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Abstract

Pyragas time-delayed feedback is a control scheme designed to stabilize unstable periodic

orbits, which occur naturally in many nonlinear dynamical systems. The control scheme

targets a specific unstable periodic orbit by adding a feedback term with a delay chosen

as the period of the unstable periodic orbit. In this thesis we consider the global effects

of applying Pyragas control to a nonlinear dynamical system near a subcritical Hopf

bifurcation. We start by considering the standard example of the Hopf normal form

subject to Pyragas control, which is a delay differential equation that models how a

generic unstable periodic orbit is stabilized. We find that the addition of feedback induces

infinitely many Hopf bifurcation curves and possibly infinitely many stable periodic orbits

in addition to the target periodic orbit. Therefore, the controlled system could follow one

of these periodic orbits rather than the target periodic orbit. As such, we find that to

ensure successful implementation of the control scheme, one must consider the global

dynamics of the system. Furthermore, we consider the effect of a delay mismatch in the

system, where the delay is set close to but not equal to the period of the target periodic

orbit. We find that the delay must be set as at least a linear approximation of the period

of the target periodic orbit. To verify the predictiveness of the normal form analysis, we

consider the global dynamics of the Lorenz system subject to Pyragas control. We find

that the addition of feedback induces further Hopf bifurcation curves and further stable

periodic orbits, showing that the Hopf normal form with feedback is indeed predictive of

the observed global dynamics and the effect of a delay mismatch in the system. Finally,

we consider the subcritical complex Ginzburg–Landau equation subject to a modified

Pyragas control scheme, which includes a spatial feedback term. We find that traveling

wave solutions of the system cannot be stabilized with either spatial or temporal feedback.
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1
Introduction

The control of unstable dynamics is an area of significant interest in engineering [3],

biotechnology [28, 59, 78], chemistry [60] and other scientific disciplines. The motivation

for controlling unstable behavior stems from applications where stable periodic motions

or equilibrium solutions are favored over the unpredictability associated with unstable or

chaotic dynamics. For instance, in [41] the unstable motion of a cutting tool, known as

machine chatter, is undesirable as it results in an imperfect cut. The majority of available

control methods, such as gain scheduling [51] and feedback linearization [36], focus on

controlling an equilibrium solution of a nonlinear system. In this thesis we are interested

solely in the control of unstable periodic orbits, these are also called UPOs [13, 24, 63].

An unstable periodic orbit is a periodic solution of a dynamical system that has at least

one Floquet multiplier outside of the unit circle in the complex plane. The motion of the

unstable periodic orbit may be desirable from an experimental point of view, but to make

this motion observable it must be stabilized or controlled. For example, in [28] a stable

periodic motion of the cardiac system is required, but the addition of a drug into the

system makes the desired periodic orbit unstable; these authors apply a control scheme

to stabilize the unstable periodic orbit.

Our starting point is a system of (autonomous) ordinary differential equations (ODEs)
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ẋ(t) = f(x(t), µ), (1.0.1)

where x ∈ Rn, f : Rn × Rm 7→ Rn is a smooth function and µ ∈ Rm is a vector of scalar

parameters. Here Rn is the phase space of the ODE, meaning that an initial condition

x0 ∈ Rn uniquely defines the solution of the initial value problem (IVP). Suppose that

system (1.0.1) has an unstable periodic orbit Γ, which we would like to stabilize. Unstable

periodic orbits such as Γ can arise in system (1.0.1) in a number of ways. In particular,

a periodic orbit may bifurcate from an equilibrium solution at a Hopf bifurcation; the

bifurcating periodic orbit may be unstable depending on the eigenvalues at the equilibrium

and the criticality of the Hopf bifurcation. Moreover, unstable periodic orbits (of saddle

type) can be found as part of chaotic attractors, where they are dense. In both cases

it may be desirable to find and stabilize an unstable periodic orbit. Two of the most

successful methods designed to control and stabilize an unstable periodic orbit Γ are that

by Ott, Grebogi and Yorke (OGY) [58] and that by Pyragas [70]. Both of these methods

are non-invasive, that is, when the target periodic orbit Γ has been stabilized the control

force vanishes.

1.1 The OGY control scheme

The method by Ott, Grebogi and Yorke [58] was one of the first control schemes suggested

to stabilize an unstable periodic orbit Γ. The method is mainly used for the control of

periodic orbits that lie within a chaotic attractor. It is defined for maps of dynamical

systems, which are in discrete time. For a continuous time dynamical system such as that

in (1.0.1), the user can take a Poincaré section of the system. For this map the periodic

orbit Γ gives rise to a periodic point γ. When a trajectory passes within a predefined

fixed neighborhood of γ, it is given a small perturbation towards its stable direction.

If the trajectory visits this neighborhood often enough, the unstable periodic orbit Γ is

stabilized. That is, the trajectory requires a sufficient number of perturbations towards its

stable direction in order to stabilize Γ. Once the periodic orbit Γ is stabilized the trajectory

will receive no further perturbations. Thus, as the control force, which is in the form of

small perturbations, has disappeared the OGY method is non-invasive. However, the

method has a few disadvantages. One disadvantage of the original OGY method is that

the time taken for a trajectory to visit the fixed neighborhood can be large. This waiting

time can be minimized through more advanced processes of targeting, such as those

described by Shinbrot et al. [84]. For example, one technique is to continually adjust the

size of the perturbation parameter. This pushes the trajectory nearer to the desired state
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more quickly. Both the original and targeted OGY methods require quite some detailed

knowledge of the system. In particular, the user must know the linear stable and unstable

directions of the target unstable periodic orbit Γ. Thus, this method has sometimes proved

difficult to implement in experiments, especially where detailed analytical information on

the system is unavailable. In addition, if the attractor in the system is not chaotic but

is a stable periodic solution, or if the user would like to stabilize multiple orbits, then

revisions to the original method are required to achieve stabilization of a desired unstable

periodic orbit [58]. This is because small parameter perturbations will only change the

periodic orbit slightly, not enough to stabilize it, and the system will continue to follow

the behavior of the stable periodic orbit. The system behavior can, however, be changed

by altering the time taken before returning to the fixed neighborhood. Furthermore,

to stabilize multiple periodic orbits the user can switch between different return times.

Despite these difficulties the OGY method has been successfully implemented in a number

of applications, most notably in laser [77] and chemical [60, 61] experiments.

1.2 The Pyragas control scheme

The method introduced by Pyragas [70] applies a continuous time-delayed feedback term

that forces the system towards the desired periodic dynamics. Suppose system (1.0.1) has

an unstable periodic orbit Γ with period T (µ). The Pyragas control scheme is then

ẋ(t) = f(x(t), µ) +K[x(t− τ)− x(t)], with τ = T (µ). (1.2.1)

Here K is a n × n feedback gain matrix [13, 63, 65], coupling the feedback term to the

original system of ODEs (1.0.1). Pyragas control targets the unstable periodic orbit Γ by

setting the delay equal to its period T (µ). The control force depends on the difference

between the signals x(t − T (µ)) and x(t) in (1.2.1); when the control is successful (that

is, K is chosen suitably) system (1.2.1) converges toward the target state, which is the

periodic orbit Γ. As Γ is approached the difference in the control term becomes smaller.

When the target periodic orbit Γ has been stabilized, the system follows the desired

periodic motion effectively with zero control force. Hence, the Pyragas control method is

indeed non-invasive. Figure 1.1 shows a schematic that describes Pyragas control.

Pyragas time-delayed feedback control [69] was first developed as a method to control

chaotic systems and was initially tested on the Rössler system. Since then it has been

implemented successfully in a number of applications, most notably in laser [9, 80], elec-
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f (x(t), µ)

τ

x(t)

K

x(t− τ)

x(t)

Figure 1.1: A schematic of the Pyragas control scheme. The difference between the signals x(t − τ)
and x(t) is fed back into the system via the feedback gain K.

tronic [29] and engineering [27,81] systems. There have also been several modifications to

the original method; for example, to stabilize high-period orbits [62,92] and to extend the

control scheme to include spatial feedback [53]. This combination of spatial and temporal

feedback has led to the Pyragas control scheme being successfully used to control pattern

formation [43, 56, 64]. The control scheme has also been adapted to control synchroniza-

tion in coupled systems, such as synchronized firing in coupled neuron systems [82]. An

overview of the method and many of its extensions and applications can be found in [83].

1.2.1 Delay differential equations

A result of implementing the Pyragas scheme is that the controlled system (1.2.1) is a

delay differential equation (DDE) with a single fixed delay τ . A DDE describes a system

where the time evolution of a state is dependent on past states. DDEs are particularly

useful for modeling systems that have an inherent time-lag such as those that involve

some transportation of information and also systems that are highly dependent on past

states such as predator-prey models.

One of the main differences between the analysis of a DDE and an ODE is the nature

of the phase space. For a DDE with a fixed delay, an initial condition takes the form of

a continuous function φ(t) on the interval [−τ, 0]; see, for example, [21, 32, 91]. In other

words, to determine how (1.2.1) will evolve, the user must define a history of length τ . This

means that the phase space of the DDE is the infinite-dimensional space C([−τ, 0];Rn)

of continuous functions from [−τ, 0] to Rn; here Rn is referred to as the physical space.

A schematic of the initial function φ(t) on the interval [−τ, 0] is shown in Fig. 1.2.
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−τ t

φ(t)
x(t)

0

Figure 1.2: An initial function φ(t) of a DDE defines a history of length τ .

As with ODEs the stability of an equilibrium point of a DDE is determined by the roots

of the characteristic equation of the system. However, the characteristic equation of a

DDE is quasi-polynomial, that is to say, it contains terms of the form eλt (for eigenvalues

λ) [32]. Hence, it has infinitely many roots in the complex plane. For an equilibrium

solution of a DDE to be stable, all of these roots must have a negative real part. It has

been shown that the equilibrium solution of a DDE only has a finite number of roots

with positive real part [21, 32]. Therefore, one need only consider the root (or complex

conjugate pair of roots) with the largest real part to determine stability. This means that

standard bifurcation theory (i.e. that for ODEs) applies to a system such as (1.2.1); for

example, a Hopf bifurcation occurs when a pair of complex conjugate eigenvalues have

zero real part [21].

A periodic orbit Γ is a solution of (1.2.1) such that after time T (µ), where T (µ) is the

parameter-dependent period of Γ, a function section of length τ is repeated. The stability

of Γ is determined by its Floquet multipliers. A periodic orbit Γ has a countable number

of Floquet multipliers with only a finite number outside of the unit circle in the complex

plane [32]. Therefore, when a parameter is changed in a DDE such as (1.2.1), one can

find the same bifurcations of periodic orbits as in ODEs, including saddle-node of limit

cycles or fold bifurcations, Hopf bifurcations and period-doubling bifurcations.

Although DDEs are generally more difficult to study analytically than ODEs, there are

several computational tools available for the study of DDEs. The routine dde23 imple-

mented in Matlab [55] is a numerical integrator that solves IVPs for DDEs with constant

time-delays. DDE-Biftool [22] is a software package, implemented in Matlab [55], that

is capable of continuing equilibria, periodic orbits and bifurcations of equilibria. We use

DDE-Biftool in its extended form (version 3.0) developed by Sieber [85] to compute the

bifurcation curves presented in this thesis, including those of periodic orbits.
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1.2.2 Determining the target period

It is often stated that the Pyragas control scheme is easy to implement [9, 26, 82], as the

user requires only knowledge about the period T (µ) of the target unstable periodic orbit

Γ; setting the system delay τ equal to T (µ) provides an in-built targeting mechanism.

However, there are two major questions that must be answered to ensure successful im-

plementation of the Pyragas control scheme. The first is the practical question of how to

determine the parameter-dependent period T (µ) of an unknown target unstable periodic

orbit Γ. The second is the more theoretical question of how close the chosen delay τ must

be to the target period T (µ) for the control scheme to still produce a stable periodic orbit

that is sufficiently close to Γ.

Of course one could simply choose an arbitrary period, fix the delay τ at this value, and

observe what happens. This is a particularly useful approach when there is a chaotic

attractor in the system. A chaotic attractor is densely filled with unstable periodic orbits

and, therefore, it is likely that, even with an arbitrary choice of period, the system will

converge to some periodic orbit [31].

However, this approach is of little use when the system has only one unstable periodic

orbit of interest, as it is highly unlikely that the user will guess its (parameter-dependent)

period correctly. Therefore, to run Pyragas control in a parameter dependent setting, a

scheme is required that determines the period T (µ) of the target periodic orbit for all µ.

In this way, a specific periodic orbit can be targeted and tracked in parameter space.

In [79,80] Schikora et al. implement Pyragas feedback control for a multisection semicon-

ductor laser near a subcritical Hopf bifurcation. The complexity of the system in question

makes an analytic determination of the period difficult. Instead, a constant value for the

period was chosen and set as the delay τ of the Pyragas control term. This chosen value

was found via independent experiments before the periodic orbit becomes unstable. As

long as a periodic orbit is stabilized and the residual control force in the system is below

a predetermined threshold, the control scheme is considered successful. As parameters

are changed the residual control force grows, and when it reaches the threshold the target

period and, hence, the delay τ is adjusted [79,80]. In an iterative procedure τ is adjusted

in accordance with parameter changes to ensure the system is at a stable periodic orbit

and there is low residual control force. This procedure has the disadvantage that it is

operator intensive, that is, as parameters are changed the operator must manually change

the delay in the control term.

A solution to finding the parameter-dependent period of a target unstable periodic orbit
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is provided by the method developed by Sieber and Krauskopf [88, 89]. Their approach

is to embed Pyragas control into a continuation scheme, which automatically determines

the period of the target periodic orbit as part of the continuation procedure. Moreover,

the local control scheme allows them to drive the system to a reference target ensuring

with a Newton step that the control force goes to zero when a parameter is changed

slightly. This results in the next point where the reference signal and output of the system

agree. This approach has the advantage that the user need not specify an equation for

the right-hand side of the system (1.2.1). The method was demonstrated with proof

of concept computer experiments of an injection laser and a dry-friction oscillator; it

was also demonstrated in an actual experiment of a vertically forced pendulum [87, 89].

Subsequently, the method was used by Barton et al. in an energy-harvester [5, 6] and by

Bureau et al. in an experimental bifurcation analysis of a harmonically forced impact

oscillator [15]. A disadvantage of this method is that the process of embedding Pyragas

control into a continuation scheme adds complexity and computational effort.

Pyragas et al. [74] developed an adaptive algorithm that determines the period through

the use of a state-dependent delay. The algorithm adapts the delay time continuously,

which results in exact convergence to the period of the targeted periodic orbit. As such,

no switching of the control force is required. The method was implemented in proof of

concept computer experiments of the Rössler and Mackey-Glass systems. A disadvantage

of this method is the presence of a state-dependent delay. The theory of state-dependent

delays is not as well developed as that of fixed delays; for example the Hopf bifurcation

theorem for state-dependent delay equations was only proved recently [86]. As such, the

analysis of systems with state-dependent delays is, in general, more difficult than that of

systems with fixed delays.

1.3 Motivation and aims

The principal aim of this thesis is to understand the global or overall dynamics that may

arise when Pyragas time-delayed feedback control is implemented. Here, the term global

is used with respect to the parameter space. To understand these dynamics, we aim to

answer the following questions. Can stabilization of the target periodic orbit be achieved

for all values of system parameters? Does the addition of feedback induce further stable

periodic orbits that are not the target? As we will see, even in a simple setting, successful

implementation of Pyragas control is actually quite challenging.

In this thesis, we start by considering the subcritical Hopf normal form subject to Pyragas
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control. Brown [14] found that close to a subcritical Hopf bifurcation the same local

dynamics are induced if feedback is added to a full system as when feedback is added to

the system reduced to the subcritical Hopf normal form. Here, we consider whether the

same is true of the global dynamics. That is, can the global dynamics of the subcritical

Hopf normal form subject to Pyragas control predict the global dynamics of other systems

with feedback near a subcritical Hopf bifurcation?

Furthermore, this thesis aims to answer the question of how precisely the delay must be

set in the Pyragas control scheme. The scheme is simple to setup, but determining the

exact period can be difficult. As previously discussed, there are several methods that can

be used to automatically determine the period, such as the iterative procedure of Schikora

et al. [79, 80], the continuation procedure of Sieber and Krauskopf [88] and the adaptive

algorithm developed by Pyragas [74]. However, all of these methods add complexity and

computational effort. Thus, in this thesis we consider whether the Pyragas control scheme

is successful when the delay is set as a simpler functional form of the exact period of the

target periodic orbit. In other words, we consider the effect of a delay mismatch.

We also consider the effectiveness of Pyragas control on a spatially extended system

near a subcritical Hopf bifurcation. Specifically, we consider stability of traveling wave

solutions of the subcritical cubic complex Ginzburg–Landau equation in one complex

spatial variable subject to Pyragas control. Here, our aim is to understand whether or

not Pyragas control can be successfully applied to spatially extended systems near a

subcritical Hopf bifurcation.

1.4 Outline of thesis

The thesis is organized as follows. Chapter 2 considers the global effect of applying

Pyragas control to a nonlinear dynamical system. Specifically, we consider the standard

example of the subcritical Hopf normal form subject to Pyragas control. Our aim is

to study how this model depends on its different parameters, including the phase of the

feedback and the imaginary part of the cubic coefficient, over their entire ranges. We show

that the delayed feedback control induces infinitely many curves of Hopf bifurcations, from

which emanate infinitely many periodic orbits that, in turn, have further bifurcations.

Moreover, we show that, in addition to the stabilized target periodic orbit, there are

possibly infinitely many stable periodic orbits. We compactify the parameter plane to

show how these Hopf bifurcation curves change when the 2π-periodic phase of the feedback

is varied. In particular, the domain of stability of the target periodic orbit changes in this
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process and, at certain parameter values, it disappears completely. Overall, we present a

comprehensive global picture of the dynamics induced by Pyragas control in the subcritical

Hopf normal form.

In chapter 3 we consider how precisely the delay must be set in Pyragas control. The

control scheme targets a specific unstable periodic orbit by adding a feedback term with

a delay chosen as the period of the unstable periodic orbit. However, in an experimental

or industrial environment, obtaining the exact period or setting the delay equal to the

exact period of the target periodic orbit may be difficult. This could be due to a number

of factors, such as incomplete information on the system or the delay being set by inac-

curate equipment. We again consider Pyragas control applied to the prototypical generic

subcritical Hopf normal form but now when the delay is close to but not equal to the

period of the target periodic orbit. Specifically, we consider two cases: firstly a constant

and, secondly, a linear approximation of the period. We compare these two cases to the

case where the delay is set exactly to the target period, which serves as the benchmark

case. For this comparison, we construct bifurcation diagrams and determine any regions

where a stable periodic orbit close to the target is stabilized by the control scheme. In this

way, we find that at least a linear approximation of the period is required for successful

stabilization by Pyragas control.

In chapter 4 we consider the famous Lorenz system subject to Pyragas time-delayed

feedback control. Our aim is to show that the global dynamics induced when Pyragas

control is added to the subcritical Hopf normal form (presented in chapter 2) are relevant

for other systems with Pyragas control near a subcritical Hopf bifurcation. We perform a

detailed bifurcation analysis of the Lorenz system with feedback and show that the global

dynamics agree closely with those of the Hopf normal form with feedback. In particular,

the domain of stability of the target periodic orbit in the Lorenz system closely resembles

that for the Hopf normal form. Moreover, for a suitable value of the 2π-periodic feedback

phase, we find that the stability domain in the Lorenz system is topologically the same as

in the Hopf normal form. That is, in both systems the stability domain is bounded by the

same bifurcation curves and these curves start and end at the same points. Similarly to

the Hopf normal form with feedback, we also find further delay-induced Hopf bifurcation

curves and stable delay-induced periodic orbits. We also consider the effect of a delay

mismatch in the controlled Lorenz system, and again find that our results closely correlate

with those for the Hopf normal form. In particular, we again find that the delay must

be set as at least a linear approximation of the period of the target periodic orbit for

the control scheme to be considered successful. Overall, we find that the dynamics of the

Lorenz system subject to Pyragas control are accurately predicted by the subcritical Hopf

normal form subject to Pyragas control.
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In chapter 5 we aim to stabilize traveling wave solutions of the subcritical complex

Ginzburg–Landau equation (CGLE) through the application of the modified Pyragas

control scheme developed by Lu. et al [53]. The modified Pyragas method involves spa-

tial feedback as well as temporal feedback. We perform a linear stability analysis of the

traveling wave solutions by considering small-amplitude perturbations for some pertur-

bation wavenumber. The spatial shifts are chosen according to the wavelength of the

targeted traveling wave and the temporal delay term is set as its period. We find that

spatial feedback is not sufficient in stabilizing the traveling wave solution. We also show

analytically that stabilization is not possible with a purely real temporal feedback gain.

Lastly, we provide numerical evidence to support our observation that stabilization is not

possible with a complex temporal feedback gain.

A discussion of the analysis presented in this thesis and possible future directions of

research is given in chapter 6.
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2
A global bifurcation analysis of the

subcritical Hopf normal form subject to
Pyragas time-delayed feedback control

The results in this chapter have been published in [67]. The aim of this chapter is to

understand the global dynamics that arise when Pyragas time-delayed feedback control is

implemented. To this end, we analyze the generic subcritical Hopf normal form subjected

to Pyragas feedback control, as first proposed by Fiedler et al [24], and given by

ż = (λ+ i)z(t) + (1 + iγ)|z(t)|2z(t) + b0e
iβ[z(t− τ)− z(t)]. (2.0.1)

Here z ∈ C and λ, γ ∈ R; the complex number b0e
iβ is the feedback gain K; b0 ∈ R is the

control amplitude; and β is the phase of the feedback. We use the convention that b0 ≥ 0

and β ∈ [0, 2π]. As the feedback gain of the Pyragas control is dependent on both b0 and

β, and as b0e
iβ = −b0e

i(β±π), a reflection of the same dynamics as those presented in this

chapter can be achieved for a negative b0 through a shift of π in the 2π-periodic feedback

phase β.
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We consider system (2.0.1) because the period of the target periodic orbit and the local

mechanism of stabilization can be understood by analytical work, which is rare for non-

linear time-delay systems. System (2.0.1) has been well studied in [13, 24, 38] near the

Hopf bifurcation point; a summary of this work is given in section 2.1. On the other

hand, the global dynamics resulting from the addition of feedback have not been fully

considered yet.

The generic subcritical Hopf normal form is given by the ODE part of (2.0.1), which is

ż = (λ+ i)z(t) + (1 + iγ)|z(t)|2z(t). (2.0.2)

As in (2.0.1), system (2.0.2) is written in the complex variable z ∈ C. There is a subcritical

Hopf bifurcation at λ = 0, which we denote HP. From HP emanates an unstable periodic

orbit ΓP , which has one unstable Floquet multiplier. In the literature ΓP is often referred

to as the Pyragas periodic orbit, and it is the control target [13,24,38].

