl-substituted benzene	
		complexes	214
	B)	NaBH ₄ Reductions of carbonyl-substituted benzene	
		complexes	220
	C)	NaBH ₄ Reductions of the free ligands, and	
		subsequent complexations	223
	D)	Incorporation of a trimethylsilyl group	229
11.	Prepar	ations and use of silicon and tin reagents	230
APPENDICES			235
REFERENCES			240
ACKNOWLEDGEMENTS			247

1

ABSTRACT

The modified reactivity observed when a substituted arene is complexed to a cyclopentadienylruthenium moiety has been exploited to prepare a range of synthetically interesting target molecules.

Activation of nitrogen- and halogen- substituted arenes has been achieved by complexation to the cyclopentadienylruthenium moiety.

Double nucleophilic substitution reactions between substituted (η^{6} -1,2-dichlorobenzene)RuCp⁺ salts and substituted 1,2-benzenediols were carried out under mild conditions to prepare substituted (η^{6} -dibenzodioxin)ruthenium complexes. Both monoand di-substituted dibenzodioxin complexes were prepared. The dibenzodioxin ligands were subsequently liberated by photolysis.

The complexation of a range of substituted benzimidazoles to the cyclopentadienylruthenium moiety has been studied. Several complexes were isolated and structures proposed.

The metal moiety has been used to influence the stereoselection achieved in the reduction of carbonyl substituted arenes. A number of keto-arene complexes were prepared and reduced with sodium borohydride. The resulting alcohol complexes were characterised and the observed diastereoselectivity rationalised.

Yanovsky-like adducts were prepared by nucleophilic addition to the cationic ruthenium salts to produce neutral (η^5 -cyclohexadienyl)ruthenium complexes. A comparison between lithium, silicon and tin enolates was undertaken.

i