In this chapter we take a global view of the controlled system (2.0.1) and perform a

detailed bifurcation analysis in the (λ, b0)-plane. We analyze how the targeted unstable

periodic orbit ΓP is stabilized and also show its domain of stability locally as well as

globally. Moreover, we show that the system (2.0.1) has infinitely many Hopf bifurcations

in addition to HP, which are induced by the delay term. We analyze bifurcations of the

target periodic orbit and those periodic orbits that emanate from delay-induced Hopf

bifurcations. In particular, we find that there are other stable periodic orbits in addition

to the target periodic orbit ΓP . To present the global dynamics of the system we show

bifurcation sets in a compactified (λ, b0)-plane, thus allowing us to present the limiting

behavior at infinity. Using this compactification we are able to see how the structure and

geometry of system (2.0.1) changes globally as the feedback phase β is varied through a

period of 2π. In particular, we find a cyclic-type transition of the infinitely many delay-

induced Hopf bifurcation curves. We also show how the domain of stability of ΓP in the

(λ, b0)-plane changes as β is varied. Finally, we also consider the effect that changing the

normal form parameter γ has on the dynamics of system (2.0.1); specifically, we determine

for which values of γ the Pyragas control scheme fails.

This chapter is organized as follows. Section 2.1 gives some background on (2.0.1) and a

synopsis of the literature on its study. Section 2.2 presents the dynamics of system (2.0.1)

close to the Hopf bifurcation HP in the (λ, b0)-plane. Section 2.3 considers a more global

view of the (λ, b0)-plane and shows further dynamics induced by the feedback. Section

2.4 studies the effect that changing the parameter β has on the domain of stability of
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the target periodic orbit ΓP and the delay-induced Hopf bifurcation curves. Section 2.5

considers the effect of the parameter γ on the stabilization of ΓP . Conclusions and a

discussion can be found in section 2.6.

2.1 Notation & Background

In system (2.0.1) Pyragas control is applied to the subcritical Hopf normal form. A normal

form is a reduced analytic expression of a general problem on the centre manifold, achieved

through successive coordinate transformations. Analysis of the normal form is often easier

than that of the unsimplified system, yet it yields a precise qualitative overview of the

dynamics of the system. Brown et al. [13] showed that near a Hopf bifurcation, the same

dynamics are induced, whether Pyragas control is added to the normal form or to the

original equations.

System (2.0.2) displays the symmetry associated with the Hopf normal form, namely

it is invariant with respect to any rotation in the complex plane about the origin (the

S1 group operation). In fact, the normal form highlights this symmetry property near

the Hopf bifurcation, which would otherwise not be discernible in the full system [31];

this symmetry can aid in the analysis of the dynamics. When reducing a system near

a Hopf bifurcation to its normal form all quadratic terms can be removed under a non-

linear change of coordinates [31]. However, cubic terms of the form |z(t)|2z(t) cannot

be removed as they are resonant, that is, invariant under the aforementioned symmetry.

Therefore, Hopf bifurcations of the zero equilibrium solution of (2.0.2) with a pair of

purely imaginary eigenvalues η = ±i produce rotating wave solutions of the form

z(t) = rP e
i 2π
T (λ)

t, (2.1.1)

where T (λ) denotes the period of the bifurcating periodic orbit ΓP . System (2.0.2) is

transformed to polar coordinates by the ansatz (2.1.1), yielding,

0 = (λ+ r2P )rP

2π
T (λ)

= (1 + γr2P ).
(2.1.2)

From the equations (2.1.2) we find that ΓP has amplitude rP =
√
−λ, exists for λ < 0

and has period T (λ) = 2π
1−γλ . System (2.0.1) maintains the symmetry properties of the

Hopf normal form as it is a DDE with a fixed delay, where the delay term enters linearly;
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that is, the delay term is also invariant under any complex rotation about the origin. The

basic periodic orbits of (2.0.1) are circular and, hence, can be represented by their radius.

Since the unstable periodic orbit ΓP is the target state of the Pyragas control, in (2.0.1)

we set

τ = T (λ) =
2π

1− γλ. (2.1.3)

Throughout our analysis of (2.0.1) in this chapter we fix τ to the expression (2.1.3). The

Hopf bifurcation HP is also always at λ = 0 in the DDE (2.0.1), but its criticality may

differ from that of HP in the normal form (2.0.2), where it is always subcritical.

Fiedler et al. [24] first introduced and analyzed system (2.0.1). The main motivation of

these authors was to use (2.0.1) as a counterexample to the ‘odd number limitation’, which

states that only unstable periodic orbits with an even number of real unstable Floquet

multipliers can be stabilized with Pyragas control [57]. The principal focus of [24] is the

successful local stabilization of the target unstable periodic orbit ΓP , which emanates from

the subcritical Hopf bifurcation HP. The periodic orbit ΓP has one real Floquet multiplier

greater than unity, hence, its stabilization provided a counterexample to the odd-number

limitation. Fundamentally, this successful stabilization is possible due to the choice of

the feedback gain as b0e
iβ in (2.0.1). The authors of [24] do not fix the delay τ ; they

discuss the mechanism for local stabilization and present the results in the two-parameter

(λ, τ)-plane. Fiedler et al. show that the addition of feedback induces a secondary Hopf

bifurcation. From this Hopf bifurcation emanates a stable periodic orbit. This stable

periodic orbit then undergoes a transcritical bifurcation with the target state ΓP . In

this transcritical bifurcation the two periodic orbits exchange stability, resulting in ΓP

becoming stable. Beyond discussing how stabilization works, Fiedler et al, [24] establish

a domain within the (λ, τ)-plane in which the target orbit ΓP is stable. In particular, they

develop analytical expressions for the upper and lower limits of the control amplitude b0

for this domain when λ is small. This analysis also yields the result that stabilization

fails when the feedback gain b0e
iβ is real, that is to say, when β = 0 or β = π.

Just et al. [38] conducted a detailed local bifurcation analysis of system (2.0.1), presented

in the (λ, τ)-plane and in the (b0, τ)-plane. These authors derive the critical level of

feedback amplitude given by the b0 value

bc0 =

{
(λ, b0) =

(
0,

−1

2π(cos β + γ sin β)

)}
, (2.1.4)

immediately above which the target state ΓP bifurcates stably from HP at λ = 0 (for larger
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values of b0 other instabilities may occur; these are discussed in section 2.3). Moreover, [38]

also gives the condition

b0τ =
−1

(cos β + γ sin β)
, (2.1.5)

at which a transcritical bifurcation occurs.

Brown et al. [13] analyze how Pyragas control stabilizes an unstable periodic orbit that

emanates from a generic subcritical Hopf bifurcation in an n-dimensional dynamical sys-

tem. Critical to this successful stabilization is the correct choice of feedback gain b0e
iβ,

and [13] presents explicit formulae for choosing both b0 and β. Furthermore, these authors

perform a linear stability analysis and a center manifold reduction to show that there ex-

ists a degenerate Hopf bifurcation at the point bc0. In fact, [13] shows that the point bc0 in

the (λ, b0)-plane is a Hopf bifurcation point with a further degeneracy; namely for a solu-

tion η of the characteristic equation of the linearized system, one has that Re[ dη
dλ

(0)] = 0

when b0 has the value in (2.1.4). Moreover, at bc0, the cubic coefficient of the normal form

is purely imaginary. Brown et al. [13] also present a schematic of the local bifurcation set

in the (λ, b0)-plane near the point bc0. In particular, they detail where the target unstable

periodic orbit ΓP is stabilized. The authors of [13] also show that stabilization of ΓP is

impossible when the real part of the imaginary cubic coefficient of system (2.0.1) is zero,

that is, when γ = 0.

Erzgräber et al. [23] discuss the effect of the feedback phase β on the dynamics of system

(2.0.1). In particular, they focus on the changes to the domain of the stabilized periodic

orbit, as β is varied over a period of 2π. These authors present a detailed bifurcation

analysis of the equilibrium solution and the target unstable periodic orbit. Furthermore,

they also conducted a bifurcation analysis of the stable periodic orbits induced by the

addition of the feedback term [24, 38]. These results are presented in the (b0, β)-plane.

The analysis of [23] reveals that the target unstable periodic orbit ΓP and the delay-

induced periodic orbits undergo not only the transcritical bifurcation discussed in [24]

and [38], but also torus bifurcations.

2.2 The (λ, b0)-plane near the point bc0

In this section we discuss the dynamics of system (2.0.1) near the Hopf bifurcation HP

that occurs for λ = 0. Throughout this analysis near bc0 we fix γ = −10 and β = π
4

as was
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Figure 2.1: One-parameter bifurcation diagrams in λ of (2.0.1). Panel (a) is for b0 = 0 and shows
the Hopf bifurcation point HP (black dot) of the equilibrium and the bifurcating unstable
periodic orbit ΓP (green dashed). Panel (b) is for b0 = 0.022 and shows further delay-
induced Hopf bifurcations (black dots). From the Hopf bifurcation HL emanates a stable
periodic orbit ΓL (red), which exchanges stability with ΓP at a transcritical bifurcation TC
(black square). Solid (dashed) curves indicate stable (unstable) periodic orbits, the solid
black (grey) lines indicate where the equilibrium is stable (unstable).

done in [24,38]. In particular, we show the mechanism by which Pyragas control stabilizes

the target unstable periodic orbit ΓP . The analysis is presented by both one-parameter

bifurcation diagrams and two-parameter bifurcation sets.

Figure 2.1(a) shows the one-parameter bifurcation diagram in λ of (2.0.1) for b0 = 0,

that is, for system (2.0.2) which has no control term; the unstable periodic orbit ΓP is

represented by the (green) dashed curve. The equilibrium solution is stable (black) before

it undergoes a Hopf bifurcation at the point HP, from which ΓP bifurcates. Figure 2.1(b)

is the one-parameter bifurcation diagram of (2.0.1) for b0 = 0.022 < bc0. The point HP is

unaffected by the presence of delayed feedback and remains at λ = 0. However, further

Hopf bifurcations are now present and they are shown as the additional black dots on the

bottom axis of Fig. 2.1(b). From one of these delay-induced Hopf bifurcations, which we

label HL, emanates a branch of stable periodic orbits. The target periodic orbit ΓP and the

delay-induced stable periodic orbit ΓL exchange stability at the transcritical bifurcation

TC. The target unstable periodic orbit ΓP is thereby stabilized.

Figure 2.2 shows the two-parameter bifurcation set in the (λ, b0)-plane of (2.0.1), near

the critical level of feedback amplitude b0 given by the point bc0 from (2.1.4). This figure

is a computed version of the schematic presented in [13]. The curve HP is the vertical

(green) curve at λ = 0. The curve of delay-induced Hopf bifurcations HL is represented

by the (red) curve that intersects HP at the point bc0. From the point (0, bc0) emerges

the transcritical bifurcation curve TC (purple), the curve extends into the region where
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λ < 0. An analytical expression for the curve TC can be found, by combining equations

(2.1.3) and (2.1.5), as

b0 = TC(λ) =
−1 + γλ

2π(cos β + γ sin β)
. (2.2.1)

The (blue) curve labeled SL is a saddle-node of limit cycles (SNLC) bifurcation (or fold

bifurcation); where a stable delay-induced periodic orbit bifurcates. The curve SL em-

anates from the degenerate Hopf bifurcation point DHL on HL and extends left in the

(λ, b0)-plane for decreasing values of λ and b0. The shaded region in Fig. 2.2 is the do-

main of stability of the target unstable periodic orbit ΓP near the point bc0. The curve

TC forms its lower boundary [13] and the domain is bounded on the right by the Hopf

bifurcation curve HP.

Below bc0, the Hopf bifurcation HP is subcritical and the equilibrium is stable for λ < 0.

In the region to the left of the curve HP and to the right of the curve HL the equilibrium

is unstable. At bc0 the Hopf bifurcation HP changes criticality, hence, immediately above

bc0, HP is supercritical. Also, immediately above bc0, the target periodic orbit ΓP bifurcates

stably from HP.

The curve HL also has sections of differing criticality. Between the point bc0 and the

degenerate Hopf bifurcation point DHL, the curve HL is supercritical; from this section

bifurcates a stable periodic orbit; see Fig. 2.1(b). If b0 is decreased this periodic orbit then

undergoes a saddle-node of limit cycles bifurcation along the curve SL. If b0 is increased it

exchanges stability with ΓP at the transcritical bifurcation TC; see Fig. 2.2. At the point

DHL the Lyapunov coefficient (coefficient of the cubic term in the Hopf normal form)

becomes zero and the Hopf bifurcation changes criticality [46].

To the left of bc0 the curve HL is subcritical; from this section bifurcates an unstable

periodic orbit, which exists for decreasing λ (to the left of HL). To the right of DHL the

curve HL is also subcritical; from this section of the curve bifurcates an unstable periodic

orbit, which also exists for decreasing λ (to the left of HL).

2.3 A more global view of the (λ, b0)-plane

We now consider the (λ, b0)-plane more globally, again for γ = −10 and β = π
4
. By ex-

ploring more of the (λ, b0)-plane we are able to show that the addition of feedback induces

further Hopf bifurcations. From these bifurcations emanate delay-induced periodic orbits;
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Figure 2.2: Bifurcation set in the (λ, b0)-plane of (2.0.1) near the point bc0, where the curves HP (green)
and HL (red) intersect. The transcritical bifurcation curve TC (purple) begins at the point
bc0. The SNLC bifurcation curve SL (blue) emerges from the degenerate Hopf bifurcation
point DHL (∗). The domain of stability of ΓP is shaded.

we analyze the stability and bifurcations of these periodic orbits and show that there are,

in fact, infinitely many stable delay-induced periodic orbits of (2.0.1). We present the

overall domain of stability of the target periodic orbit ΓP and also present a selection of

the domains of stability for the stable delay-induced periodic orbits.

2.3.1 Families of Hopf bifurcations and bifurcating

periodic orbits

Figure 2.3 shows Hopf bifurcation curves of system (2.0.1) in the (λ, b0)-plane; for refer-

ence, note that Fig. 2.2 is an enlargement of Fig. 2.3 near the point bc0. The (λ, b0)-plane

shown in Fig. 2.3 is bounded below at b0 = 0 as is the convention [13, 24, 38]. It also

has a left-hand boundary at λ = 1
γ

(in this parameter regime where γ = −10 this is

at λ = −0.1); at this boundary the delay τ becomes undefined. For λ < 1
γ

the delay

τ defined in (2.1.3) is negative and (2.0.1) is an advanced equation rather than a delay

equation, analysis of which is beyond the scope of this thesis. In particular, for λ < 1
γ

system (2.0.1) no longer describes Pyragas control.

The curve HP is again the vertical (green) curve at λ = 0. By considering a larger view

of the (λ, b0)-plane, the Hopf bifurcation curve HL can now be seen to form a closed loop.

Namely, both of its end points meet at the point b∗0 on the left-hand boundary (λ = 1
γ
)
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of Fig. 2.3. In addition to crossing HP at the point bc0, the curve has a second crossing of

HP at the point HH0. The point HH0 is a non-degenerate double Hopf bifurcation point,

at which two pairs of purely imaginary eigenvalues exist; it is given by

HH0 =

{
(λ, b0) =

(
0,

π − β
2π(sin β)

)}
. (2.3.1)

At HH0 the criticality of HP changes, it is again subcritical and remains subcritical above

HH0. Above HH0 a periodic orbit bifurcates unstably from HP with a complex conjugate

pair of unstable Floquet multipliers. Thus, the target orbit ΓP is only stable when it

bifurcates from HP between the points bc0 and HH0.

In addition to the curve HL, two further delay-induced Hopf bifurcation curves H1
J and

H1
R are shown in Fig. 2.3. Both of these curves also emerge from the point b∗0.

The curve H1
J stretches downwards in the plane from b∗0 before turning upwards and

extending to infinity in the direction of b0. The curve H1
J can be split into sections of

differing criticality. Figure 2.3 shows a degenerate Hopf bifurcation point DH1 near the

minimum of the curve H1
J. At this point the curve H1

J changes criticality; to the left

of DH1, the curve H1
J is subcritical. From this section bifurcates an unstable periodic

orbit, which exists for decreasing values of b0. Between the point DH1 and the point HH1
D

the curve H1
J is supercritical and from this section emanates a stable periodic orbit that

exists for decreasing values of λ and, which we call Γ1
J . Above HH1

D, a periodic orbit that

emanates from H1
J is unstable and exists for decreasing λ.

The curve H1
R starts at the point b∗0 before crossing the curve HP at the double Hopf

bifurcation point HH1 and then extending to infinity in both λ and b0. All periodic orbits

that emanate from H1
R are unstable and bifurcate from H1

R for decreasing values of b0.

Those periodic orbits that bifurcate from H1
R to the right of the point HH1 have three

unstable Floquet multipliers. The unstable periodic orbits that emanate immediately to

the left of HH1 have five unstable Floquet multipliers.

An equation for these delay-induced Hopf bifurcation curves can be found by using the

ansatz z(t) = reiωt in system (2.0.1); setting r = 0 yields the relationship

b0 = H(λ) ≡ −λ2 − (ω − 1)2

2((ω − 1) sin β − λ cos β)
, (2.3.2)

where ω denotes the frequency of the Hopf bifurcation (which is derived in Appendix A).

At the point b∗0, numerical calculations show that the delay-induced Hopf bifurcations
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Figure 2.3: Bifurcation set in the (λ, b0)-plane of (2.0.1), showing the Hopf bifurcation curve HP (green)
and the delay-induced Hopf curves HL, H1

J and H1
R (red). Also shown are the double Hopf

bifurcation points HH0 (green), HH1 (green), HH1
D (violet) and HH2

D(violet), as well as the
points bc0 and b∗0 (black). Degenerate Hopf bifurcation points on HL and H1

J are marked
with an asterisk.

have frequency ω = 0. Substituting ω = 0 and λ = 1
γ

into equation (2.3.2) gives the

expression

b∗0 =

{
(λ, b0) =

(
1

γ
,

1
γ

2
+ 1

2( 1
γ

cos β + sin β)

)}
. (2.3.3)

Note that b∗0 ≈ (−0.1, 0.7935) for γ = −10 and β = π
4

as shown in Fig. 2.3.

Figure 2.4(a) shows the same part of the (λ, b0)-plane as Fig. 2.3, but with additional

Hopf bifurcation curves. More specifically, the curves H1
J and H1

R are, in fact, part of

the respective families of curves HK
J and HK

R , with elements Hk
J and Hk

R respectively

(k = 1, 2, 3, . . .). A selection of curves for each of these families is shown in Fig. 2.4(a). In

addition, two of the double Hopf bifurcation points, where delay-induced Hopf bifurcation

curves cross each other, are marked by violet dots and labelled HH1
D and HH2

D. These

two points form part of a set of double Hopf bifurcation points HHD, where delay-induced

Hopf bifurcation curves cross each other.

20



The curves in the family HK
J slope downwards in the plane, before reaching a minimum

and then extending to infinity in the b0-direction. For increasing k, each curve in the

family has a minimum with a higher value of b0 and lower value of λ than the preceding

curve. Each curve in the family has a degenerate Hopf bifurcation point DHk to the right

of the minimum of the curve. The curves Hk
J converge in this fashion on the left-hand

boundary of the plane at λ = 1
γ

as k →∞.

The curve H1
J intersects other delay-induced Hopf bifurcation curves at double Hopf bi-

furcation points of the set HHD. Every time a point in this set is crossed in the direction

of increasing b0, the periodic orbit bifurcates from H1
J with an additional complex pair of

unstable Floquet multipliers.

The criticality of the subsequent curves of the family HK
J is similar to that of H1

J. More

specifically, the section of Hk
J between the degenerate Hopf bifurcation point DHk and the

first crossing with another delay-induced Hopf bifurcation curve is supercritical. From this

section of Hk
J, bifurcates a stable periodic orbit ΓkJ . These stable delay-induced periodic

orbits are discussed in more detail later in this section.

Each curve of the family HK
R emanates from the point b∗0 and extends to the right of the

plane with positive gradient, crossing the curves Hk
J and HP at double Hopf bifurcation

points before extending to infinity in both λ and b0. At the left-hand boundary where

λ = 1
γ
, as k →∞, each curve Hk

R has a steeper gradient than the preceding curve in the

family and the curves are closer together.

As λ is decreased the curve H1
R intersects other delay-induced Hopf bifurcation curves at

double Hopf bifurcation points that are part of the set HHD. The unstable periodic orbit

that bifurcates from H1
R to the left of one of these points has an additional complex pair

of unstable Floquet multipliers. The criticality of the subsequent curves in the family are

as that of the curve H1
R.

Figure 2.4(b) is an enlargement of the lower left part of Fig. 2.4(a). It also shows the

transcritical bifurcation curve TC (2.2.1) (purple) from Fig. 2.2 over a much larger range

of λ. Figure 2.4(b) shows that TC ends at the left-hand boundary of the plane at the

point (λ, b0) = ( 1
γ
, 0). Figure 2.4(b) also shows a selection of SNLC bifurcation curves SkJ

and SkR of the delay-induced periodic orbits that bifurcate from the HK
J and HK

R families

of Hopf bifurcation curves respectively.

The curves labelled SkJ start at degenerate Hopf bifurcation points (DHk) on Hk
J and end

at the point (λ, b0) = ( 1
γ
, 0) (on the left-hand boundary). These are SNLC bifurcation
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Figure 2.4: Panel (a) shows Hopf bifurcation curves of (2.0.1) in the (λ, b0)-plane; shown are the curves
HP (green), HL (red) and a selection of curves from the families HKJ (red) and HKR (red).
The enlargement in panel (b) also shows the transcritical bifurcation curve TC (purple) and
a selection of curves from the two families of SNLC bifurcations SKJ (blue) and SKR (blue).

curves of periodic orbits that bifurcate from the respective curves in the family HK
J . For

a curve Hk
J the unstable periodic orbit that bifurcates from the section between b∗0 and

DHk undergoes a SNLC bifurcation along the curve SkJ.

The curves labelled SkR are SNLC bifurcation curves of periodic orbits that emanate from
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the respective curves of the family HK
R . The curves start at the point (λ, b0) = ( 1

γ
, 0) (on

the left-hand boundary) and extend to infinity in both λ and b0. The unstable periodic

orbit that bifurcates from a curve Hk
R undergoes a SNLC bifurcation along the curve SkR,

at which it is further destabilized.

2.3.2 Torus bifurcations and the domain of stability of ΓP

The double Hopf bifurcation points, where the curve Hk
R crosses HP at the point HHk form

a set HHK . The points in the set HHK are given by the expression (derived in Appendix

B)

HHk =

{
(λ, b0) =

(
0,
π(1 + k)− β

2π(sin β)

)}
. (2.3.4)

At each point in the set HHK , the frequency ω of the delay-induced Hopf bifurcation is

either ω = 1 or ω = k + β
π
. Therefore, when β = π

4
the double Hopf bifurcation points

in the set HHk are resonant. In this parameter regime HH0 is a double Hopf bifurcation

point of 1:4 resonance; see also [16,50].

As we have already discussed, above HH0, all periodic orbits that bifurcate from HP

are unstable. In fact, above each double Hopf bifurcation point of the set HHK there

are further instabilities in the form of an additional complex conjugate pair of unstable

Floquet multipliers. That is to say, those periodic orbits bifurcating from HP between

bc0 and HH0 have no unstable Floquet multipliers, those that emanate between HH0 and

HH1 have two unstable Floquet multipliers, those that bifurcate from between HH1 and

HH2 have four unstable Floquet multipliers and so on. In other words, the point bc0 forms

the lower right corner of the overall domain of stability of ΓP and HH0 forms its upper

right corner.

Figure 2.5 is an enlargement of the lower left part of Fig. 2.4(a). It shows the overall

domain of stability (shaded) of the target periodic orbit ΓP and a selection of torus bi-

furcation curves (grey and black). It is common for double Hopf bifurcation points to be

the starting point of torus bifurcation curves, and here we show a single torus bifurcation

curve emerging from a few of the double Hopf bifurcation points [31,46].

The curves T0
P, T1

P and T2
P are torus bifurcations of the target periodic orbit ΓP that

emanates from the curve HP. They start at the points HH0, HH1 and HH2 respectively

and the curves T1
P and T2

P end at the point (λ, b0) = ( 1
γ
, 0) on the left-hand boundary of
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Figure 2.5: The first three torus bifurcation curves of the periodic orbit that bifurcates from the curve
HP (green), labelled T0

P, T
1
P and T2

P (grey), and the torus bifurcation curves TkJ (black) of
delay-induced periodic orbits bifurcating from HkJ . The domain of stability of the target
periodic orbit ΓP is shaded. Also shown are the curve TC (purple), a selection of degenerate
Hopf bifurcation points DH (*), the point bc0 (black dot), the point HH0 (dark green dot)
and the point R1 (light green dot) where the curve TC meets the curve T0

P.

the (λ, b0)-plane. The curve T0
P ends on the transcritical bifurcation curve TC at the 1:1

resonance point R1, where the periodic orbits have a double Floquet multiplier at 1.

The overall domain of stability of ΓP is, therefore, bounded below by the curve TC between

the points bc0 and R1, to the left by the curve T0
P and to the right by the curve HP. This

shows that the stabilized periodic orbit ΓP does not remain stable throughout the plane

as suggested by the local unbounded domain that was developed by [13] and shown in

Fig. 2.2.

Each subsequent torus bifurcation (T1
P, T2

P, . . .) results in an additional unstable complex

pair of Floquet multipliers. Thus, as λ is decreased, a periodic orbit ΓP bifurcating from

HP (below HH0) is first stabilized by Pyragas control before becoming unstable in the

torus bifurcation T0
P. It then becomes increasingly unstable as it undergoes further torus

bifurcations (in the set TK
P ) as it approaches the left-hand boundary of dynamics in the

plane at λ = 1
γ
. At this boundary, the period of ΓP (given by T (λ) = 2π

1−γλ) goes to
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infinity.

The periodic orbits that bifurcate from the curve HL are also destabilized in torus bifur-

cations. These torus bifurcation curves emerge from the double Hopf bifurcation points

of the set HHD where the curve HL intersects curves in the family HK
J .

The curves labelled T1
J, T2

J and T3
J are torus bifurcations of the delay-induced periodic

orbits that emanate from the family of curves HK
J . The curves start at the double Hopf

bifurcation points in the set HHD marked in Fig. 2.5 by violet dots. These torus bifurca-

tion curves also terminate at the point (λ, b0) = ( 1
γ
, 0) (on the left-hand boundary). The

previously mentioned stable periodic orbits that bifurcate from the family of curves HK
J

are destabilized in these torus bifurcations. As they approach the left-hand boundary of

the plane the periodic orbits are further destabilized in additional torus bifurcations that

emerge from other points in the set HHD.

The unstable periodic orbits that bifurcate from the family of SNLC bifurcation curves SKR

almost immediately undergo a torus bifurcation, in which they are further destabilized.

Further to the left of the (λ, b0)-plane, these unstable periodic orbits undergo further torus

bifurcations that emerge from double Hopf bifurcation points in the set HHD in which

they are further destabilized.

We notice two things from numerical evidence. Firstly, at the left-hand boundary of the

(λ, b0)-plane the frequency ω of all the delay-induced Hopf bifurcations is zero. Secondly,

at the left-hand boundary, the period of all delay-induced periodic orbits goes to infinity.

2.3.3 Other regions of stable periodic orbits

We now consider in more detail the stable periodic orbits ΓKJ that bifurcate from the

family of Hopf bifurcation curves HK
J . First, we take a slice at b0 = 0.295 of the (λ, b0)-

plane shown in Fig. 2.5. Figure 2.6(a) shows the resulting one-parameter bifurcation

diagram of (2.0.1) in λ, where the bottom axis shows the stability of the equilibrium

solution. The green curve is the stable periodic orbit ΓP , which bifurcates from the Hopf

bifurcation HP. Figure 2.6(a) also shows the stable delay-induced periodic orbits Γ1
J , Γ2

J

and Γ3
J (solid red) that bifurcate supercritically from the Hopf bifurcations H1

J, H2
J and

H3
J. At each of these Hopf bifurcations the equilibrium changes from being stable (black)

to unstable (grey) as λ is reduced. The stable periodic orbits Γ1
J , Γ2

J and Γ3
J become

unstable in the torus bifurcations T1
J, T2

J and T3
J, respectively. The grey curves represent

already unstable delay-induced periodic orbits that bifurcate from HL, H1
J, H2

J and H3
J.
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Figure 2.6(b) shows the corresponding domains of stability (shaded grey) in the (λ, b0)-

plane, namely those of ΓP and of the stable delay-induced periodic orbits Γ1
J , Γ2

J and

Γ3
J . The regions where the equilibrium is stable are shaded blue. Darker blue shading

indicates regions of bistability, where the equilibrium and a periodic orbit are both stable.

As previously discussed, the overall domain of stability of ΓP is bounded by the curves

HP, TC and T0
P. In the part of the domain of stability enclosed by the curves HL, T0

P and

TC the equilibrium is also stable. This bistability adds to the complexity of implementing

the Pyragas control scheme, because the system may not reach the target periodic orbit

even though it is stable.

Similarly to ΓP , the domain of the stable delay-induced periodic orbit ΓkJ is bounded

on the right by the Hopf bifurcation curve Hk
J between the degenerate Hopf bifurcation

point DHk and the double-Hopf bifurcation point HHk
D. Its left-hand boundary is the

torus bifurcation curve Tk
J and its lower boundary the SNLC bifurcation curve SkJ. There

are also regions where the equilibrium and the delay-induced periodic orbit ΓkJ are both

stable. This region is below the curve Hk
J and between the curves Tk

J and SkJ.

Our calculations clearly indicate that there are infinitely many curves in the family HK
J ,

which accumulate on the left-hand boundary λ = 1
γ

of the (λ, b0)-plane. Indeed when

considering the control problem (2.0.1) it is common to take λ as the main bifurcation

parameter. However, to make the connection to the stability problem of a general DDE,

we now take the delay τ as the main bifurcation parameter. Hence, we consider the

bifurcation set of (2.0.1) in the (τ, b0)-plane as shown in Fig. 2.7(a). The bifurcation

curves in Fig. 2.6(b) translate directly to those shown in Fig. 2.7(a) via the parameter

transformation τ = 2π
1−γλ from (2.1.3). The delay τ goes to infinity as λ approaches the

left-hand boundary λ = 1
γ

of the (λ, b0)-plane. Fig. 2.7(a) shows the Hopf bifurcation

curve HP (green) at τ = 2π and the delay-induced Hopf bifurcation curves HL, H1
J, H2

J,

H3
J and H4

J (red). The domains of stability of the target periodic orbit ΓP and the stable

delay-induced periodic orbits Γ1
J , Γ2

J , Γ3
J and Γ4

J are shaded in grey. The equilibrium

solution is stable in the regions shaded blue and the darker blue areas are the regions

of bistability discussed earlier in this section. These domains are bounded by the same

bifurcation curves as those in the (λ, b0)-plane discussed previously.

Figure 2.7(a) shows that the curves of the family HK
J form a lobe structure that is common

in systems with delay [17, 35, 41, 94–96]. The right end of the curve Hk
J has a horizontal

asymptote at b0 ≈ 0.7935 (the b0 value of the point b∗0) as τ →∞, but its left end has a

vertical asymptote at a finite value of τ as b0 → ∞. In fact, for b0 → ∞ the curves Hk
J

are spaced at 2π intervals from each other. This can be shown analytically by considering
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Figure 2.6: Panel (a) is the one-parameter bifurcation diagram of (2.0.1) in λ for b0 = 0.295. Shown are
the stable periodic orbit ΓP bifurcating from HP and further delay-induced stable periodic
orbits Γ1

J , Γ2
J and Γ3

J bifurcating from H1
J, H

2
J and H3

J. These stable periodic orbits become
unstable at the torus bifurcations T1

J, T
2
J and T3

J (black dots). Solid (dashed and grey)
curves indicate stable (unstable) periodic orbits, the solid black (grey) lines indicate where
the equilibrium is stable (unstable). Panel (b) shows the domains of stability (shaded grey)
of the target periodic orbit ΓP and the stable delay-induced periodic orbits Γ1

J , Γ2
J and Γ3

J .
The regions where the equilibrium solution is stable are shaded blue; above the horizontal
boundary at b0 = 0.28, the stability region is not well defined, as further curves of the
family HKJ are not shown.

purely imaginary eigenvalues η = iω of the characteristic equation of (2.0.1). Solving this

equation for the frequency ω (simplifying equations (A.0.2) in Appendix A) yields ω as a

27



(a)

(b)

b0

r

τ

τ

2 12 24 36

2 12 24 36

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

•

•

• • • •

•

HL

HP

HH0

TC
DHL

bc0

T0
P

R1

H1
J H2

J H3
J H4

J

T1
J T2

J T3
J

DH1

DH2
DH3

S1J

S2J

S3J

HH1
D

HH2
D HH3

D

t t t t t t tt t t
•

• • • •HP H3
JH1

J H2
J

T0
P

T1
J T2

J T3
J

ΓP

Γ1
J Γ2

J Γ3
J
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plane. Panel (b) is the one-parameter bifurcation diagram for b0 = 0.295 from Fig. 2.6(a)
but now shown in terms of the parameter τ .

function of λ as

ω(λ) = 1− b0

√1−
(
λ

b0

+ cos β

)2

− sin β

 , (2.3.5)

and as a function of τ as

ω(τ) = 1− b0

√1−
(

1− 2π
τ

γb0

+ cos β

)2

− sin β

 . (2.3.6)
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When b0 → ∞ the part of equations (2.3.5) and (2.3.6) inside the square root becomes

1 − cos2(β) = sin2(β). Thus, the expressions in the square brackets become 0 and,

therefore, the frequency ω tends to 1. Hence, the period T (λ) = 2π
ω

tends to 2π as

b0 → ∞. In [99], Yanchuk and Perlikowski derive the relationship τk = τ0 + kT (0) (for

k = 0, 1, 2, 3, . . . ) between delay and periodicity, which states that periodic orbits reappear

infinitely many times for specific values of τ . Here, τ0 = T (0) = 2π, which implies that

τk = 2kπ is the vertical asymptote of the curve Hk
J. In particular, it follows that there are

infinitely many Hopf bifurcation curves in the family HK
J .

Owing to the different slopes of the curves in the family HK
J , the spacing of associated

points on the curves is no longer 2π for finite b0. Then the spacing of the curves in the

family HK
J can still be described by the expression linking delay and periodicity given

in [99] but with a b0-dependent stretching factor. When considering the bifurcation set

of (2.0.1) in the (λ, b0)-plane, this means that there are infinitely many Hopf bifurcation

curves that accumulate on the left-hand boundary; see Fig. 2.4(a).

The theory of [99] also suggests that there may be infinitely many stable delay-induced

periodic orbits. Figures 2.6(b) and 2.7(a) show that, for large k the domain of stability of

the stable delay-induced periodic orbit ΓkJ becomes impractically small. On the other hand

these two figures also show that the domains of stability of Γ1
J and Γ2

J , are large enough

to cause concern when implementing Pyragas control. As we have already discussed, if

an initial condition is not carefully chosen, the system could reach one of these stable

periodic orbits rather than ΓP .

Figure 2.7(b) is the one-parameter bifurcation diagram in the delay τ of (2.0.1) for b0 =

0.295; compare with Fig. 2.6(a). It shows the periodic orbit ΓP (green) and the stable

delay-induced periodic orbits Γ1
J , Γ2

J , Γ3
J and Γ4

J (red); the already unstable periodic orbits

that bifurcate from delay-induced Hopf bifurcation curves are again shown in grey. The

stable periodic orbits bifurcate from the Hopf bifurcation points Hk
J, which are equally

spaced in τ ; we calculate the spacing for b0 = 0.295 to be approximately 1.1×2kπ. Notice

from Fig. 2.7(b) that for larger values of k the periodic orbit ΓkJ is stable for a smaller

range of τ , which corresponds to the shrinking domains of stability shown in Fig. 2.7(a).

2.4 The effect of the 2π-periodic feedback phase β

Most previous work on (2.0.1) fixes the 2π-periodic feedback phase at β = π
4
. We now

vary β, firstly increasing it and then decreasing it from π
4
. In particular, we evaluate the
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Panel of Fig. 2.8 Description of curves
(a): β = π

4
The domain of stability of ΓP in the (λ, b0)-plane as
in Fig. 2.5. Its right-hand boundary is the curve HP

(green) between the points bc0 (black) and HH0 (green)
and its left-hand boundary is the curve T0

P (grey). The
lower boundary of the stability domain is the curve TC
(purple) between the points bc0 and R1 (green).

(b): β = 3π
4

The two points HH0 and bc0 have moved closer together in
the (λ, b0)-plane. The point R1 has moved right along
the curve TC. The area of the stability domain is re-
duced.

(c): β = 3.00 The point bc0 has moved quickly up in the (λ, b0)-plane.
The point R1 has moved further right in the (λ, b0)-
plane along the curve TC. The stability domain is still
bounded by the same bifurcation curves.

(d): β = 3.12 Here, the domain of stabilization has become very small.
The points bc0 and HH0 are very close together and the
point R1 is close to the curve HP.

(e): β = π The points bc0 and HH0 are equal. The domain of stabi-
lization has disappeared, and thus, control is no longer
successful.

(f): β = 3.20 The point bc0 is above the point HH0 in the (λ, b0)-plane.
As β is further increased the point bc0 moves to infinity
before becoming negative. Stabilization for b0 > 0 is no
longer possible.

Table 2.1: Description of the effect of an increase in the parameter β on the domain of stability of ΓP .
To accompany Fig. 2.8

effect that β has on the domain of stability of ΓP , the geometry of delay-induced Hopf

bifurcation curves and the positions of the points bc0, HH0 and b∗0.

2.4.1 The effect on the domain of stability

Figure 2.8 shows how the domain of stability of ΓP (shaded area) in the (λ, b0)-plane

changes as the parameter β is increased. An overview of these changes to the stability

domain is presented in Table 2.1. Figure 2.8(a) shows the stability domain for β = π
4

as in Fig. 2.5. Recall that for β = π
4

the lower boundary of the stability region in the

(λ, b0)-plane is the transcritical bifurcation curve TC between the points bc0 and R1, the

upper boundary is the torus bifurcation curve T0
P and the right-hand boundary is the

Hopf bifurcation curve HP between the points bc0 and HH0.
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(e) β = π

(c) β = 3.00

(a) β = π
4 (b) β = 3π

4

(d) β = 3.12

(f) β = 3.20

Figure 2.8: The overall domain of stability (shaded) in the (λ, b0)-plane for different values of increasing
β. Panel (a) is for β = π

4 as it is in Fig. 2.5, and panels (b)–(f) are for the stated values
of β. Each panel shows the curves HP (green) and HL (red) as well as the points bc0 (black
dot) and HH0 (green dot). The transcritical bifurcation curve TC (purple) and the torus
bifurcation curve T0

P (grey) meet at the point R1 (light green dot).

As β is increased, as in Fig. 2.8(b) and (c) for β = 3π
4

and β = 3, respectively, the domain

of stability of ΓP becomes smaller in area, but is still bounded by the same curves. Also,

the range of b0 (the difference in b0 between the points HH0 and bc0) for which ΓP bifurcates

stably from HP, decreases. More specifically, the curve HL shifts left in the plane, the
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two points bc0 and HH0 move closer together, and the end of the curve T0
P at the point R1

moves right along the curve TC. As β approaches π, the area of the domain of stability

shrinks to zero; see panels (d) and (e) for β = 3.12 and β = π respectively.

Figure 2.8(e) shows that at β = π, the domain of stabilization has disappeared. Here,

the curve HL is tangent to the curve HP at (λ, b0) = (0, 1
2π

). The points bc0 and HH0 are

both at the point (λ, b0) = (0, 1
2π

). When β = π, the periodic orbits bifurcating from HL

are no longer stable. The targeted unstable periodic orbit that emanates from HP cannot

be stabilized through a transcritical bifurcation (see section 2.2). A periodic orbit that

bifurcates from HP below the point (λ, b0) = (0, 1
2π

) has one unstable Floquet multiplier,

above (λ, b0) = (0, 1
2π

) a periodic orbit that bifurcates from HP has a complex conjugate

pair of unstable Floquet multipliers.

As β is further increased the curve HL has shifted right in the plane. Furthermore, the

points bc0 and HH0 have moved through each other; this is shown in panel (f) of Fig. 2.8.

Below the point HH0, an unstable periodic orbit that bifurcates from the curve HP has one

unstable Floquet multiplier. An unstable periodic orbit that bifurcates from HP between

HH0 and bc0 has three unstable Floquet multipliers. Above the point bc0, an unstable

periodic orbit that bifurcates from HP has two unstable Floquet multipliers. There exist

double Hopf bifurcation points of the set HHK further up the curve HP. Every time a

point in this set is crossed in the direction of increasing b0, the periodic orbit bifurcates

from HP with an additional complex pair of unstable Floquet multipliers. As β is further

increased, the point bc0 →∞ as β → [arctan(− 1
γ
) + π], then for β > [arctan(− 1

γ
) + π] the

point bc0 is negative.

The effect on the domain of stability of ΓP when the feedback phase β is decreased is

considered in Fig. 2.9. An overview of the changes to the stability domain shown in Fig.

2.9 is presented in Table 2.2. Figure 2.9(a) again shows the stability domain (shaded) for

β = π
4

as in Fig. 2.5. As β is decreased both the points bc0 and HH0 move upwards and the

point R1 moves left along the curve TC; this is shown in panels (b) and (c) for β = 0.5

and β = 0.2, respectively. In both of these panels the area of the domain of stability

and the range of stability in b0 increase. As β is decreased below 0.2, the point bc0 moves

upwards at a much faster rate than the point HH0 and the point R1 moves right along the

curve TC. Thus, the area of the domain of stability of ΓP becomes smaller; an example of

this is shown in Fig. 2.9(d) for β = 0.11. At approximately β = 0.103, as shown in panel

(e), the points bc0 and HH0 are equal where the curve HL has a point of self-intersection on

the curve HP and the domain of stability of ΓP has disappeared. Below this point on HP,

a periodic orbit bifurcates unstably from HP with one unstable Floquet multiplier and

above it a periodic orbit bifurcates unstably with a complex conjugate pair of unstable
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Figure 2.9: The overall domain of stability (shaded) in the (λ, b0)-plane for different values of decreasing
β. Panel (a) is for β = π

4 as it is in Fig. 2.5, and panels (b)–(f) are for the stated values
of β. Each panel shows the curves HP (green) and HL (red) as well as the points bc0 (black
dot) and HH0 (green dot). The transcritical bifurcation curve TC (purple) and the torus
bifurcation curve T0

P (grey) meet at the point R1 (light green dot).

Floquet multipliers. The maximum range of stability in b0 is reached at β ≈ 0.12. As β is

further decreased, the point bc0 rises rapidly, going to infinity as β → arctan(− 1
γ
). Below

this value of β the point bc0 is negative.
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Panel of Fig. 2.9 Description of curves
(a): β = π

4
The domain of stability of ΓP in the (λ, b0)-plane as
in Fig. 2.5. Its right-hand boundary is the curve HP

(green) between the points bc0 (black) and HH0 (green)
and its left-hand boundary is the curve T0

P (grey). The
lower boundary of the stability domain is the curve TC
(purple) between the points bc0 and R1 (green).

(b): β = 0.5 The two points HH0 and bc0 have moved upwards in the
(λ, b0)-plane and the point R1 has moved left in the
(λ, b0)-plane along the curve TC. Thus, the domain of
stability increases in area.

(c): β = 0.2 The two points HH0 and bc0 have moved further upwards
in the (λ, b0)-plane. The point R1 has also moved further
left in the (λ, b0)-plane along the curve TC. The stability
domain is maximized in area.

(d): β = 0.11 The points bc0 and HH0 have moved further up in the
(λ, b0)-plane but the point bc0 now moves up in the plane
at a faster rate than the point HH0. The point R1 has
moved right in the (λ, b0)-plane along the curve TC.
Thus, the area of the stability domain is reduced.

(e): β = 0.103 The points bc0 and HH0 are equal. The domain of stabi-
lization has disappeared, and thus, control is no longer
successful.

(f): β = 0.102 The point bc0 is above the point HH0 in the (λ, b0)-plane.
As β is further decreased the point bc0 moves to infinity
before becoming negative.

Table 2.2: Description of the effect of a decrease in the parameter β on the domain of stability of ΓP .
To accompany Fig. 2.9
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Overall, Fig. 2.8 and Fig. 2.9 show that stabilization of ΓP is possible only when the

point bc0 is below the point HH0 in the (λ, b0)-plane. For a positive value of b0, this only

occurs when βc < β < π, where βc ≈ 0.103 is a value of β at which (2.1.4) and (2.3.1) are

equal.

Outside of the stability region of ΓP there are several other attractors in the plane. For

example, in panel (c) of Fig. 2.8, to the left of the curve HL both the equilibrium solution

and periodic solutions bifurcating from the curves HL and Hk
J may be stable depending

on exact parameter values; see sections 2.2 and 2.3. To the right of the curve HL the tori

bifurcating from the set of curves TK
P are initially attracting.

2.4.2 The effect of β on the delay-induced Hopf bifurcation

curves

Figures 2.8 and 2.9 show that a change in β causes the Hopf bifurcation curve HL to

deform and move in the plane. This movement of HL plays a crucial part in changes to

the domain of stability of ΓP . Therefore, we now consider in more detail the effect that

changing the parameter β has on the three families of Hopf bifurcation curves (shown in

Fig. 2.4(a)).

To gain a truly global overview of how the delay-induced Hopf bifurcation curves move in

the (λ, b0)-plane we must consider the curves beyond the region shown in Fig. 2.3. Hence,

we now compactify the (λ, b0)-plane so that we can also consider how the bifurcation curves

behave near infinity. There are several ways to compactify a plane. One common approach

is to transform the plane to the Poincaré disk. Here, we choose alternatively to compactify

the parameter space as the unit square via individual stereographic transformations for

λ and b0 given by,

b̂0 =
b0

1 + b0

, (2.4.1a)

λ̂ =
(λ− 1

γ
)

0.25 + (λ− 1
γ
)
. (2.4.1b)

Recall that we do not consider the parameter regions b0 < 0 or λ < 1
γ
. The coordinate

transformation (2.4.1a) for b0 fixes b̂0 = b0 = 0 and transforms b0 = ∞ to b̂0 = 1. The

coordinate transformation (2.4.1b) for λ works in a similar fashion, but with a shift of − 1
γ
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Figure 2.10: The first curves of Hopf bifurcations from each family in the compactified (λ̂, b̂0)-plane.
Shown are the curve HP (green), the delay-induced curves HL,H1

J and H1
R (red), the points

bc0 and b∗0 (black dots) and the double Hopf bifurcation points HH0 and HH1 (green dots).

so that λ = 1
γ

maps to λ̂ = 0 and λ =∞ maps to λ̂ = 1. Overall, we obtain a transformed

bifurcation set in the unit square (λ̂, b̂0) ∈ [0, 1]× [0, 1].

Figure 2.10 shows the Hopf bifurcation curves HL, H1
J and H1

R in the (λ̂, b̂0)-plane. The

top boundary of the compactified plane represents infinity in b0 with vertical asymptotes

for fixed values of λ. The right boundary of the (λ̂, b̂0)-plane represents infinity in λ with

horizontal asymptotes for fixed values of b0. The corner point (1,1) corresponds to infinity

in both λ and b0 and the corner point (0,1) corresponds to infinity in b0 where there is a

vertical asymptote at λ = 1
γ
.

The shapes of the curves HL, H1
J and H1

R in the (λ̂, b̂0)-plane in Fig. 2.10 are similar to the

equivalent curves before the compactification. Moreover, we can now see that the curve

H1
J goes to infinity in b0 at a finite value of λ, whilst the curve H1

R goes to infinity in both

λ and b0, ending at the top right corner (1,1).

We now show how the three families of delay-induced Hopf bifurcation curves change in

the (λ̂, b̂0)-plane as the feedback phase β is increased through a period of 2π. An increase

or decrease of 2π in β will result in an identical bifurcation set to that shown in Fig. 2.10.
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Panel of Fig. 2.11 Description of curve
(a): β = π

4
The curve HL (red) is connected to the left axis of the
(λ̂, b̂0)-plane at the point b∗0.

(b): β = 3.24 The two end points of the curve at the point b∗0 have
moved up the left side of the (λ̂, b̂0)-plane to (0,1).

(c): β = 3.2420 The curve HL has opened up, its right end point has
moved along the top boundary of the (λ̂, b̂0)-plane to
(1,1). The left end point of the curve is at (0,1).

(d): β = 3.26 The left end point of the curve has moved right along
the top boundary of the (λ̂, b̂0)-plane. Its right end point
is still connected to (1,1).

(e): β = 6.2829 The left end point of the curve has stopped sliding right
along the top boundary of the (λ̂, b̂0)-plane.

(f): β = 6.3513 The left end point of the curve has moved back along
top boundary of the (λ̂, b̂0)-plane to (0,1).

(g): β = 6.3628 The right end point of the curve has disconnected from
(1,1) and has moved left along the top of the (λ̂, b̂0)-
plane. The left end point of the curve is still at (0,1).

(h): β = 6.6032 The right end point of the curve is connected to the top
of the (λ̂, b̂0)-plane and the left end point has moved
down the left side of the plane.

(i): β = 9π
4

At β = 9π
4

the curve H1
J (red) is formed.

Table 2.3: Description of the transformation of the curve HL into the curve H1
J as the parameter β is

increased by 2π. To accompany Fig. 2.11.

However, we find that, as β is changed, the Hopf bifurcation curves transition through the

plane and transform into other Hopf bifurcation curves in a quite complicated manner.

We start by showing the transitions of the curves HL, H1
J and H2

J in the (λ̂, b̂0)-plane.

We show how the curves H1
R and H2

R are formed and move in the plane and, finally, we

show how the curve HL is formed. The transition of each curve is shown in a multi-panel

diagram, where each panel shows the (λ̂, b̂0)-plane at a different value of β. For reference,

each panel shows the curve HP in green.

Figure 2.11 shows how the curve HL transforms into the curve H1
J as β is increased from

β = π
4

to β = 9π
4

. An overview of this transformation is given in Table 2.3. Figure 2.11(a)

shows the curve HL, from Fig. 2.10, that emerges from the point b∗0 on the left boundary

of the (λ̂, b̂0)-plane. As β is increased from π
4
, the point b∗0 moves up and down the left

boundary of the (λ̂, b̂0)-plane. At β = [arctan(− 1
γ
) + π] ≈ 3.24, the point b∗0 has moved

to the top left corner (0,1); see panel (b). Panel (c) for β = 3.242 shows that the two

end points of the curve are no longer the same; one end point, the right one, has moved

along the top boundary of the (λ̂, b̂0)-plane to the top right corner (1,1). Thus, the Hopf
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Figure 2.11: Transition of Hopf bifurcation curves in the (λ̂, b̂0)-plane for values of β as stated. The
curve HP is shown in green. The curve HL (red) for β = π

4 in panel (a) transforms into
the curve H1

J (red) for β = 9π
4 in panel (i). Inserts in (e), (f) and (g) show respective

enlargements.

bifurcation curve no longer forms a loop. Panel (d) for β = 3.26 shows that the left

end point of the curve has detached from the corner (0,1), and also moved along the top

boundary of the (λ̂, b̂0)-plane. When β is approximately 2π the left end point of the curve

has stopped moving right; panel (e) shows the left end point of the curve near its largest

value of λ. The left end point of the curve then moves left along the top boundary of the

(λ̂, b̂0)-plane, at β = 6.3513 it reaches the point (0,1); this is shown in the enlargement of

panel (f). The enlargement in panel (g) shows that at β = 6.3628, the right end point of
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the curve has detached from the corner point (1,1). The right end point of the curve then

moves left along the top boundary of the plane. At β = [arctan(− 1
γ
) + 2π] the left end

point of the curve starts to move down the left boundary of the (λ̂, b̂0)-plane; an example

of this is shown in panel (h). At β = 9π
4

, the curve H1
J is formed, this is shown in panel

(i). The left end point of the curve of is at b∗0 on the left boundary of the plane and the

right end point is connected to the top boundary of the plane. Thus, through a change

of 2π in β, the curve HL transforms into H1
J.

Figure 2.12 shows how the curve H1
J transforms into the curve H2

J as the feedback phase β

is increased through a period of 2π. An overview of this transformation is given in Table

2.4. Figure 2.12(a) shows the curve H1
J as it appears in the (λ̂, b̂0)-plane in Fig. 2.10 for

β = π
4
. Its left end point is at the point b∗0 on the left boundary of the (λ̂, b̂0)-plane and

the right end point is connected to the top boundary of the plane at infinity in b0.

Figure 2.12(b) for β = 3.1416 shows that the right end point of the curve has moved right

along the top boundary of the plane and that there is a slight bend near the right end of

the curve. Panel (c) shows that when β = [arctan(− 1
γ
) + π] ≈ 3.2328 the right end point

of the curve is attached at the corner (1,1) and the left end point of the curve is attached

to the corner (0,1). Panel (d) shows that the left end point of the curve has detached from

the corner (0,1) and has moved right along the top boundary of the (λ̂, b̂0)-plane. At the

same time the entire Hopf bifurcation curve has shifted upwards in the plane. At β ≈ 2π

as in panel (e), the left end point of the curve has stopped moving right along the top

boundary of the plane. The left end point of the curve then starts to move left along the

top boundary of the (λ̂, b̂0)-plane. Panel (f) for β = 6.3548 shows that the left end point

of the curve connects to the corner (0,1). At β = [arctan(− 1
γ
) + 2π] ≈ 6.3701, the right

end point of the curve has detached from the corner (1,1) and has moved left along the

top boundary of the (λ̂, b̂0)-plane; this is shown in the enlargement of panel (g). The left

end point of the curve then moves down the left boundary of the plane forming the point

b∗0 and, thus, the curve H2
J is formed. This formation is shown in panels (h) and (i), with

the Hopf bifurcation curve H2
J shown in red for β = 9π

4
. Thus, a change of 2π in the phase

of the feedback β, transforms the curve H1
J into the curve H2

J. Although not shown here,

we have found that an increase of 2π in β transforms the curve H2
J into the curve H3

J and

the curve H3
J into the curve H4

J. This is strong evidence for the natural conjecture that a

increase of 2π in the feedback phase β transforms the curve Hk
J into the curve Hk+1

J .

Figure 2.13 shows how the curves H1
R and H2

R transition through the (λ̂, b̂0)-plane as

β is changed. An overview of the transition of the curves H1
R and H2

R shown in Fig.

2.13 is presented in Table 2.5. We start with the curve H2
R from Fig. 2.4(a) but for

β = −7π
4

= π
4
− 2π. Although in the (λ, b0)-plane the curves H1

R and H2
R are both straight
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Panel of Fig. 2.12 Description of curve
(a): β = π

4
The curve H1

J (red); the left end point of the curve is con-
nected to the left side of the (λ̂, b̂0)-plane at b∗0. The right
end point of the curve is connected to the top boundary
of the (λ̂, b̂0)-plane.

(b): β = 3.1416 The point b∗0 has moved up the left side of the (λ̂, b̂0)-
plane. The right end point of H1

J has moved right along
the top boundary of the plane.

(c): β = 3.2328 The left end point of the curve at the point b∗0 has moved
to the top left corner of the (λ̂, b̂0)-plane at (0,1). The
right end point of the curve has moved right along the
top boundary of the plane to (1,1).

(d): β = 6.00 The left end point of the curve has disconnected from
(0,1) and has moved right along the top boundary of the
(λ̂, b̂0)-plane.

(e): β = 6.2831 The left end point of the curve has stopped moving right
along the top boundary of the (λ̂, b̂0)-plane. The right
end point of the curve is still connected to (1,1).

(f): β = 6.3548 The left end point of the curve has moved left along the
top boundary of the (λ̂, b̂0)-plane to (0,1).

(g): β = 6.3701 The right end point of the curve has disconnected from
(1,1) and has moved left along the top boundary of the
(λ̂, b̂0)-plane.

(h): β = 6.5832 The left end point of the curve has moved down the
left side of the (λ̂, b̂0)-plane as the point b∗0. The right
end point of the curve stops is still connected to the top
boundary of the plane.

(i): β = 9π
4

The curve H2
J (red) formed. Its right end point is con-

nected to the top boundary of the (λ̂, b̂0)-plane and its
left end point is connected to the left side of the plane
at b∗0.

Table 2.4: Description of the curve H1
J transforming into the curve H2

J as the parameter β is increased
by 2π. To accompany Fig. 2.12.
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Figure 2.12: Transition of Hopf bifurcation curves in the (λ̂, b̂0)-plane for values of β as stated. The
curve HP is shown in green. The curve H1

J (red) for β = π
4 in panel (a) transforms into

the curve H2
J (red) for β = 9π

4 in panel (i). Inserts in (e), (f) and (g) show respective
enlargements.

lines, in the (λ̂, b̂0)-plane, H1
R and H2

R have differing shapes. This is because the curve H2
R

has a greater gradient than H1
R, which results in differently shaped curves when the plane

is compactified by (2.4.1).

Figure 2.13(a) shows the Hopf bifurcation curve H2
R for β = −7π

4
with its right end point

at the corner (1,1) and its left end point connected to the left boundary of the (λ̂, b̂0)-plane

at the point b∗0. As β is increased the right end point of the curve moves left along the
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Panel of Fig. 2.13 Description of curve
(a): β = −7π

4
The curve H2

R (red); its left end point is connected to
the left side of the (λ̂, b̂0)-plane at the point b∗0. Its
right end point is connected to the top boundary of the
(λ̂, b̂0)-plane at (1,1).

(b): β = −3.2332 and
(c): β = −3.1318

The right end point of the curve moves left along the
top boundary of the (λ̂, b̂0)-plane. The left end point of
the curve moves up the left side of the (λ̂, b̂0)-plane. At
β = [arctan(− 1

γ
)− π] the curve disappears into the top

left-hand corner of the (λ̂, b̂0)-plane at (0,1).
(d): β = 0 A new curve emerges from the top right-hand corner of

the (λ̂, b̂0)-plane. Its left end point immediately starts
to move left along the top boundary of the (λ̂, b̂0)-plane.
Its right end point is at (1,1).

(e): β = 0.1 The left end point has moved left along the top boundary
of the (λ̂, b̂0)-plane until it reaches the point (0,1). The
right end point of the curve is still connected to (1,1).

(f): β = π
4

The left end point of the curve has moved down the left
side of the (λ̂, b̂0)-plane as the point b∗0 and the curve H1

R

(red) is formed.
(g): β = 1.8151 A secondary curve (blue) emerges from the top right-

hand corner of the (λ̂, b̂0)-plane at (1,1). The right end
point of this curve is at (1,1) and its left end point is on
the top boundary of the (λ̂, b̂0)-plane.

(h): β = 2.0833 The curve H1
R and the secondary curve become tangent

at (1,1) and join to form one curve.
(i): β = 2.15 The curve has disconnected from (1,1). The right end

point of the curve is connected to the top boundary of
the (λ̂, b̂0)-plane. The left end point of the curve is con-
nected to the left side of the plane.

(j): β = 2.35 The right end point of the curve has moved left along
the top boundary of the (λ̂, b̂0)-plane and the left end
point has moved up the left side of the plane.

(k): β = 2.85 and (l):
β = 3.1416

The curve has moved towards the top left corner of the
(λ̂, b̂0)-plane at (0,1). Its right end point has moved
left along the top boundary of the plane and its left
end point has moved up the left side of the plane. At
β = [arctan(− 1

γ
) + π] the curve disappears into the top

left-hand corner of the (λ̂, b̂0)-plane at the point (0,1).

Table 2.5: Description of the formation and transition of the curves H1
R and H2

R in the (λ̂, b̂0)-plane,
as the parameter β is increased. To accompany Fig. 2.13.
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Figure 2.13: Transition of Hopf bifurcation curves in the (λ̂, b̂0)-plane for values of β as stated. The
curve HP is shown in green. The curve H2

R (red) for β = − 7π
4 is shown in panel (a) and

the curve H1
R (red) for β = π

4 is shown in panel (f).

top boundary of the (λ̂, b̂0)-plane and the left end point of the curve moves up the left

boundary of the plane; this is shown in panels (b) and (c). The curve disappears into the

top left corner (0,1) of the (λ̂, b̂0)-plane at β = [arctan(− 1
γ
)− π]. At β ≈ −0.06 another

Hopf bifurcation curve emerges from the top right corner (1,1) of the (λ̂, b̂0)-plane. It
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starts to extend downwards in the plane, with its right endpoint at (1,1). The left end

point of the curve starts to move left along the top boundary of the plane. Figure 2.13(d)

shows the curve at β = 0; the right end point of the curve is at the corner (1,1) and the left

end point of the curve is connected to the top boundary of the plane. Panel (e) shows that

the left end point of the curve has connected to the point (0,1) at β = arctan(− 1
γ
) ≈ 0.1.

The left end point of the curve then starts to move down the left boundary of the (λ̂, b̂0)-

plane as the point b∗0. Panel (f) shows the Hopf bifurcation curve H1
R as it appears in Fig.

2.10 at β = π
4
. The curve has its right end point at the corner (1,1) and its left end point

at the point b∗0 on the left boundary of the (λ̂, b̂0)-plane. It should be noted that the curve

H2
R is formed in a similar way to the curve H1

R. A curve appears from the corner (1,1),

the left end point of this curve firstly moves left along the top boundary of the curve and

then after reaching the corner (0,1) it moves down the left boundary of the (λ̂, b̂0)-plane.

The right end point of the curve remains at the corner (1,1).

Figure 2.13(g) shows that at β = 1.8151 a second Hopf bifurcation curve has appeared

from the top right corner (1,1) of the (λ̂, b̂0)-plane. The right end point of this secondary

curve is at the corner (1,1) and the left end point immediately starts to move left along

the top boundary of the (λ̂, b̂0)-plane. This secondary curve is shown in blue in the

enlargement in Fig. 2.13(g). The right end points of both curves become tangent at the

corner (1,1) when β = 2.0833. At this point the two Hopf bifurcation curves join; this is

shown in panel (h). As shown in panel (i) for β = 2.15, the curve has moved away from

the point (1,1), its right end point is connected to the top boundary of the plane and

its left end point is connected to the left boundary of the plane. Panel (j) for β = 2.35

shows that the curve then straightens out near where it was connected to the corner (1,1).

The right end point of the curve then starts to move left along the top boundary of the

plane. Panel (k) shows the curve with its left end point connected to the left boundary

of the (λ̂, b̂0)-plane and its right end point connected approximately midway across the

top boundary of the (λ̂, b̂0)-plane. The left end point of the curve starts to move up the

left boundary of the (λ̂, b̂0)-plane and the right end point moves further left along the top

boundary of the plane. Thus, the Hopf bifurcation curve moves into the top left corner

(0,1) of the (λ̂, b̂0)-plane; this is shown in Fig. 2.13(l) where the curve has both its right

and left end points near the corner (0,1). When β = [arctan(− 1
γ
)+π], the curve disappears

into the top left corner (0,1) of the plane. At approximately β = 4.2009 another Hopf

bifurcation curve emerges from infinity in both λ and b0 at the corner (1,1); this is shown

in Fig. 2.14. The transition of this Hopf bifurcation curve in the (λ̂, b̂0)-plane shown in

Fig. 2.14 is described in Table 2.6.

Panels (a) and (b) of Fig. 2.14 show this curve at β = 4.5182 and β = 4.7143 respectively,

it has formed into a figure of eight shape that starts and ends at the corner (1,1) of the
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Panel of Fig. 2.14 Description of curve
(a): β = 4.5182 and
(b): β = 4.7143

A curve emerges from the top left-hand corner of the
(λ̂, b̂0)-plane. It forms a figure of eight shape with both
of its end points connected to the top right-hand corner
of the plane at (1,1). The curve extends down into the
(λ̂, b̂0)-plane.

(c): β = 5.6096 The left end point of the curve has moved left along
the top boundary of the (λ̂, b̂0)-plane. The curve has
extended further downwards in the plane and a loop
shape has become more evident.

(d): β = 6.3797 The left end point of the curve has connected to the top
left hand corner of the (λ̂, b̂0)-plane at (0,1). The right
end point of the curve is still connected to (1,1).

(e): β = 6.3829 The right end point of the curve has disconnected from
(1,1) and moved left along the top boundary of the
(λ̂, b̂0)-plane.

(f): β = 6.3863 The right end point of the curve has connected to (0,1).
(g): β = 6.4143 The two end points of the curve have joined and moved

down the left side of the (λ̂, b̂0)-plane as the point b∗0.
(h): β = 6.4578 The left end of the curve moves below the right end of

the curve. The curve is now a closed loop.
(i): β = 9π

4
The curve HL (red) is formed.

Table 2.6: Description of the formation of the curve HL, as the parameter β is increased. To accompany
Fig. 2.14.

(λ̂, b̂0)-plane. This curve stretches downwards into the plane. Panel (c) shows the curve at

β = 5.6096, where the left end point of the curve has detached from the corner (1,1). This

end point of the curve moves left along the top boundary of the plane until it reaches the

corner (0,1), forming the point b∗0; see panel (d). Panel (e) shows the curve at β = 6.3829,

the right end point of the curve has detached from the corner (1,1) and has moved left

along the top boundary of the plane. In panel (f) for β = 6.3863 the right end point of

the curve joins the left end point at the the corner (0,1) of the (λ̂, b̂0)-plane. Both ends of

the curve remain joined and move down the left boundary of the plane, the curve starts

as a figure of eight shape before deforming into an closed loop; see panels (g) and (h).

Panel (i) shows the red curve HL as it appears in Fig. 2.10, here for β = 9π
4

.

Overall, Figures 2.11–2.14 show that the movement of delay-induced Hopf bifurcation

curves through the (λ̂, b̂0)-plane, as β is changed through a period of 2π, is highly non-

trivial. As β is increased by 2π, the curve HL transforms into the curve H1
J, the curve H1

J

transforms into the curve H2
J and so on. This means that although a shift of 2π in the phase

β obviously results in an identical bifurcation set, the Hopf bifurcation curves transform

into different Hopf bifurcation curves rather than settling back into their original positions.
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Figure 2.14: Transition of Hopf bifurcation curves in the (λ̂, b̂0)-plane for values of β as stated. Shown
are the curves HP (green) and HL (red) for β = π

4 in panel (i).

We also note that the delay-induced Hopf bifurcation curves all have movements to and

from infinity at the values β = [arctan(− 1
γ
) + mπ] (where m ∈ Z). This is where the

b0-coordinates of the points bc0 (equation (2.1.4)) and b∗0 (equation (2.3.3)) go to infinity.

Moreover, for this value of β the curve HL no longer forms an closed loop. As we found

earlier in this section, this fact plays an important role in whether or not a domain of

stability of ΓP exists; see Figs. 2.8 and 2.9.

The effect of a change in β has on the entire bifurcation set (including SNLC/torus

bifurcations of periodic orbits shown in Fig. 2.14 and Fig. 2.15) is an even more complex
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transition than the above analysis revealed for only the delay-induced Hopf bifurcation

curves. A complete analysis of how every bifurcation curve of periodic orbits transitions

through the plane as β changes is beyond the scope of this analysis. However, we have

shown how the bifurcation curves of periodic orbits and the double Hopf bifurcation

points bc0 and HH0, that bound the domain of stability of ΓP , move as β is changed; see

Fig. 2.8 and Fig. 2.9. We conjecture that the other bifurcation curves of periodic orbits

that emerge from the Hopf bifurcation curves move in accordance with how the Hopf

bifurcation curves move in the (λ, b0)-plane.

2.5 The effect of the parameter γ

Previous work has shown that stabilization of ΓP is impossible when γ = 0 [13]. However,

why stabilization fails at γ = 0 has not been fully explained geometrically. Here we show

how the domain of stability of ΓP disappears as γ is increased to 0. We also consider

the effect of γ on the curve HL and the two points bc0 and HH0. We observe that the

transition of HL in the compactified (λ̂, b̂0)-plane, when γ is increased, causes the points

bc0 and HH0 to cross and then stabilization of ΓP fails. Finally, we present the region in

the (β, γ)-plane where a successful stabilization of the target periodic orbit ΓP is possible.

Figure 2.15 shows how the overall domain of stability (shaded) of ΓP for β = π
4

changes

as γ is increased. An overview of these changes to the stability domain is presented in

Table 2.7.

Panel (a) shows the domain of stability as in Fig. 2.5, bounded by the curves HP, T0
P and

TC. As γ is increased the point bc0 moves upwards, while the point HH0 is independent of γ

and so does not move. Panels (b) and (c), for γ = −8 and γ = −5, respectively, show that

the point R1 has moved left along the curve TC. It should be noted that an increase in

γ shifts the left-hand boundary at λ = 1
γ

further left in the (λ, b0)-plane. Since the curve

TC starts at bc0 and ends at this boundary, along with its starting point changing, the

gradient of the curve TC is also changing; see equation (2.2.1). As the point R1 shifts left

in the (λ, b0)-plane the area of the domain of stability of ΓP increases; however, the range

of stability in b0 (the difference in b0 between the points HH0 and bc0) for ΓP decreases.

At approximately γ = −1.63 the point R1 stops moving left in the (λ, b0)-plane; for this

value of γ the area of the domain of stability of ΓP is maximal. As γ is increased further

the point R1 starts to move right along the curve TC, reducing the area of the domain

of stability of ΓP . Figure 2.15(d) for γ = −1.5 shows that the point R1 has moved right

in the (λ, b0)-plane and is now close to the starting point bc0 of the curve TC; hence, the
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Figure 2.15: The overall domain of stability (shaded) in the (λ, b0)-plane for different values of increas-
ing γ. Panel (a) is for γ = −10 as it is in Fig. 2.5, and panels (b)-(f) are for the stated
values of γ. Each panel shows the curves HP (green) and HL (red) as well as the points
bc0 (black dot) and HH0 (green dot). The transcritical bifurcation curve TC (purple) and
the torus bifurcation curve T0

P (grey) meet at the point R1 (light green dot).

range of stability of ΓP in b0 is much smaller than for lower values of γ. The point bc0 has

moved up in the (λ, b0)-plane and is just below the point HH0. Thus, the upper and lower

boundary curves of the stability domain, T0
P and TC, are close to each other resulting in
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Panel of Fig. 2.15 Description of curves
(a): γ = −10 The domain of stability of ΓP in the (λ, b0)-plane as

in Fig. 2.5. Its right-hand boundary is the curve HP

(green) between the points bc0 (black) and HH0 (green)
and its left-hand boundary is the curve T0

P (grey). The
lower boundary of the stability domain is the curve TC
(purple) between the points bc0 and R1 (green).

(b): γ = −8 and (c):
γ = −5

The point R1 has moved left in the (λ, b0)-plane along
the curve TC increasing the area of the stability domain.
The point bc0 remains at approximately the same level
and the point HH0 is not affected by a change in γ.

(d): γ = −1.5 The point bc0 has moved up in the (λ, b0)-plane and the
point R1 has moved right in the plane along the curve
TC. Thus, the domain of stability has decreased in area.

(e): γ = −1.4244 The points bc0 and HH0 are equal and the domain of
stability has disappeared.

(f): γ = −1.2 The point bc0 has moved above the point HH0 in the
(λ, b0)-plane. Stabilization is no longer possible.

Table 2.7: Description of the effect of an increase in the parameter γ on the domain of stability of ΓP .
To accompany Fig. 2.15

a small domain of stability.

Figure 2.15(e) shows that at γ = −1.4244, the points bc0 and HH0 are equal, and the

domain of stability of ΓP has disappeared. A periodic orbit bifurcating from HP below this

point is unstable with one unstable Floquet multiplier. A periodic orbit that bifurcates

from HP above this point is also unstable but has a complex conjugate pair of unstable

Floquet multipliers. As γ is increased further the point bc0 moves above the point HH0;

an example of this is shown in panel (f) for γ = −1.2. When γ = −1 the point bc0 goes to

infinity, and for γ > −1 the point bc0 is negative.

Figure 2.16 shows the transition of the curve HL in the (λ̂, b̂0)-plane as the parameter γ

is changed. Note that, due to the γ-dependent compactification of the λ coordinate by

(2.4.1b), the curves HL and HP are shifted right as γ is increased from its starting value of

−10. Thus, the last couple of panels of Fig. 2.16 show the Hopf bifurcation curves on the

far right of the (λ̂, b̂0)-plane. An overview of the transition of the curve HL is presented

in Table 2.8.

Figure 2.16(a) shows the curve HL (red) and the curve HP (green) for γ = −10. The Hopf

bifurcation curve HL forms a closed loop shape with both end points connected at the

point b∗0 on the left boundary of the (λ̂, b̂0)-plane. As γ is increased, the lower portion of
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Figure 2.16: Transition of Hopf bifurcation curves in the (λ̂, b̂0)-plane for values of γ as stated. Shown
are the curves HP (green) and HL (red) for γ = −10 in panel (a).

the curve shifts upwards in the plane, deforming the loop structure and the curve develops

a point of self-intersection; an example of this is shown in shown in panel (b) for γ = −2.

When γ = −1.5 as in panel (c), the point of self intersection of the Hopf bifurcation curve

has moved right in the (λ̂, b̂0)-plane and the curve forms a more distinct figure of eight

shape. The point b∗0 has shifted up the left boundary of the (λ̂, b̂0)-plane. Panel (d) for

γ = −1.4244 shows that the Hopf bifurcation curve has its point of self-intersection on

the curve HP. As was shown in Fig. 2.15 at this value of γ stabilization of ΓP is no longer

possible.
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Panel of Fig. 2.16 Description of curves
(a): γ = −10 The curves HL (red) and HP (green) as they appear in

Fig. 2.10 in the (λ̂, b̂0)-plane. The curve HL is connected
to the left side of the plane at the point b∗0.

(b): γ = −2 and (c):
γ = −1.5

The bottom section of the curve HL has moved upwards
and the curve has formed a point of self intersection.
The curve extends to the right of the (λ̂, b̂0)-plane.

(d): γ = −1.4244 The point of self intersection of the curve is on the curve
HP. The two end points of the curve are still at b∗0 on
the left side of the (λ̂, b̂0)-plane.

(e): γ = −1.2 The point of self intersection of the curve is now to the
right of HP.

(f): γ = −1.01 The point b∗0 has moved to the top left-hand corner of
the (λ̂, b̂0)-plane at (0,1).

(g): γ = −1 The right end point of the curve has disconnected from
(0,1) and moved right along the top boundary of the
(λ̂, b̂0)-plane. The curve HL is no longer a closed loop
and only crosses the curve HP once.

(h): γ = −0.999 The right end point of the curve has connected to (1,1).
(i): γ = −0.95 The left end point of the curve moves left along the top

boundary of the (λ̂, b̂0)-plane.

Table 2.8: Description of the curve HL as the parameter γ is increased. To accompany Fig. 2.16.

As γ is increased further, the self-intersection point of the curve moves to the right of

HP; an example of this is shown in Fig. 2.16(e) for γ = −1.2. Panel (f) shows the Hopf

bifurcation curve at γ = −1.01, where the point b∗0 has moved up the left boundary of

the (λ̂, b̂0)-plane to the corner (0,1), and the curve has opened up from its figure of eight

shape. When γ = −1 as in panel (g), the right end point of the curve has detached from

the corner (0,1) and has shifted along the top boundary of the (λ̂, b̂0)-plane to the right of

the curve HP. Thus, the curve only crosses HP once. As described earlier in this section,

the point bc0 is negative for this value of γ and remains negative as γ is increased further;

see equation (2.1.4).

Figure 2.16(h) shows that at γ = −0.999 the right end point of the curve has moved

to the top right corner (1,1) of the (λ̂, b̂0)-plane. The left end point of the curve is still

connected to the corner (0,1). The left end point of the curve then detaches from (0,1) for

γ ≈ −0.995 and starts to move right along the top boundary of the (λ̂, b̂0)-plane. Panel

(i) for γ = −0.95 shows the curve with its left end point connected to the top boundary,

whilst its right end point is still connected to the top right corner (1,1). The left end

point of the curve continues to move right along the top boundary of the (λ̂, b̂0)-plane as

the value of γ is increased.
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Figure 2.17: A section of the two-parameter (β, γ)-plane of system (2.0.1). The black curve represents
the stability boundary S(β) from equation (2.5.1). The vertical blue line is where β = π.
In the shaded regions stabilization is possible. The red dashed line is the path with β = π

4
taken in Fig. 2.16.

As previously discussed, stabilization is only possible when the b0-coordinate of the point

HH0 is greater than that of the point bc0; see also [13, 63]. From this relationship and the

points bc0 and HH0 given by equations (2.1.4) and (2.3.1), we can find an overall stability

boundary as the union of the curve γ = S(β) and the line β = π, where S(β) is given by

S(β) ≡ − 1

π − β −
1

tan β
. (2.5.1)

Equation (2.5.1) defines the stability boundary γ = S(β) (black) shown in Fig. 2.17 in the

(β, γ)-plane. When 0 < β < π stabilization fails on and above this curve, for π < β < 2π

stabilization fails on and below this curve. The vertical dashed red line in Fig. 2.17 is at

β = π
4
, and the panels in Fig. 2.16 have values of γ on this line. In the shaded regions in

the (β, γ)-plane the targeted periodic orbit ΓP can be stabilized by Pyragas control with

an appropriate choice of λ and b0. The stability boundary S(β) defines the upper and left

boundaries of the lower shaded region. It also forms the lower and right boundaries for

the upper shaded region. The vertical (blue) curve at β = π marks the right boundary of

the lower shaded region and the left boundary of the upper shaded region. As explained

in section 2.4, stabilization is impossible when β = π. For π < β < 2π the dynamics

presented in this chapter are replicated for negative b0 through the symmetry relation

(π − β, γ) → (2π − β,−γ). Therefore, the shaded region on the right of Fig. 2.17 is a

rotation of the shaded region on the left. The shaded regions extend in γ to negative and

positive infinity, respectively.
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2.6 Conclusion

In this chapter we have considered the global effects of the addition of Pyragas control

to the subcritical Hopf normal form. The addition of feedback induces infinitely many

Hopf bifurcation curves, which can be classified as belonging to three families HL, HK
J and

HK
R . In particular, we have shown that, in addition to the target periodic orbit, system

(2.0.1) has (a possibly infinite number of) other stable periodic orbits. Thus, system

(2.0.1) may converge to a periodic orbit that is not the one targeted by Pyragas control.

Furthermore, we have identified a region of bistability, where both the equilibrium solution

and the target periodic orbit ΓP are stable. This means that the system may not actually

reach this periodic orbit if the initial condition is chosen incorrectly. We characterized

the bifurcation curves that form the boundaries of the overall domains of stability of the

target periodic orbit ΓP and of the stable delay-induced periodic orbits. Moreover, we

have shown how the domain of stability of ΓP changes as the phase of the feedback β is

increased. From this it was shown that, as β is increased or decreased from its original

value of π
4
, the degenerate Hopf bifurcation point bc0 and the double Hopf bifurcation

point HH0 move closer together in the (λ, b0)-plane. As this happens both the area of

the domain and the range in b0 for which ΓP is stable are reduced. When the points bc0

and HH0 are equal, the domain of stability disappears. There appear to be no remaining

pockets of stability of ΓP in the (λ, b0)-plane and thus, the Pyragas control scheme fails.

In addition to showing the geometry of the delay-induced Hopf bifurcations in the con-

ventional parameter regime (where β = π
4

and γ = −10) we have shown how these curves

change in the (λ, b0)-plane when the feedback phase β is varied. To fully understand the

highly non-trivial changes in these Hopf bifurcation curves, the (λ, b0)-plane was compact-

ified to the (λ̂, b̂0)-plane. We found that, as β is increased by 2π, the curve HL transforms

into the curve H1
J, the curve H1

J into the curve H2
J, the curve H2

J into the curve H3
J and so

on. We also found that the Hopf bifurcation curves of the family HK
R emerge from the top

right corner (1,1) of the (λ̂, b̂0)-plane at infinity in λ and b0 and, as β is increased, they

disappear into the top left corner (0,1) of the (λ̂, b̂0)-plane.

We also considered the effect of a change in the parameter γ. We showed that as γ

is increased the point bc0 moves up in the (λ, b0)-plane. Furthermore, the γ-dependent

left-hand boundary of this plane and the gradient of the transcritical bifurcation curve

TC also changes as γ is increased. Thus, the range in b0 for which ΓP is stable starts to

decrease as soon as γ is increased. However, the area of the domain of stability of ΓP

initially increases as γ is increased. As γ is increased further the area of this domain then

starts to reduce. When the points bc0 and HH0 are equal the domain of stability of ΓP
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disappears. Again, there are no remaining pockets of stability for ΓP , and thus, at this

point the Pyragas control scheme fails. Brown et al. [13] have shown that stabilization

fails for γ = 0; here we have shown that stabilization of the target periodic orbit actually

fails on a stability boundary S(β) in the (β, γ)-plane [63]. This stability boundary defines

regions in the (β, γ)-plane for which stabilization is possible.

Overall, this chapter shows that it is very useful to take a global point of view of a Pyragas

controlled system to ascertain if, how and where the target periodic orbit is stabilized.

It also highlights that care must be taken when implementing Pyragas control. Even

when the delay is set as the exact parameter-dependent period, if parameters are not set

carefully the system may converge to a stable delay-induced periodic orbit rather than

the target periodic orbit. Moreover, the existence of bistability in part of the domain of

stability of ΓP means that there is no guarantee that the system reaches the target state

in the respective parameter regime.

We have considered the application of Pyragas control to the subcritical Hopf normal form.

Therefore, it is a natural conjecture that the dynamics found here will also be relevant

for any systems with delay near a subcritical Hopf bifurcation, which is supported by the

local results of Brown et al. [13]. In chapter 4 we consider the Lorenz system subject

to Pyragas control, which was studied locally near the subcritical Hopf bifurcation by

Postlethwaite and Silber [65]. We find that the global dynamics induced when Pyragas

control is applied to the Lorenz system closely match those described in this chapter.
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3
Effect of delay mismatch in Pyragas

feedback control

The results in this chapter have been published in [66]. In this chapter we consider the

general question: with which kind of precision must the delay τ be set to the target period

T (µ)? Specifically, the aim is to understand whether the Pyragas control scheme (1.2.1)

is an effective form of control of the target periodic orbit if the delay τ is not set exactly as

the parameter dependent target period T (µ), but is approximated by a simpler functional

form. In other words, when does the control scheme yield a stable periodic orbit that is

sufficiently close in period, amplitude and parameter space to the target periodic orbit?

To answer this question, we again consider the subcritical Hopf normal form subject to

Pyragas control given by equation (2.0.1) in chapter 2. For convenience we restate it here

ż = (λ+ i)z(t) + (1 + iγ)|z(t)|2z(t) + b0e
iβ[z(t− τ)− z(t)]. (3.0.1)

Recall that, z ∈ C and λ, γ ∈ R, and the complex number b0e
iβ is the feedback gain,

where b0 ∈ R is the control amplitude and β is the 2π-periodic phase of the feedback.

System (3.0.1) without control, i.e. with b0 = 0, has a Hopf bifurcation HP at λ = 0.
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From HP bifurcates an unstable branch of periodic orbits ΓP , which exists for λ < 0, with

amplitude
√
−λ and has the parameter-dependent period given by the function

T (λ) =
2π

1− γλ. (3.0.2)

From (3.0.2) we see that, at the Hopf bifurcation HP, where λ = 0, the period of ΓP is 2π.

Throughout our analysis of (3.0.1) in this chapter we use the parameter values γ = −10

and β = π
4

and vary the parameter λ, as is the convention [13, 24, 67]. We consider the

following three cases, where the unstable branch of periodic orbits ΓP is the target state

of the Pyragas control scheme.

The exact-period case.

This is the standard setup of Pyragas control [24, 69], where the delay in (3.0.1) is set

to τ = T (λ). We present the overall domain of stability of ΓP in the two-parameter

(λ, b0)-plane, where the target periodic orbit ΓP is successfully stabilized. This choice of

parameter plane is natural as λ is conventionally taken as the primary bifurcation pa-

rameter and b0 is the strength of the feedback. It should be noted that all previous work

on (3.0.1) has assumed that τ = T (λ) and has been primarily focused on the mechanism

of stabilization close to the Hopf bifurcation HP [13, 24, 38]. Furthermore, as Pyragas

control is non-invasive in the exact-period case, the symmetry properties of the normal

form are preserved (details of these symmetry properties can be found in [31]). We use

the exact-period case here as a benchmark for comparison with the cases where τ 6= T (λ).

To study the effect of setting the delay not equal to the target period, we consider the

following two cases:

The constant-period case.

Here we assume that the period of ΓP is known at the Hopf bifurcation HP at λ = 0 and

the delay in (3.0.1) is set to

τ = TC = T (0) = 2π. (3.0.3)

Hence, the period TC and, thus, the delay τ are no longer parameter dependent.
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The linear-period case.

Here we set the delay to the linear approximation

τ = TL(λ) = 2π(1 + γλ), (3.0.4)

of the target period T (λ) in (3.0.2). Hence, we again assume that the period of ΓP is

known at HP and, in addition, we assume that the slope at HP, dT (λ)
dλ
|λ=0 = 2πγ is also

known.

We say that the Pyragas control scheme has been successful if three criteria are satisfied:

(A) A periodic orbit with amplitude and period close to ΓP is a stable solution.

(B) Any residual control force is sufficiently small.

(C) The stabilized periodic orbit exists in a similar neighborhood around the curve HP in

the (λ, b0)-plane as the stabilized periodic orbit ΓP in the benchmark exact-period case.

The first two criteria are natural assumptions about the stabilization of a periodic orbit

and the third criterion stems from the parameter dependence of the target period T (λ)

given by (3.0.2). In the exact-period case, the system is driven to ΓP and there is no

residual control force, that is, the control is truly non-invasive. For the constant and

linear-period cases where τ 6= T (λ), on the other hand, the feedback is no longer non-

invasive due to the period mismatch, meaning that there will always be some residual

control force. Moreover, the periodic orbit emanating from HP will not be exactly the

same as the target periodic orbit ΓP . Therefore, in the constant and linear-period cases

we do not expect to stabilize the exact periodic orbit ΓP . Instead our aim is to find a

periodic orbit that is as close as possible in amplitude, period and parameter space to ΓP ,

and to achieve this with as small a residual control force as possible.

By design, the delay at the Hopf bifurcation HP for λ = 0 is the same in all period cases,

that is,
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τ = T (0) = TC = TL(0) = 2π. (3.0.5)

To consider stabilization successful, we require that the stabilized periodic orbit remains

close in parameter space to the target periodic orbit ΓP away from HP as the parameter λ

is varied. For the exact-period case Pyragas control stabilizes the branch of periodic orbits

ΓP and its overall domain of stability exists to the left of the Hopf bifurcation curve HP

in the (λ, b0)-plane; see section 3.1. In other words, we only consider the Pyragas control

scheme successful if the periodic orbit stabilized in the constant-period and linear-period

cases exists for similar values of λ and b0 as where ΓP exists in the benchmark exact-period

case, i.e. for λ < 0.

Our results in the following sections show that for the constant-period case Pyragas con-

trol stabilizes a branch of periodic orbits bifurcating from HP, which we call ΓC . This

branch exists for λ > 0, whereas the target periodic orbit ΓP exists for λ < 0. Further-

more, the overall domain of stability of ΓC exists to the right of HP in the (λ, b0)-plane and

there is a large residual control force. Therefore, we say that the Pyragas control scheme

is not successful in the constant-period case. For the linear-period case Pyragas control

stabilizes a branch of periodic orbits bifurcating from HP, which we call ΓL. The stable

branch ΓL has a period and amplitude close to that of ΓP and exists for a similar range

of λ. Moreover, the overall domain of stability of ΓL in the (λ, b0)-plane is very similar

to that of ΓP in the benchmark exact-period case, that is, it exists to the left of HP and

is bounded by similar bifurcation curves. In addition, the residual control force in the

linear-period case is small. Thus, we say that the Pyragas control scheme is successful in

the linear-period case.

To understand the connection between the successful linear-period case and the unsuc-

cessful constant-period case, we consider a third case of setting the period:

The variable-slope case.

Introducing a homotopy parameter h into the linear-period approximation (3.0.4) gives

τ = Th(λ) = 2π(1 + hγλ). (3.0.6)

Hence, for h = 1 one has the linear-period case with T1(λ) = TL(λ) and for h = 0 one has

the constant-period case with T0(λ) = TC .

In other words, changing h from 1 to 0 allows us to consider the influence of the slope of the
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linear approximation on the Pyragas control scheme. We find that a linear approximation

with a shallower slope can still result in successful stabilization.

This chapter is organized as follows. In section 3.1 we present bifurcation diagrams and

the domain of stability of the exact-period case. We perform a bifurcation analysis of

the constant-period case in section 3.2 and of the linear-period case in section 3.3. In

section 3.4 we consider the homotopy from the linear-period to the constant-period case.

Conclusions can be found in section 3.5.

3.1 The exact-period case

We start by presenting the bifurcation analysis of system (3.0.1) for the exact-period

case, where τ = T (λ) as in (3.0.2). Specifically, the overall domain of stability of ΓP in

the (λ, b0)-plane will serve as a benchmark with which to compare the constant-period

and linear-period cases, which are analyzed in the next two sections. Previous work has

primarily focused on the mechanism of stabilization near the Hopf bifurcation point HP;

details of this analysis can be found in [13, 24, 38]. Here we show the overall domain of

stability of ΓP in the (λ, b0)-plane, which has not been presented previously. A global

bifurcation analysis of (3.0.1) with τ = T (λ) in dependence on the parameters λ, b0, β

and γ is the subject of [67].

Figure 3.1 shows the one-parameter bifurcation diagram in λ for b0 = 0.3, shown in panel

(a) in terms of the radius r = |z| and in panel (b) in terms of the observed period T .

This representation is chosen throughout this chapter because all periodic orbits of the

subcritical Hopf normal form are sinusoidal and uniquely characterized by their amplitude

and period. Shown along the bottom axis of panel (a) is the equilibrium solution (r = 0);

it is stable when black and unstable when grey. Also shown is the Hopf bifurcation

HP, denoted by a green dot, and two further delay-induced Hopf bifurcations of the

equilibrium (red dots), in-between which the equilibrium is stable. Figure 3.1(a) shows

that the target branch of periodic orbits ΓP (green) bifurcates stably (solid curve) from

the Hopf bifurcation HP before becoming unstable (dashed curve) at the torus bifurcation

T0
P (black dot). Also shown is a further torus bifurcation of the unstable periodic orbit;

there are, in fact, infinitely many torus bifurcations along ΓP , see [67] for details. Thus,

ΓP is stable only for a small range of λ.

Figure 3.1(b) shows that the period of ΓP increases quickly as λ is reduced. In fact, as

λ→ −0.1 the period T (λ) in (3.0.2) goes to infinity (recall that γ = −10).
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Figure 3.1: One-parameter bifurcation diagram in λ for b0 = 0.3 of (3.0.1) for the exact-period case,
shown in terms of the radius r in (a) and the period T in (b). The equilibrium solution
is stable (unstable) when black (grey), it becomes stable at the Hopf bifurcation HP from
which bifurcates the branch of periodic orbits ΓP . Also shown are the torus bifurcation T0

P,
a further torus bifurcation and two further delay-induced Hopf bifurcations. Solid (dashed)
curves indicate stable (unstable) periodic orbits. Other parameter values are β = π

4 and
γ = −10.

Figure 3.2 shows the bifurcation set in the (λ, b0)-parameter plane of (3.0.1) for the exact-

period case. Panel (a) shows the curve of Hopf bifurcations HP (green) at λ = 0 and a

selection of further delay-induced Hopf bifurcation curves HL, H1
R and H2

R (red). It also

shows the overall domain of stability of ΓP (shaded), which is bounded by HP, the torus

bifurcation curve T0
P (grey) and the transcritical bifurcation curve TC (purple). The

parameter plane has a left-hand boundary at λ = 1
γ

= −0.1, where the delay τ = T (λ)

given by (3.0.2) is undefined.

Figure 3.2(a) shows that the curve HP is intersected twice by the loop-shaped curve HL.

The lower crossing bc0 is a Hopf bifurcation point with a further degeneracy [13]. Below bc0

the Hopf bifurcation HP is subcritical and above bc0 it is supercritical. Immediately above

the point bc0, the branch of periodic orbits ΓP bifurcates stably from HP.

The second intersection of HP and HL is the double-Hopf bifurcation point HH0, where

the equilibrium solution has two pairs of purely imaginary eigenvalues [31]. The point

HH0 introduces further instabilities in the form of an additional complex conjugate pair of

unstable Floquet multipliers. The curves H1
R and H2

R are part of an infinite family of Hopf

bifurcation curves, each of which intersects HP at a double-Hopf bifurcation point. Above

each of these double-Hopf bifurcation points ΓP bifurcates with an additional complex pair

of unstable Floquet multipliers and, as such, ΓP only bifurcates stably from HP between

the points bc0 and HH0 [67].

Another family of delay-induced Hopf bifurcation curves that are not shown here exist
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Figure 3.2: Bifurcation set in the (λ, b0)-plane of (3.0.1) for the exact-period case. Shown in (a) are the
Hopf bifurcation curve HP and the delay-induced Hopf bifurcation curves HL, H1

J, H
2
J, H

1
R

and H2
R. Also, shown are the double-Hopf bifurcation points HH0, HH1, HH2, HH1

D, HH
2
D

and degenerate Hopf bifurcation point DHL (∗). The torus bifurcation curve T0
P meets the

transcritical bifurcation curve TC at the point R1. An enlargement of the overall domain
of stability of ΓP (shaded) is shown in (b). Other parameter values are β = π

4 and γ = −10.

to the left of the (λ, b0)-plane. From these curves bifurcate stable delay-induced periodic

orbits, which in turn have further bifurcations. Further details on the global structure,

criticality and stability of all the bifurcation curves of (3.0.1) for the exact-period case
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can be found in [67].

Figure 3.2(b) is an enlargement that shows the overall domain of stability of ΓP (shaded) in

more detail. The right-hand boundary of the stability domain is the curve HP between the

points bc0 and HH0. The left-hand boundary of the domain is given by the torus bifurcation

curve T0
P, which starts at the point HH0 and ends on the transcritical bifurcation curve

TC at a 1 : 1 resonance point R1, where the periodic orbits undergoing the transcritical

bifurcation have the same frequency as the torus bifurcation. The lower boundary of the

domain of stability is the part of the curve TC between its starting point bc0 and the

point R1. The curve TC ends on the left-hand boundary of the (λ, b0)-plane at the point

(λ, b0) = (−0.1, 0).

Thus, condition (C) for successful stabilization in the constant and linear-period cases

translates to the questions: is there a domain of stability in the (λ, b0)-plane that exists

predominately to the left of the curve HP? Is this domain bounded by bifurcation curves

similar to the transcritical and torus bifurcation curves in the exact-period case?

3.2 The constant-period case

Figure 3.3 shows the one-parameter bifurcation diagram in λ for b0 = 0.3 for the constant-

period case; it is shown in panel (a) in terms of the radius r = |z| and in panel (b) in terms

of the observed period T . Shown along the bottom axis of panel (a) is the equilibrium

solution (r = 0), which is stable when black and unstable when grey. It becomes unstable

at the Hopf bifurcation HP (green dot) at λ = 0 and is then further destabilized at the

delay-induced Hopf bifurcation H1
D (red dot). Figure 3.3(a) shows the branch of periodic

orbits ΓC (green) bifurcating stably (solid curve) from HP. In contrast to the target branch

of periodic orbits ΓP in the previous section, ΓC exists for λ > 0. The branch ΓC is only

stable between HP and the torus bifurcation T0
P (black dot), where a complex conjugate

pair of Floquet mutipliers leave the unit circle. There is also a saddle-node of limit cycles

(SNLC) bifurcation S1
P (blue dot) on the unstable part of ΓC , where a further Floquet

multiplier leaves the unit circle. The branch ends at the delay induced Hopf bifurcation

H1
D.

Figure 3.3(b) shows how the observed period T of ΓC changes as λ is varied. Recall that

the periods of ΓC and ΓP are both equal to 2π at the Hopf bifurcation point HP. The

period of ΓC increases gradually as λ is increased and reaches its maximum when the

branch ends at the Hopf bifurcation H1
D. We cannot directly compare the periods of ΓP
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Figure 3.3: One-parameter bifurcation diagram in λ of (3.0.1) in the constant-period case for b0 = 0.4,
shown in terms of the radius r in (a) and the period T in (b). The equilibrium solution
is stable (unstable) when black (grey), it becomes unstable at the Hopf bifurcation HP
from which bifurcates the branch of periodic orbits ΓC . On the branch ΓC are the torus
bifurcation T0

P and the SNLC bifurcation S1P. The branch ends at the delay-induced Hopf
bifurcation H1

D. Solid (dashed) curves indicate stable (unstable) periodic orbits. Other
parameter values are β = π

4 and γ = −10.

and ΓC as they exist for different ranges of λ.

Figure 3.4 shows the bifurcation set in the (λ, b0)-plane of (3.0.1) for the constant-period

case. Note that the b0-ranges of Fig. 3.4(a) and (b) are the same as in Fig. 3.2(a) and

(b) but the λ-ranges are different. The Hopf bifurcation HP (green) is the vertical curve

at λ = 0. As all three period cases are the same at λ = 0, the curve HP is intersected

by delay-induced Hopf bifurcation curves at the same double-Hopf bifurcation points

HH0,HH1,HH2 as for the exact-period case. In contrast to the exact-period case, the

delay-induced Hopf bifurcation curves H1
D, H2

D and H3
D (red) do not form a closed loop.

Also, shown in Fig. 3.4(a) is the domain of stability of ΓC (shaded).

The enlargement in Fig. 3.4(b) shows that the overall domain of stability of ΓC exists

almost entirely to the right of HP. Its left-hand boundary is the curve HP between the

points bc0 and HH0 and its lower boundary is given by the part of the SNLC bifurcation

curve S1
P (blue) between the degenerate Hopf bifurcation point DH and the curve HP. The

right-hand boundary of the domain is the torus bifurcation curve T0
P (grey), that starts

at the double-Hopf bifurcation point HH0 and ends on the curve S1
P at the 1:1 resonance

point RP (green dot). The inset in Fig. 3.4(b) shows that the curve S1
P crosses HP at the

point bs0 before turning and ending at the point bc0. This results in a very small portion

of the domain of stability existing to the left of HP.

Figure 3.5 is a one-parameter bifurcation diagram in λ for b0 = 0.02, which is a b0

value between the points bs0 and bc0. It shows the branch of periodic orbits ΓC bifurcates
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Figure 3.4: Bifurcation set in the (λ, b0)-plane of (3.0.1) for the constant-period case. Shown are the
Hopf bifurcation curve HP and the delay-induced Hopf bifurcation curves H1

D, H
2
D and H3

D.
Also, shown are the double-Hopf bifurcation points HH0, HH1, HH2 and the degenerate
Hopf bifurcation point DH (∗). An enlargement of the overall domain of stability of ΓC
(shaded) is shown in (b). The torus bifurcation curve T0

P and the SNLC bifurcation curve
S1P meet at the point RP . Also shown are the points bc0 and bs0. Other parameter values are
β = π

4 and γ = −10.

unstably from HP, is subcritical, and exists for λ < 0. The branch is stabilized in a SNLC

bifurcation along the curve S1
P. Between bc0 and HH0, the periodic orbit ΓC bifurcates

stably from HP and exists for λ > 0.

64



λ

r

-0.002 0 0.002 0.004
0

0.05

0.1

0.15

•

•

•

HP

S1P

S1P

ΓC

Figure 3.5: One-parameter bifurcation diagram in λ of (3.0.1) in the constant-period case for b0 = 0.02.
Shown is the Hopf bifurcation HP from which bifurcates the branch of periodic orbits ΓC .
The branch undergoes the SNLC bifurcation S1P twice. Solid (dashed) lines indicate stable
(unstable) periodic orbits, the solid black (grey) lines indicate where the equilibrium solution
is stable (unstable)

As ΓC is not stable in the same neighourhood of HP as ΓP , the constant-period case does

not satisfy criterion (C). Moreover, we have found that the residual control force is large

so that criterion (B) is also not satisfied; close to the torus bifurcation T0
P the amplitude

of the residual feedback force is approximately 30% of the amplitude of ΓC . Thus, we

conclude that keeping the period constant does not result in a successful form of control.

3.3 The linear-period case

Figure 3.6 shows the one-parameter bifurcation diagram in λ for b0 = 0.3 for the linear-

period case; it is shown in panel (a) in terms of the radius r = |z| and in panel (b) in

terms of the observed period T . Again, shown along the bottom axis of panel (a) is the

equilibrium solution (r = 0), it is stable when black and unstable when grey. It changes

stability twice, once at the Hopf bifurcation HP (green dot) and also at a delay-induced

Hopf bifurcation H1
D (red dot). Figure 3.6(a) shows that the branch of periodic orbits ΓL

(green) bifurcates stably (solid curve) from the Hopf bifurcation HP and exists for λ < 0.

The branch ΓL is only stable between HP and the torus bifurcation point T0
P (black dot).

There is a SNLC bifurcation on the branch at the point S2
P (blue dot), where again a

further Floquet multiplier leaves the unit circle. The branch ends at the delay-induced

Hopf bifurcation H1
D. Whilst ΓL is stable it has an amplitude very close to that of ΓP

(black); see Fig. 3.6(a).

At the Hopf bifurcation point HP, the residual feedback force is zero. The amplitude of

the feedback grows much more slowly than the amplitude of ΓL. In particular, whilst
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Figure 3.6: One-parameter bifurcation diagram in λ for b0 = 0.3 of (3.0.1) for the linear-period case,
shown in terms of the radius r in (a) and the period T in (b); also shown is the branch
of periodic orbits ΓP . The equilibrium solution is stable (unstable) when black (grey), it
becomes stable at the Hopf bifurcation HP from which bifurcates the branch of periodic
orbits ΓL. On the branch are the torus bifurcation T0

P and the SNLC bifurcation S2P. The
branch ends at the delay-induced Hopf bifurcation H1

D. Solid (dashed) curves indicate stable
(unstable) periodic orbits. Other parameter values are β = π

4 and γ = −10.

the branch is stable the residual feedback force is very small. More specifically, along

the stable section of the branch close to the torus bifurcation T0
P, the amplitude of the

residual control force is approximately 6% of the amplitude of ΓL.

Figure 3.6(b) shows how the period of ΓL changes as λ is varied. For reference the period

of the target periodic orbit ΓP (black) from Fig. 3.1(b) is also shown. The periods of ΓP

and ΓL are both equal to 2π at λ = 0, and Fig. 3.6(b) shows that they remain very close

for −0.03 . λ ≤ 0. For λ . −0.03 they diverge, with the period of ΓP increasing quickly

and going to infinity at λ = −0.1. The period of ΓL increases more gradually. We conclude

that the linear-period case fulfills criteria (A) and (B) for successful stabilization.

Figure 3.7 is the bifurcation set in the (λ, b0)-plane of (3.0.1) for the linear-period case.

Again note that the ranges of b0 shown in Fig. 3.7 are the same as in Figs. 3.2 and 3.4,

but the λ-ranges are different. Figure 3.7(a) shows the Hopf bifurcation curve HP (green),

which is intersected by the delay induced Hopf bifurcation curves H1
D, H2

D and H3
D (red)

at the points bc0, HH0,HH1 and HH2. The curve H1
D forms a loop that resembles the curve

HL for the exact-period case in Fig. 3.2(a). It has a point of self intersection labelled

HHc. Figure 3.7(a) also shows the overall domain of stability of ΓL (shaded).

The enlargement in Fig. 3.7(b) shows that the overall domain of stability (shaded) of ΓL

exists predominately to the left of HP. Its right-hand boundary is the curve HP between

the points bc0 and HH0 and its lower boundary is given by the SNLC bifurcation curve S2
P

(blue) between the points bc0 and the 1 : 1 resonance point RP (green dot). The left-hand
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Figure 3.7: Bifurcation set in the (λ, b0)-plane of (3.0.1) for the linear-period case. Shown are the
Hopf bifurcation curve HP and the delay-induced Hopf bifurcation curves H1

D, H
2
D and H3

D.
From the point bc0 emerges the SNLC bifurcation curve S2P, this curve ends at the point
HHc, where H1

D intersects itself. Also, shown are the double-Hopf bifurcation points HH0,
HH1 and HH2. The torus bifurcation curve T0

P meets the SNLC bifurcation curve S2P at
the point RP . An enlargement of the overall domain of stability of ΓL (shaded) is shown in
(b); the inset shows the point bs0 and the SNLC bifurcation curve S1P, which starts at the
degenerate Hopf bifurcation point DH (∗). Other parameter values are β = π

4 and γ = −10.

boundary of the domain is the torus bifurcation curve T0
P (grey), which starts at the

double-Hopf bifurcation point HH0 and ends on the curve S2
P at the point RP . The inset
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in Fig. 3.7(b) shows another very small domain of stability (shaded) of ΓL lower in the

(λ, b0)-plane. The left and lower boundaries of this lower domain of stability are given

by the SNLC bifurcation curve S1
P, which starts at the degenerate Hopf bifurcation point

DH on H1
D, crosses the curve HP at the point bs0 before turning and ending at the point

bc0.

The periodic orbit ΓL only bifurcates stably from HP between the points bc0 and HH0. At

bc0 the criticality of HP changes from subcritical below to supercritical above.

If ΓL bifurcates from HP between bs0 and bc0, it is initially unstable and exists for λ < 0.

The branch becomes stable at the SNLC bifurcation S1
P and ends at the delay-induced

Hopf bifurcation H1
D.

Comparing Figs. 3.2 and 3.7, we see that for −0.05 . λ . 0.02, the bifurcation set in the

(λ, b0)-plane for the linear-period case resembles that for the exact-period case. In both

cases the domain of stability exists to the left of the curve HP, and its left-hand boundary

is the torus bifurcation curve T0
P. Note that the symmetry properties of the exact-period

case are lost in the linear-period case. Therefore, the lower boundary of the domain of

stability in the linear-period case is a SNLC bifurcation curve rather than a transcritical

bifurcation curve as in the exact-period case. There is also the slight difference that

the curve S2
P slopes upwards in the plane whereas the curve TC slopes downwards. In

addition, in the linear-period case there exists a very small domain of stability to the right

of HP (see the inset of Fig. 3.7(b)), which because of its size, we consider negligible. This

domain of stability does not exist in the exact-period case. Nonetheless we conclude that

for the linear-period case criterion (C) for successful stabilization is satisfied.

Therefore, the linear-period case fulfills all three stabilization criteria, and we conclude

that it constitutes a successful form of control.

3.4 The variable-slope case

We now consider the variable-slope case, where the delay in (3.0.1) is set as in (3.0.6).

Recall that when h = 1 the delay is as that of the linear-period case and when h = 0 the

delay is as that of the constant-period case.

Figure 3.8 shows qualitative changes of the bifurcation set in the (λ, b0)-plane, illustrated

by representative panels for chosen values of h. We focus on how the bifurcation curves
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that define the domain of stability move as h is varied. Hence, the curves H2
D and H3

D

are not shown in Fig. 3.8; see [67] for how all of the delay-induced Hopf bifurcation

curves for the exact-period case move in the (λ, b0)-plane as the parameters β and γ are

changed. Overall, Fig. 3.8 shows that the upper domain of stability to the left of HP

increases in area as h is reduced to 0.5, that is, when the slope is reduced by half. As h

is reduced further, the area of this domain decreases, but it remains of a substantial size

until approximately h = 0.16. When h is reduced below this value the point bHH0 where

HP and H1
D intersect moves quickly upwards in the (λ, b0)-plane and the domain rapidly

reduces in area. At h ≈ 0.1424 the upper domain to the left of HP vanishes. This means

that a linear approximation with a slope that is approximately 50% shallower than that

used in (3.0.4) can still result in successful stabilization.

More specifically, Fig. 3.8(a) is the bifurcation set of (3.0.1) for the linear-period case

(h = 1) as in Fig. 3.7(a). We define the range of stability of ΓL as the values of b0 for

which the branch of periodic orbits bifurcates stably from HP. Thus, for ΓL the range of

stability is bc0 < b0 < HH0.

Figure 3.8(b) and (c) show that, as h is reduced, the upper left domain of stability increases

in area. The right end point of the curve S2
P has moved left along H1

D away from the point

bc0 and the point RP has moved up the curve S2
P to the point HHc. Also, the bottom of

the curve H1
D has shifted upwards in the (λ, b0)-plane such that the lower intersection of

HP by H1
D is above the point bc0. We call this intersection point bHH0 , and it is given by

bHH0 =

{
(λ, b0) =

(
0,

1

2π(cos β + hγ sin β)

)}
. (3.4.1)

The shift upwards of H1
D results in the domain of stability on the right-hand side of HP

growing in area.

Panel (d) for h = 0.16 shows that the lower intersection of the curves H1
D and HP at the

point bHH0 has moved well above the point bc0 in the (λ, b0)-plane. Hence, the domain of

stability on the right of HP has increased in area and range and the upper domain of

stability to the left of HP has decreased in area and range. The curve H1
D has shifted right

in the (λ, b0)-plane and its point of self-intersection HHc is close to the curve HP. The

SNLC bifurcation curve S2
P has disappeared into the point HHc.

Panel (e) for h = 0.1424 shows that the point HHc coincides with the points HH0 and

bHH0 on the curve HP, resulting in the disappearance of the upper domain of stability to

the left of HP. The torus bifurcation curve T0
P has disappeared into the point HH0. The
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Figure 3.8: The overall domain of stability in the (λ, b0)-plane of the stabilized branch of periodic orbits
(shaded) as the homotopy parameter h is reduced from 1 to 0. Panel (a) is for h = 1 as in
Fig. 7(b), panels (b)-(g) are for the given value of h and panel (h) is for h = 0 as in Fig.
4(b). Each panel shows the Hopf bifurcation curves HP and H1

D, the SNLC bifurcation curve
S1P and the points bc0, bs0, HH0 and HHc. The torus bifurcation curve T0

P meets the SNLC
bifurcation curve S2P at the point RP . Other parameter values are β = π

4 and γ = −10.

curve H1
D has moved right in the (λ, b0)-plane and thus, the domain of stability to the

right of HP has increased in area.
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Figure 3.8(f) for h = 0.12 shows that the curve H1
D and the point HHc have moved right

in the (λ, b0)-plane. The torus bifurcation curve T0
P connects the points HH0 and HHc

and now forms the upper boundary of the domain of stability to the right of HP.

Panel (g) for h = 0.072 shows that, when the curve H1
D no longer self-intersects (i.e. there

is no loop), the point HHc is at the degenerate Hopf bifurcation point DH. The curve T0
P

now ends at this point where HHc = DH. As h is further reduced, the right end point

of the curve T0
P moves left along the curve S1

P as the point RP , reducing the area of the

domain of stability.

Figure 3.8(h) for h = 0 shows the bifurcation set in Fig. 3.4(b) for the constant-period

case.

3.5 Conclusions

We considered the generic subcritical Hopf normal form subject to Pyragas control.

Specifically, we analyzed the effect of setting the delay in the Pyragas control term to

a simpler functional form of the period of the targeted periodic orbit. We have shown

that at least a linear approximation of the target period T (λ) is required for Pyragas

control to yield a stable periodic orbit that is sufficiently close to the stable periodic orbit

found in the benchmark exact-period case. In fact, investigation of the variable-slope case

showed that the Pyragas control scheme is still successful if a linear approximation is used

that is up to 50% shallower.

Brown et al. [13] showed that locally near any subcritical Hopf bifurcation, a Pyragas con-

trolled system exhibits the same dynamics as the subcritical Hopf normal form subject to

Pyragas control (3.0.1) for the exact-period case. We therefore expect that our results for

the exact-period, constant-period and linear-period cases will be observed more generally

in systems with Pyragas control near a subcritical Hopf bifurcation. In fact, in chapter 4

we find that the results of this chapter are indeed relevant for the Lorenz system subject

to Pyragas control.

In this chapter, we only consider the standard parameter values for the control phase β

and the imaginary part of the cubic coefficient γ, which is also referred to as the frequency

detuning or chirp; that is, we set β = π
4

and γ = −10 [13, 24, 38]. In [67] we show that

stabilization is possible for other values of β and γ (but not for all), and that the feedback

induces infinitely many stable periodic orbits other than the target periodic orbit. The
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existence of these stable regions means that, if the location/period of the target periodic

orbit with respect to system parameters is unknown, the system may converge to a delay-

induced stable periodic orbit rather than the targeted one. Thus, an experiment may

seem successful when the system is at a stable periodic orbit but this periodic orbit may

be different from the one that was originally targeted.

Experimental verification of this work remains an intriguing challenge. Indeed, in an

actual experiment it is not known how the target period changes with parameters. We

have shown that finding an approximation of the slope of the target period is necessary for

the Pyragas scheme to be successful. Obtaining such an approximation appears feasible

from a limited number of measurements, especially for experiments that are close to a

subcritical Hopf bifurcation. For example, the semiconductor laser studied by Schikora

et al. [79, 80] may well be a good candidate system. Instead of using a constant delay

term that is adjusted in interactive steps, a parameter-dependent linear approximation of

the target period could be derived from the points where the delay is adjusted and then

used as part of the experimental setup. This scheme would be expected to stabilize a

periodic orbit that is close in location, amplitude and period to the target periodic orbit.

Furthermore, as we have shown, a linear approximation of this type should also maintain

a low residual control force. In particular, this approach may make the experiment more

automated by removing the need for the operator to manually change the delay, while

not requiring inclusion of a continuation of the period of the target periodic orbit itself.
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4
The Lorenz system subject to Pyragas

time-delayed feedback control

In this chapter our aim is to show that the overall dynamics found in the subcritical

Hopf normal form subject to Pyragas control (see chapter 2, [67]) are also relevant for

other systems with Pyragas control near a subcritical Hopf bifurcation. To this end, we

consider the Lorenz equations subject to Pyragas time-delayed feedback control. Note

that the Lorenz system is quite different to the subcritical Hopf normal form analyzed in

chapters 2 and 3. First, it is of higher dimension and, second, for the Lorenz system we

add feedback to the whole system, whereas in the Hopf normal form analysis we are able

to add feedback directly onto the centre manifold. A further explanation of the addition

of feedback to the Lorenz system is given in the following paragraphs. The equations were

derived by Lorenz [52] as a simplified model of thermal convection in the atmosphere, and

take the form

ẋ(t) = σ(y(t)− x(t)),

ẏ(t) = ρx(t)− y(t)− x(t)z(t),

ż(t) = −αz(t) + x(t)y(t).

(4.0.1)
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Note that we use α as the parameter name, rather than the standard β, in the third

equation of (4.0.1), to avoid confusion with the feedback phase β of the Hopf normal form

subject to Pyragas control. Equations (4.0.1) are perhaps the most famous example of a

chaotic system. In particular, the butterfly-shaped Lorenz attractor, which can be found

for the classical parameter values σ = 10, α = 8
3

and ρ = 28, has garnered fame even

outside of the mathematical community. For further information on the Lorenz system

and its dynamics see, for example, [12,19,20,93] and the references therein.

System (4.0.1) is most often studied for the parameter regime σ = 10, α = 8
3

and ρ > 0,

that is, ρ is taken as the primary bifurcation parameter. The origin is always an equilib-

rium; it is stable for ρ < 1 and it loses stability in a supercritical pitchfork bifurcation for

ρ = 1. For ρ > 1, there exist the two further equilibria

p± =
(
±
√
α(ρ− 1),±

√
α(ρ− 1), ρ− 1

)
, (4.0.2)

which are each other’s counterparts under the symmetry transformation

(x, y, z)→ (−x,−y, z) of the Lorenz system. The equilibria p± (4.0.2) lose stability in a

subcritical Hopf bifurcation at

ρH =
σ(σ + α + 3)

(σ − α− 1)
≈ 24.7368, (4.0.3)

for σ = 10 and α = 8
3
. For ρ > ρH , the equilibria p± are saddle points. From the

Hopf bifurcation at ρH emanate two unstable periodic orbits. We target the unstable

periodic orbit ΓP near p+ that bifurcates in the Hopf bifurcation HP at ρH . It has one

real unstable Floquet multiplier, one Floquet multiplier equal to one and one real stable

Floquet multiplier. The periodic orbit ΓP exists for ρhom < ρ < ρH ; at ρhom ≈ 13.926 the

periodic orbit ends in a homoclinic bifurcation of the origin. This homoclinic bifurcation is

also referred to as a homoclinic explosion point [93] and is the source of the complicated

dynamics exhibited in the Lorenz system. For ρ > ρhom there are, in addition to ΓP ,

infinitely many periodic orbits of saddle type. The homoclinic explosion point at ρhom

does not produce a chaotic attractor; instead one finds transient chaos until the system

reaches one of the attracting equilibria p± [42, 93]. At ρ = ρhet ≈ 24.0579 there is a

heteroclinic bifurcation, where there is a connecting orbit between the origin and each of

the unstable periodic orbits that bifurcate from p±. This heteroclinic bifurcation at ρhet

creates a chaotic attractor. Therefore, for ρhet < ρ < ρH there exist two stable equilibria

p± and a chaotic attractor. For ρ > ρH , the equilibria p± become saddles, and the only

attractor is the chaotic attractor. For ρ = 28, the system has the famous Lorenz strange

attractor, which is a global attractor.
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We apply Pyragas control to the Lorenz equations in the manner first suggested by

Postlethwaite and Silber [65]. We start by shifting and rescaling coordinates so that

the equilibrium point p+ is at the origin. This is done via the transformationuv
w

 =


√
α(ρ− 1)(x−

√
α(ρ− 1))√

α(ρ− 1)(y −
√
α(ρ− 1))

(ρ− 1)(z − (ρ− 1))

 ,

which yields the system

u̇(t) = σ(v(t)− u(t)),

v̇(t) = u(t)− v(t)− (ρ− 1)w(t)− (ρ− 1)u(t)w(t),

ẇ(t) = α(u(t) + v(t)− w(t) + u(t)v(t)).

(4.0.4)

When the control term is added to (4.0.4) the full controlled system is

 u̇(t)

v̇(t)

ẇ(t)

 = J(ρ)

u(t)

v(t)

w(t)

+

 0

−(ρ− 1)u(t)w(t)

αu(t)v(t)

+ Π

 u(t− τ)− u(t)

v(t− τ)− v(t)

w(t− τ)− w(t)

 , (4.0.5)

where

J(ρ) =

−σ σ 0

1 −1 −(ρ− 1)

α α −α

 . (4.0.6)

Close to the Hopf bifurcation point HP, the target unstable periodic orbit ΓP will lie on the

two-dimensional centre manifold with an extra stable direction. One approach to applying

Pyragas feedback would be to reduce the uncontrolled three-dimensional Lorenz system

(4.0.4) to a two-dimensional system that governs the dynamics on the centre manifold.

A normal form transformation (up to the cubic term) would then remove all nonlinear

terms except the one that is proportional to |z|2z, which is the cubic term of the Hopf

normal form. Thereby, the reduced system would be in Hopf normal form as in equation

(2.0.1) from chapters 2 and 3. Pyragas feedback control could then be applied to this

system in exactly the same way as shown in chapter 2. However, it is unpractical from

an application point of view to perform this reduction to normal form for every system

to which one would like to apply Pyragas control – especially in an experimental setting,
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where the governing equations may be unknown.

Here we consider the alternative approach, of applying the Pyragas scheme, where control

is added to the original system but only applied in the respective unstable directions. This

is achieved by defining the feedback gain matrix Π in (4.0.5) as Π = EGE−1, where

G =

0 0 0

0 b0 cos(η) −b0 sin(η)

0 b0 sin(η) b0 cos(η),

 . (4.0.7)

and E is given below. The matrix G corresponds to the feedback gain of the Hopf normal

form (applied to the last two coordinates). Here, b0 ∈ R is the control amplitude and

we use the convention that b0 ≥ 0. The parameter η is the 2π-periodic feedback phase.

Note we use the notation η instead of the standard β as in chapters 2 and 3. Due to

the coordinate transformation Π = EGE−1, choosing a value of η here is not directly

equivalent to choosing the same value of β in the Hopf normal form analysis. The same

is of course true for the parameter b0, however, since b0 just undergoes a linear scaling,

for simplicity we use the same notation. The matrix G is related to Π via the coordinate

transformation E, which is the matrix of eigenvectors that puts J(ρH) in Jordan normal

form, that is,

E−1J(ρH)E =

µ
S
H 0 0

0 0 −ωH
0 ωH 0

 . (4.0.8)

By selecting the feedback gain in this way, we ensure that there is no feedback in the stable

direction, which has eigenvalue µSH < 0 but that there is feedback in the unstable direc-

tions, which have eigenvalues ±ωH tangent to the center manifold. Further explanation

for this choice of feedback gain can be found in [65].

In [14] Brown showed that, close to the Hopf bifurcation point HP, applying feedback to

the original Lorenz equations (4.0.4) is equivalent to applying feedback to the system after

it has been reduced to the Hopf normal form. In other words, the dynamics locally near

HP are the same both when feedback is added to the original Lorenz equations and when

feedback is added to the already reduced system. Here, we consider whether the same is

true of the dynamics more globally, that is, further away from the Hopf bifurcation HP.

The question is, are the overall dynamics of the Lorenz system subject to Pyragas control

(presented in the rest of this chapter) described by those of the Hopf normal form subject

to Pyragas control (shown in chapters 2 and 3)?
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To answer this question, we take a global view of system (4.0.5) and perform a detailed

bifurcation analysis in the (ρ, b0)-plane. We show the overall domain of stability of the

target periodic orbit ΓP and also domains of stability of further delay-induced periodic

orbits. We find that these domains are qualitatively the same as those found in the

analysis of the Hopf normal form subject to Pyragas control; see chapter 2. Furthermore,

we consider the effect of the feedback phase η on the domain of stability of ΓP and find

where control fails for system (4.0.5). Moreover, we show that η can be chosen suitably to

ensure excellent agreement with the Hopf normal form subject to Pyragas control. Lastly,

we consider a delay mismatch in (4.0.5), where the delay τ is set close to but not exactly

as the period of the target periodic orbit ΓP . We find that also for the Lorenz system at

least a linear approximation of the period of ΓP is required for the control scheme to be

successful. For convenience throughout the rest of this chapter, we refer to the analysis

of the subcritical Hopf normal form subject to Pyragas control presented in chapters 2

and 3 as the normal form case, and the analysis of the Lorenz system subject to Pyragas

control as the Lorenz case.

This chapter is organized as follows. Section 4.1 gives some background on (4.0.5) and

an outline of the results presented in [65], including a local bifurcation analysis. Section

4.2 considers a more global view of the (ρ, b0)-plane and shows the wider delay-induced

dynamics. In section 4.3 we consider the effect of the 2π-periodic feedback phase η on the

domain of stability of ΓP . Section 4.4 presents the results of a delay mismatch in system

(4.0.5). Conclusions and discussions can be found in section 4.5.

4.1 Background and local bifurcation analysis

4.1.1 The period as a function of ρ

A key ingredient for the standard setup of Pyragas control is setting the delay τ to the

period of the target periodic orbit. For the Lorenz system (4.0.1) there is no analytic

function for the period T (ρ) of ΓP . Instead, we use the same method as presented in

[65]. That is, for ρ < ρH we represent the period T (ρ) as a data set obtained from

a numerical continuation in ρ of the period of ΓP . Close to the homoclinic bifurcation

at ρhom ≈ 13.926, we approximate the period as a set of data points obtained from

T (ρhom) = −0.974 log(ρ−ρhom), which represents the period T (ρ) of ΓP going to infinity at

the homoclinic bifurcation. We take a spline through the data points from the numerical

continuation and the data points from the logarithmic function to ensure that T (ρ) is
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continuous and has continuous first derivative. For ρ > ρH we extrapolate the data set

for the period of ΓP with the function

τ =
τH

1 + 0.0528(ρ− ρH)
, (4.1.1)

where τH ≈ 0.6528 is the period of ΓP at the Hopf bifurcation HP. Again, this ensures that

at the Hopf bifurcation HP at ρ = ρH the period T (ρ) is continuous and has continuous

first derivative. Throughout our analysis of (4.0.5) we fix the delay to τ = T (ρ) obtained

as explained above.

4.1.2 Stabilization of ΓP near the point bc0

Postlethwaite and Silber [65] performed a bifurcation analysis of (4.0.5) close to the Hopf

bifurcation HP. In their analysis they fix the parameter values σ = 10, α = 8
3

and the

feedback phase η = π
4
. They found that the mechanism of stabilization in (4.0.5) is

the same as the normal form case; see chapter 2. That is, the target unstable periodic

orbit ΓP exchanges stability with a stable delay-induced periodic orbit in a transcritical

bifurcation. In the rest of this section we review the results of [65] and compare them

with our analysis of the normal form case in chapter 2. Throughout this analysis, we also

fix the parameter values σ = 10, α = 8
3

and η = π
4
.

Figure 4.1(a) shows the one-parameter bifurcation diagram in ρ of (4.0.5) for b0 = 0, i.e

without feedback. The stability of the equilibrium p+ is shown along the bottom axis; it is

stable when black and unstable when grey. It loses stability at the Hopf bifurcation point

HP, from which the unstable periodic orbit ΓP (green dashed curve) bifurcates. Figure

4.1(b) shows the one-parameter bifurcation diagram in ρ of (4.0.5) for b0 = 0.19. The

point HP remains at ρ = ρH but there are now further delay-induced Hopf bifurcations.

These are indicated by additional dots on the bottom axis of Fig. 4.1(b). From the Hopf

bifurcation point HL bifurcates a stable periodic orbit ΓL. The periodic orbits ΓP and ΓL

exchange stability at the transcritical bifurcation TC (black square).

Figure 4.1(c) is a phase portrait of 4.0.5 in projection onto the (u, v)-plane; the equilibrium

p+ is at (u, v) = 0. It shows a selection of periodic orbits from the family ΓP for 16 < ρ <

24, that is, for various values of ρ along the branch ΓP shown in Fig. 4.1(b). The periodic

orbit ΓP is unstable when colored grey and stable when colored green, the thicker black

periodic orbit is at the transcritical bifurcation TC. Figure 4.1(d) is again a phase portrait

of 4.0.5 in projection onto the (u, v)-plane but it shows the family of periodic orbits ΓL
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Figure 4.1: One-parameter bifurcation diagrams in ρ of (4.0.5). Panel (a) is for b0 = 0 and shows
the Hopf bifurcation point HP (black dot) of the equilibrium and the bifurcating unstable
periodic orbit ΓP (green dashed). Panel (b) is for b0 = 0.19 and shows further delay-induced
Hopf bifurcations (black dots). From the bifurcation HL emanates a stable periodic orbit
ΓL (red), which exchanges stability with ΓP at a transcritical bifurcation TC (black square).
Solid (dashed) curves indicate stable (unstable) periodic orbits, the solid black (grey) lines
indicate where the equilibrium is stable (unstable). Panels (c) and (d) are phase portraits
of (4.0.5) for various values of ρ (more details are given in the text) in projection onto
the (u, v)-plane, showing the families of periodic orbits ΓP and ΓL respectively. Stable
(unstable) periodic orbits are colored (grey) and the black periodic orbits in each panel are
at the transcritical bifurcation TC. Other parameter values: σ = 10, α = 8

3 and η = π
4 .

for 16 < ρ < 25. The periodic orbit is stable when colored red and unstable when colored

grey. Again the thicker black periodic orbit is at the transcritical bifurcation TC. From

panels (c) and (d) we see that the outer most periodic orbits shown are already starting

to deform as they approach the homoclinic bifurcation at ρ = ρhom.

In [65] the authors find that there exists a critical level of feedback amplitude bc0, im-

mediately above which ΓP bifurcates stably from HP. In [14] Brown performed a centre

manifold reduction of (4.0.5) and derived the analytical expression
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Figure 4.2: Bifurcation set in the (ρ, b0)-plane of (4.0.5) near the point bc0, where the curves HP (green)
and HL (red) intersect. The transcritical bifurcation curve TC (purple) begins at the point
bc0. The SNLC bifurcation curve SL (blue) emerges from the degenerate Hopf bifurcation
point DHL (∗). The domain of stability of ΓP is shaded. Other parameter values: σ = 10,
α = 8

3 and η = π
4 .

bc0 =

{
(ρ, b0) =

(
ρH ,

−ω0

2π(cos(η) + γ̂ sin(η))

)}
(4.1.2)

for the point bc0 in the (ρ, b0)-plane, where ω0 is the linear frequency and γ̂ ≈ −10.82 is a

parameter obtained from the centre manifold reduction.

Figure 4.2 shows the two-parameter bifurcation set in the (ρ, b0)-plane of (4.0.5) near

the point bc0. This bifurcation set is also shown in [65]. The Hopf bifurcation curve HL

(red) intersects the Hopf bifurcation curve HP (green) at the point bc0. From the point

bc0 emerges the transcritical bifurcation curve TC (purple). The curve TC extends into

the left of the (ρ, b0)-plane. The (blue) curve SL, which is not shown in [65], is a saddle-

node of limit cycles (SNLC) bifurcation (or fold bifurcation), where a stable delay-induced

periodic orbit bifurcates. The curve SL starts at the degenerate Hopf bifurcation point

DHL on the curve HL and extends to the left of the (ρ, b0)-plane. The curve PD0
P (dark

blue) is a period-doubling bifurcation curve, where the stabilized periodic orbit ΓP loses

stability [65]. This was also found by Postlethwaite and Silber in [65]. Figure 4.2 also

shows the local domain of stability of ΓP (shaded). Its right-hand boundary is the curve

HP above the point bc0, the curve TC is its lower boundary and the curve PD0
P forms its

left boundary.

Below bc0 the Hopf bifurcation HP is subcritical and the equilibrium p+ is stable for ρ < ρH .

Above bc0, HP is supercritical and ΓP bifurcates stably from HP. The equilibrium is unstable
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in the region to the left of the curve HP and to the right of the curve HL. Between the

point bc0 and the degenerate Hopf bifurcation point DHL, the curve HL is supercritical

and from this segment of the curve bifurcates the stable periodic orbit ΓL. At the point

DHL, the criticality of the curve HL changes. The segments of the curve HL to the right of

DHL and to the left of bc0 are subcritical; from these parts of the curve bifurcate unstable

periodic orbits.

Comparing Fig. 4.1 and Fig. 2.1 (a similar comparison was made in [65]), we see that

the local mechanism of stabilization is exactly the same for the Lorenz case and the

normal form case. That is, the target periodic orbit ΓP is stabilized in a transcritical

bifurcation with a delay-induced periodic orbit. Moreover, comparing Fig. 4.2 and 2.2,

we see that the local domain of stability of ΓP is very much the same in both cases. That

is, in both cases the stability domain is bounded by the same bifurcation curves. The

right-hand boundary of the domain of stability both here and for the normal form case

is the Hopf bifurcation curve HP and its lower boundary is the transcritical bifurcation

curve TC. Also in both systems, we find the SNLC bifurcation curve SL, which emerges

from the degenerate Hopf bifurcation point DHL. We find that the criticality of the Hopf

bifurcation curves HP and HL is the same in both the Lorenz and normal form cases. In

particular, the curve HP is subcritical below the point bc0 and supercritical above. Also

in both cases, the curve HL has a supercritical segment between the points bc0 and DHL,

and all other parts of the curve are subcritical. There is the difference that in Fig. 4.2

the period-doubling bifurcation curve PD0
P forms the left-hand boundary of the stability

domain, whereas this curve is not present in Fig. 2.2 for the normal form case. This issue

is discussed in more detail in section 4.3.

4.2 A more global view of the (ρ, b0)-plane

We now consider the (ρ, b0)-plane more globally to show that the addition of feedback

induces further Hopf bifurcations. We also present the overall domain of stability for the

target periodic orbit ΓP and present the domain of stability of a delay-induced periodic

orbit. We compare these stability domains with those found for the normal form case.
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4.2.1 Families of Hopf bifurcations

Figure 4.3 shows Hopf bifurcation curves of (4.0.5) in the (ρ, b0)-plane. The (ρ, b0)-plane

is bounded below by b0 = 0. It also has a left-hand boundary at ρ = ρhom ≈ 13.926. Here

system (4.0.5) has a homoclinic bifurcation, where ΓP disappears and, hence, τ = T (ρ)

goes to infinity. This is very similar to the normal form case, in which the (λ, b0)-plane

has a left-hand boundary at λ = 1
γ

where the period of the target periodic orbit and hence

the delay τ , goes to infinity; see chapter 2.

The curve HP is again the vertical green curve at ρ = ρH . The Hopf bifurcation curve HL

(red) forms a loop, where the two end points of the curve end on the left-hand boundary

of the (ρ, b0)-plane at different values of b0. In addition to crossing HP at bc0, the curve

HL also intersects HP at the non-degenerate double Hopf bifurcation point HH0. At this

point there exist two pairs of purely imaginary eigenvalues. Above HH0 the periodic

orbit ΓP bifurcates unstably from HP with a complex conjugate pair of unstable Floquet

multipliers.

In addition to the curve HL, further delay-induced Hopf bifurcation curves are also shown

in Fig. 4.3. The curve H1
J starts at the left-hand boundary of the (ρ, b0)-plane, stretches

downwards in the plane before turning and extending to infinity in b0. The curve H1
J

in Fig. 4.3 has a supercritical segment between the degenerate Hopf bifurcation point

DH1 and the double Hopf bifurcation point HH1
D. From this part of the curve bifurcates a

stable periodic orbit ΓJ , which exists for decreasing ρ. The segments of the curve H1
J above

HH1
D and to the left of DH1 are subcritical; from these segments bifurcates an unstable

periodic orbit.

The curve H1
R starts on the left-hand boundary of the (ρ, b0)-plane, crosses the curve HP

at the double Hopf bifurcation point HH1 and then extends to infinity in both ρ and b0.

The curve H1
R is part of a family of Hopf bifurcation curves HK

R . The first six curves of

the family are shown in Fig. 4.3, and we conjecture that there are in fact infinitely many

curves in the family.

All periodic orbits that bifurcate from H1
R are unstable. The criticality of each curve in

the family HK
R is as that of H1

R. Each curve of the family HK
R starts at a higher point on

the left-hand boundary of the (ρ, b0)-plane than the preceding curve. It then extends to

infinity in both ρ and b0 with a steeper gradient than the preceding curve in the family.

Each curve Hk
R of the family HK

R crosses the curve HP at the double Hopf bifurcation point

HHk; for example the curve H2
R crosses HP at the point HH2. Above each of these double

Hopf bifurcation points the target periodic orbit ΓP bifurcates with a further complex
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Figure 4.3: Bifurcation set in the (ρ, b0)-plane of (4.0.5) showing the Hopf bifurcation curve HP (green)
and the delay-induced Hopf curves HL and H1

J. Also shown are the first six curves of the
family of delay-induced Hopf bifurcations HKR (red), the point bc0 (black) and the double Hopf
bifurcation points HH0 (green), HH1 (green), HH2 (green) and HH1

D(violet). Degenerate
Hopf bifurcation points DHL and DH1 are marked by asterisks. Other parameter values:
σ = 10, α = 8

3 and η = π
4 .

conjugate pair of unstable Floquet multipliers. Thus, ΓP only bifurcates stably from HP

between the points bc0 and HH0.

We now compare the Hopf bifurcation curves shown in Fig. 4.3 for the Lorenz case with

those shown in Fig. 2.4 for the normal form case. We find that the curve HL has the shape

of a loop in both figures. There is the slight difference that in Fig. 4.3 for the Lorenz case

the two end points of the curve HL are at the left-hand boundary of the (ρ, b0)-plane for

different values of b0, whereas in Fig. 2.4, for the normal form case, the two end points of

the curve HL are at the same point. Moreover, all delay-induced Hopf bifurcation curves

emerge from the same point on the left-hand boundary of the respective parameter planes

but in Fig. 4.3 they emerge from points with different values of b0. Colloquially speaking,

Fig. 4.3 is as Fig. 2.4 but “chopped off” or truncated at about λ = −0.065. We conjecture

that this truncation is due to the presence of the homoclinic bifurcation at ρhom, where all

periodic orbits disappear. It may well be that the delay-induced Hopf bifurcation curves

do indeed start from the same point and that there are more ‘J’-shaped curves, but that
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close to the left-hand boundary of the plane, the very steep increase in delay (due to the

homoclinic bifurcation) makes these curves difficult to find numerically.

Again, comparing Fig. 4.3 and Fig. 2.4, we see that the respective curves H1
J are practi-

cally identical in both figures. There is a slight difference that in Fig. 4.3 we only find

one ‘J’-shaped curve, whereas in Fig. 2.4, for the normal form case, we find a family

of curves. The respective curves H1
R are also practically identical in Figs. 4.3 and 2.4.

Furthermore, we find the family of Hopf bifurcation curves HK
R in both cases. Again,

there is the slight difference that in Fig. 4.3 for the Lorenz case the curves in the family

HK
R start at different values of b0, whereas in Fig. 2.4 for the normal form case, all curves

in the family start at a single point.

We now compare the criticality of the Hopf bifurcation curves present in the Lorenz and

normal form cases. In both the Lorenz case and the normal form case, the Hopf bifurcation

curve HP is supercritical between the points bc0 and HH0 and subcritical elsewhere. Thus,

in both cases, the target periodic orbit ΓP only bifurcates stably from HP between the

points bc0 and HH0. Also, in both cases we find an identical supercritical segment of the

curve H1
J, from which bifurcates the stable periodic orbit ΓJ . The existence of this stable

periodic orbit in both cases shows that the addition of feedback induces not only the same

local dynamics, but that the dynamics also closely agree more globally. The criticality of

the curve H1
R is also the same in both the Lorenz and normal form cases. In particular,

no stable periodic orbits bifurcate from the family of curves HK
R in either case.

Comparing Figs. 4.3 and 2.4 and taking into account the criticality of the Hopf bifurcation

curves shown in these figures, we have found that the addition of feedback induces practi-

cally identical global dynamics in both the Lorenz and normal form cases. In particular,

we find the same delay-induced Hopf bifurcation curves and also the same delay-induced

stable periodic orbit ΓJ . The difference is that the bifurcation set in the (ρ, b0)-plane is

truncated at the homoclinic bifurcation point ρhom when compared to the (λ, b0)-plane in

the normal form case. Hence, in the Lorenz case we find a subset of the Hopf bifurcation

curves of the normal form case.

4.2.2 Overall domain of stability of ΓP

Figure 4.4 shows the overall domain of stability (shaded grey) of the target periodic orbit

ΓP in the (ρ, b0)-plane. The regions in which the equilibrium p+ is stable are shaded blue;

darker blue regions are areas of bistability, where both the equilibrium and a periodic

orbit are stable.
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Figure 4.4: The overall domain of stability (shaded grey) of the target periodic orbit ΓP ; it is bounded
by the Hopf bifurcation curve HP (green), the torus bifurcation curve T0

P (grey), the period-
doubling bifurcation curve PD0

P (dark blue) and the transcritical bifurcation curve TC (pur-
ple). The regions where the equilibrium solution is stable is shaded blue. Other parameter
values: σ = 10, α = 8

3 and η = π
4 .

The right-hand boundary of the overall domain of stability of ΓP is the Hopf bifurcation

curve HP between the points bc0 and HH0. Its lower boundary is the transcritical bifur-

cation curve TC, which starts at the point bc0 and ends on the left-hand boundary of the

(ρ, b0)-plane at b0 = 0. The left boundary of the stability domain of ΓP is the period-

doubling bifurcation curve PD0
P (dark blue). The curve PD0

P starts on the left-hand

boundary of the (ρ, b0)-plane at approximately b0 = 4; it extends to the right of the plane

for increasing values of ρ. At approximately ρ = 22.5 the curve PD0
P turns and extends

back to the left of the plane. It ends on the left-hand boundary of the (ρ, b0)-plane at

b0 = 0. The upper boundary of the domain of stability of ΓP is the torus bifurcation curve

T0
P (grey), which starts at the double Hopf bifurcation point HH0 and ends on the curve

PD0
P at the 1 : 2 resonance point R2 (dark blue). Therefore, depending on the value of

b0, the stabilized periodic orbit ΓP loses stability either in the period-doubling bifurcation

PD0
P, where a Floquet multiplier leaves the unit circle along the negative real axis, or

in the torus bifurcation T0
P, where a complex conjugate pair of Floquet multipliers leave

the unit circle. There is a small region of bistability, where the equilibrium p+ and the

target periodic orbit ΓP are both stable. This region is enclosed by the curves HL, TC
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and PD0
P. The periodic orbit ΓP can be followed all the way to the left-hand boundary of

the (ρ, b0)-plane. Here its period goes to infinity as it undergoes a homoclinic bifurcation.

We now compare the overall domain of stability of ΓP in the Lorenz case, shown in Fig.

4.4, with that in the normal form case shown in Fig. 2.6. We find that in both cases the

right-hand boundary of the stability domain is HP between the points bc0 and HH0. Its

lower boundary is the transcritical bifurcation curve TC and its upper boundary is the

torus bifurcation curve T0
P. There is also a small region of bistability in each case, where

the equilibrium and ΓP are both stable. There is the difference that in Fig. 4.4 for the

Lorenz case a part of the left-hand boundary of the stability domain is the period-doubling

bifurcation curve PD0
P, whereas this curve is not present in Fig. 2.6 for the normal form

case. Nonetheless, the domain of stability of ΓP closely agrees in both the Lorenz and the

normal form cases; in particular, close to the curve HP it is identical.

4.2.3 Other regions of stability in the (ρ, b0)-plane

We now consider the stability of the equilibrium p+ in the (ρ, b0)-plane. Figure 4.5(a)

is an enlargement of Fig. 4.3 that shows the stability regions of p+ (shaded blue). The

equilibrium p+ is stable in the region to the left of the Hopf bifurcation curve HP and

below the Hopf bifurcation curves HL and H1
J. It is also stable in the region enclosed

by the curve HL to the right of the curve HP. This latter region of stability is due to

the addition of feedback. In the uncontrolled Lorenz system (4.0.1) the equilibrium p+ is

never stable for ρ > ρH ≈ 24.7368.

Comparing Fig. 4.5(a) with Figs. 2.6 and 2.7 for the normal form case, we find that the

equilibrium p+ is stable in the same regions of the plane as the origin in the normal form

case. When there is no control, in both cases the equilibrium solution, that is p+ in the

Lorenz case and the origin in the normal form case, is never stable to the right of the Hopf

bifurcation HP. However, the addition of feedback results in both equilibrium solutions

being stable in a region of parameter space to the right of HP, which is bounded by HL.

Figure 4.5(b) shows a phase portrait of (4.0.5) in projection onto the (u,w)-plane for

ρ = 31 and b0 = 0.4, that is, for parameter values where p+ is stable to the right of HP.

It shows the stable equilibrium p+ and a saddle periodic orbit (red) that bifurcates from

HL. The inset in Fig. 4.5(b) is an enlargement near the equilibrium p+. The boundary

of the basin of attraction of p+ is the stable manifold of the saddle periodic orbit (red).

Trajectories outside the basin of attraction of p+ converge to a chaotic attractor that

resembles the Lorenz attractor. The existence of this chaotic attractor is evidence that
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Figure 4.5: Panel (a) is an enlargement of Fig. 4.3, that shows in addition the stability of the equi-
librium p+ (shaded blue). Panel (b) shows a chaotic attractor of (4.0.5) for ρ = 31 and
b0 = 0.4 in projection onto the (u,w)-plane. It co-exists with the stable equilibrium p+
(black dot), and the boundary of stability is formed by the stable manifold of the saddle
periodic orbit (red).

the addition of feedback only effects the dynamics of (4.0.5) close to p+. In particular, the

equilibrium p− is still a saddle in the presence of feedback, as the control is not symmetric.

Figure 4.6(a) is as Fig. 4.4 but in addition shows further period-doubling bifurcation
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curves PD1
P and PD2

P. It also shows the domain of stability of the delay-induced periodic

orbit ΓJ (shaded grey). The regions where the equilibrium p+ is stable are shaded blue.

Similarly to the curve PD0
P, Fig. 4.6(a) shows that the curves PD1

P and PD2
P (light blue)

start at the left-hand boundary of the (ρ, b0)-plane, extend to the right of the plane for

increasing ρ, and then turn and end at the left-hand boundary of the plane at b0 = 0.

There are further period-doubling bifurcation curves to the left of the curve PD0
P, which

are not shown as they are very close to PD2
P. We suspect that there might be a region

of chaos to the left of the curve PD2
P; but it proved to be too small to find by numerical

simulations.

Figure 4.6(b) is the one-parameter bifurcation diagram in ρ of (4.0.5) for b0 = 1.5, shown

in terms of the observed period T . There is indeed a period-doubling cascade as ρ is

reduced from the Hopf bifurcation HP at ρ = ρH . The periodic orbit ΓP (green) bifurcates

stably from HP and becomes unstable (grey) at the period-doubling bifurcation PD0
P (dark

blue). From PD0
P bifurcates a stable periodic orbit with double the period of ΓP . This

periodic orbit loses stability at PD1
P, from which bifurcates another period-doubled stable

periodic orbit. This process continues in this fashion through PD2
P and further period-

doubling bifurcations. Figure 4.6(c) is the phase portrait of (4.0.5) projected onto the

(u, v)-plane for ρ = 22 and b0 = 1.5. It shows the unstable periodic orbit ΓP (grey) and

the stable period-doubled periodic orbit (dark green) immediately after the bifurcation

PD0
P. The equilibrium p+ at (u, v) = (0, 0) is unstable.

Figure 4.7 is an enlargement of Fig. 4.6(a) that shows the domain of stability (shaded

grey) of the delay-induced periodic orbit ΓJ in more detail. Again, the equilibrium p+ is

stable in the region shaded blue and the darker blue shading indicates regions of bistability,

where both p+ and ΓJ are stable. Similarly to ΓP , the domain of stability of ΓJ is bounded

on the right by the Hopf bifurcation H1
J between the degenerate Hopf bifurcation point

DH1 and the double Hopf bifurcation point HH1
D (violet). The lower boundary of the

domain of stability is the SNLC bifurcation curve S1
J (blue), which starts at DH1 and

ends on the left-hand boundary of the (ρ, b0)-plane. The upper boundary of the domain

of stability is the torus bifurcation curve T1
J (black), which starts at HH1

D and ends on

the left-hand boundary of the plane at the same point as the curve S1
J.

Comparison of Fig. 4.7 with Fig. 2.6 shows that the stability domain of ΓJ is topologically

the same in both the Lorenz and the normal form cases. By this we mean that in both

cases the stability domain is bounded by the same bifurcation curves and that these

curves have the same starting and ending points. For the normal form case, there are

further curves of the family HK
J , which each have a stability domain associated with a
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Figure 4.6: Panel (a) is the bifurcation set from Fig. 4.4, with the additional period-doubling bifurca-
tion curves PD1

P and PD2
P (light blue). Panel (b) is the one-parameter bifurcation diagram

in ρ of (4.0.5) for b0 = 1.5, showing the periodic orbit ΓP bifurcating from the Hopf bifurca-
tion HP and the periodic orbits that bifurcate from the period-doubling bifurcations PD0

P,
PD1

P and PD2
P; stable (unstable) periodic orbits are shown in color (grey). Panel (c) is a

phase portrait of (4.0.5) shown in the (u, v)-space for ρ = 22 and b0 = 1.5, showing the
unstable periodic orbit ΓP (grey) and the stable period-doubled orbit (dark green) immedi-
ately after the period-doubling bifurcation PD0

P. Other parameter values: σ = 10, α = 8
3

and η = π
4 .

bifurcating stable periodic orbit. We did not find such further stability regions for the

Lorenz case, owing to the fact that its bifurcation set is truncated at ρhom with respect to

the bifurcation set of the normal form case. Nevertheless, the fact that a region of stability

of a delay-induced periodic orbit exists, shows that the normal form case is relevant for
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(violet). The equilibrium is stable in the regions shaded blue.

the Lorenz system quite far from the curve HP.

4.3 The effect of the 2π-periodic feedback phase η

So far we have kept the 2π-periodic phase η fixed at π
4

as is the convention [13, 24, 65].

It should be noted that setting η = π
4

in (4.0.5) is not the same as setting β = π
4

in the

normal form case and this is why we use the different notation. In (4.0.5) the feedback

matrix G, which contains the parameter η undergoes the coordinate transformation E.

Therefore, the actual phase β of the feedback (as defined for the normal form case) will

be a transformation of η and, thus, there may be a better choice of η for which the Lorenz

case agrees even more closely with the normal form case. As such, we now vary the

parameter η and show the effect that it has on the domain of stability of ΓP .

We firstly consider the effect of a decrease in η. We find that even a small decrease

in η results in the points bc0 and HH0 moving up to large values of b0 in the (ρ, b0)-

plane. Therefore, we compactify the (ρ, b0)-plane in the b0-coordinate via a stereographic

transformation for b0, given by
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Panel of Fig. 4.8 Description of curves

(a): η = π
4

The domain of stability of ΓP in the (ρ, b̂0)-plane as in
Fig. 4.4 but shown in terms of the compactified param-
eter b̂0. Its right-hand boundary is the curve HP (green)
between the points bc0 and HH0 and its left-hand bound-
ary is the period-doubling bifurcation curve PD0

P (dark
blue). The lower boundary of the stability domain is the
curve TC (purple) and its upper boundary is the curve
T0

P (grey), which ends on the curve PD0
P at the 1 : 2

resonance point R2.

(b): η = 0.2 Both the points bc0 and HH0 have moved up in the (ρ, b̂0)-
plane. The curve PD0

P has moved left in the plane. The
boundaries of the stability domain are as before.

(c): η = 0.15 The curve PD0
P has developed a hook shape. The curve

T0
P still ends on the curve PD0

P at the point R2.

(d): η = 0.0926 The point HH0 is at the top boundary of the (ρ, b̂0)-
plane, i.e. at infinity in b0. The curves PD0

P, T0
P and

TC meet at the tip of the hook of PD0
P.

(e): η = 0.0923 The point bc0 is close to the top boundary of the (ρ, b̂0)-
plane. The end point of the curve T0

P has moved right
along the curve TC as the 1 : 1 resonance point R1 re-
ducing the area of the domain of stability.

(f): η = 0.0921 The point bc0 has reached the top boundary of the (ρ, b̂0)-
plane. The point R1 has moved right along the curve
TC into the point bc0, and thus, the domain of stability
has disappeared. Stabilization for b0 > 0 is no longer
possible.

Table 4.1: Description of the effect of a decrease in the parameter η on the domain of stability of ΓP .
To accompany Fig. 4.8

b̂0 =
b0

1 + b0

. (4.3.1)

Recall that we do not consider b0 < 0. The coordinate transformation (4.3.1) keeps

b̂0 = b0 = 0 but transforms b0 = ∞ to b̂0 = 1. We now consider the (ρ, b̂0)-plane, where

the left-hand boundary of the plane is the homoclinic bifurcation at ρ = ρhom ≈ 13.926

as before and its top boundary is at b̂0 = 1, which represents infinity in b0.

Figure 4.8 shows how the domain of stability of ΓP (shaded) changes in the (ρ, b̂0)-plane

as the feedback phase η is reduced from π
4
. An overview of the changes depicted in each

panel of Fig. 4.8 is given in Table 4.1.

Figure 4.8(a) is the domain of stability for η = π
4

as in Fig. 4.4 but shown in terms of
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the compactified parameter b̂0. Panel (b) for η = 0.2 shows that the period-doubling

bifurcation curve PD0
P has shifted left in the (ρ, b̂0)-plane. The points bc0 and HH0 have

moved up in the plane, with HH0 now very close to infinity in b0, this results in a large

range of stability. The curve HL has shifted up and to the right in the (ρ, b̂0)-plane, with

its two end points on the left-hand boundary of the plane close to b̂0 = 1. For η = 0.15,

as in panel (c), the two end points of the curve HL are now at b̂0 = 1. The curve PD0
P has

shifted further left in the plane and has developed a hook shape. The torus bifurcation

curve T0
P is still connected to PD0

P at the point R2.

Figure 4.8(d) for η = 0.0926 shows that the two end points of the curve HL are no longer

connected to the left-hand boundary of the (ρ, b̂0)-plane; they have moved right in the

(ρ, b̂0)-plane along its top boundary. The point HH0 is also at the top boundary of the

plane, that is, at infinity in b0. The torus bifurcation curve T0
P, the period-doubling

bifurcation curve PD0
P and the transcritical bifurcation curve TC all meet at the tip of

the hook of PD0
P. As η is further reduced the curve T0

P connects to the curve TC at the

1 : 1 resonance point R1 (green dot). Panel (e) for η = 0.0923 shows that the point R1

has moved right along the curve TC, reducing the area of the domain of stability. The

point bc0 is now close to the point HH0. As η is further reduced the point R1 continues

to slide right along the curve TC and the point bc0 moves further up in the (ρ, b̂0)-plane,

shrinking the area of the domain of stability. For η = 0.0921 as in panel (f), the point

bc0 has reached the top boundary of the (ρ, b̂0)-plane and the domain of stabilization has

disappeared. For η < 0.0921 = [arctan(− 1
γ̂
)], the point bc0 becomes negative; see equation

(4.1.2).

Comparing Fig. 4.8 with Fig. 2.9 for the normal form case, we observe that the domain

of stabilization also disappeared as β was reduced in the normal form case. However, the

mechanism for the loss of stabilization in the normal form case is quite different to that

shown here for the Lorenz case. In the normal form case the two points bc0 and HH0 move

through each other for relatively low values of b0, whereas for the Lorenz case the entire

domain of stabilization moves up in the plane and only completely disappears when the

point bc0 is at infinity.

For completeness we must confirm that no Hopf bifurcation curves cross the curve HP

between the points bc0 and HH0 when η is reduced. If there are such curves, then the

resulting double Hopf bifurcation points would introduce instabilities and the areas shaded

in Fig. 4.8 would not actually be the domain of stability of ΓP . To check this we show

how the family of Hopf bifurcation curves HK
R move in the (ρ, b̂0)-plane as η is reduced

from π
4
.
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Figure 4.8: The overall domain of stability of ΓP (shaded) in the (ρ, b̂0)-plane for different values of
decreasing η. Panel (a) is for η = π

4 and panels (b)–(f) are for the stated values of η. Each
panel shows the curves HP (green) and HL (red) as well as the points bc0 (black dot) and
HH0 (green dot). Also shown are the period-doubling bifurcation curve PD0

P (dark blue),
the transcritical bifurcation curve TC (purple) and the torus bifurcation curve T0

P (grey).
Other parameter values: σ = 10, α = 8

3 .

Figure. 4.9 shows how the curve H1
R moves in the (ρ, b̂0)-plane as η is reduced from π

4
to

0.0921. Panel (a) for η = π
4

shows the left end point of the curve H1
R is attached to the

left-hand boundary of the plane. The curve H1
R crosses the curve HP once at the point

93



ρρρ

b̂0

b̂0

14 100 14 100 14 100
0

1
0

1

(a)
η = π

4 ≈ 0.7854
(b)

η = 0.2

(c)

η = 0.15

(d)

η = 0.0925

(e)

η = 0.0923

(f)

η = 0.0921

• •
•

• • •

• • •
H1

R

HP

HH1

Figure 4.9: Transition of the Hopf bifurcation curve H1
R (red) in the (ρ, b̂0)-plane for values of η as

stated. The curve HP is shown in green and the point HH0 is marked with a green dot.

HH1. Panel (b) for η = 0.2 shows that the left end point of the curve has moved up the

left-hand boundary of the (ρ, b̂0)-plane and has reached its top boundary at b̂0 = 1. Panel

(c) for η = 0.15 shows the curve has detached from the left-hand boundary and moved

right along the top boundary of the (ρ, b̂0)-plane. Figure 4.9(d) for η = 0.0926 shows that

curve H1
R no longer crosses HP. Its left end point is now on the top boundary of the plane

but to the right of the curve HP. For this value of η the domain of stability has an upper

boundary at b̂0 = 1 but exists to the left of the curve HP; see Fig. 4.8(d). As η is further

increased, as in Fig. 4.9(e) and (f), the left end point of H1
R continues to move right along

the top boundary of the (ρ, b̂0)-plane.

The other curves of the family HK
R also move to the right of the curve HP in the (ρ, b̂0)-

plane as η is reduced from π
4
. Hence, there are no double Hopf bifurcation points on the

curve HP between bc0 and HH0 and, therefore, the domain of stability shown in Fig. 4.8 is

indeed as shown.

We now consider the effect of an increase in η on the domain of stability of the target

periodic orbit ΓP . Figure 4.10 shows how the domain of stability of ΓP (shaded) changes
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Panel of Fig. 4.10 Description of curves
(a): η = π

4
The domain of stability of ΓP in the (ρ, b0)-plane as
in Fig. 4.4. Its right-hand boundary is the curve HP

(green) between the points bc0 and HH0 and its left-hand
boundary is the period-doubling bifurcation curve PD0

P

(dark blue). The lower boundary of the stability domain
is the curve TC (purple) and its upper boundary is the
curve T0

P (grey), which ends on the curve PD0
P at the

1:2 resonance point R2.
(b): η = 2.50 The point HH0 has moved down in the (ρ, b0)-plane (note

the b0-axis scales in panels (a) and (b)). The curve PD0
P

has moved left in the plane. The curve T0
P extends fur-

ther to the left of the (ρ, b0)-plane but still ends on the
curve PD0

P at the point R2.
(c): η = 2.71 The point R2 has moved left in the (ρ, b0)-plane along

the curve PD0
P. The curves PD0

P, T0
P and TC meet at

the lower left-hand corner of the plane at (ρhom, 0).
(d): η = 3 The point bc0 has moved up in the (ρ, b0)-plane. The end

point of the curve T0
P has moved right along the curve

TC as the 1 : 1 resonance point R1 reducing the area of
the domain of stability.

(e): η = π The points bc0 and HH0 are equal, where the curve HL

is tangent to the curve HP. The point R1 has moved
right along the curve TC into the point bc0, and thus,
the domain of stability has disappeared.

(f): η = 3.22 The point bc0 has moved above the point HH0 and stabi-
lization is no longer possible.

Table 4.2: Description of the effect of an increase in the parameter η on the domain of stability of ΓP .
To accompany Fig. 4.10

in the (ρ, b0)-plane as the feedback phase η is increased. An overview of the changes

depicted in each panel of Fig. 4.10 is given in Table 4.2.

Figure 4.10(a) shows the domain of stability for η = π
4

as in Fig. 4.4. Recall, that its

right-hand boundary is the Hopf bifurcation curve HP between the points bc0 and HH0, its

lower boundary is the transcritical bifurcation curve TC, its upper boundary is the torus

bifurcation curve T0
P and its left-hand boundary is the period-doubling bifurcation curve

PD0
P. We define the range of stability in b0 of ΓP to be the difference in b0 between the

points HH0 and bc0.

As η is increased, as in Fig. 4.10(b) for η = 2.50, the curve PD0
P has moved left in the

(ρ, b0)-plane. The point R2, where T0
P and PD0

P meet, has moved down the curve PD0
P.

The torus bifurcation curve T0
P thereby extends further to the left of the (ρ, b0)-plane.
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Figure 4.10: The overall domain of stability of ΓP (shaded) in the (ρ, b0)-plane for different values of
increasing η. Panel (a) is for η = π

4 as it is in Fig. 4.4, and panels (b)–(f) are for the stated
values of η. Each panel shows the curves HP (green) and HL (red) as well as the points bc0
(black dot) and HH0 (green dot). Also shown are the period-doubling bifurcation curve
PD0

P (dark blue), the transcritical bifurcation curve TC (purple) and the torus bifurcation
curve T0

P (grey). Other parameter values: σ = 10, α = 8
3 .

The range of stability decreases as the point bc0 moves up in the plane and the point HH0

moves down in the plane.
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For η = 2.71, as in Fig. 4.10(c), the point R2 has moved to the end point of the curve PD0
P

at the left-hand boundary of the (ρ, b0)-plane for b0 = 0. At this point the torus bifurcation

curve T0
P connects to the transcritical bifurcation curve TC at the 1 : 1 resonance point

R1. As η is further increased the end of the curve T0
P, that is, the point R1, moves right

along the curve TC. At the same time the Hopf bifurcation curve HL shifts left in the

(ρ, b0)-plane, which results in the points bc0 and HH0 moving closer together. Thus, the

range of stability decreases as does the area of the domain of stability of ΓP ; see panel (d)

for η = 3.

Figure 4.10(e) shows that at η = π the domain of stability of ΓP has disappeared. The

curve HL has shifted further to the left of the plane and is tangent with the curve HP.

Here, the points bc0 and HH0 are equal. For η = π, the periodic orbit ΓL bifurcating from

HL is no longer stable and, therefore, the target periodic orbit ΓP cannot be stabilized in

the transcritical bifurcation TC. In panel (f) for η = 3.22, the curve HL has shifted right in

the plane. The points bc0 and HH0 have moved through each other, so that bc0 is now above

HH0. Below HH0, ΓP bifurcates from HP with one unstable Floquet multiplier, between

HH0 and bc0 it bifurcates with three unstable Floquet multipliers and immediately above

bc0 it bifurcates with two unstable Floquet multipliers. As η is further increased the point

bc0 →∞ as η → [arctan(− 1
γ̂
) + π]. For η > [arctan(− 1

γ̂
) + π] the point bc0 is negative; see

equation (4.1.2).

Comparing Fig. 4.10 with Fig. 2.8 for the normal form case, we see that in both cases

there is a loss of stabilization at η = π and β = π. Moreover, the mechanism for this

loss of stabilization is the same for both cases. That is, the points bc0 and HH0 move

closer together in the (ρ, b0)-plane and at η = π they become equal. In Fig. 4.10 for the

Lorenz case, we see that for η > 2.71 the domain of stability of ΓP is bounded by the same

bifurcation curves as in Fig. 2.8 for the normal form case. Namely, the upper boundary

of the stability domain is the torus bifurcation curve T0
P between the points HH0 and R1

and its lower boundary is the transcritical bifurcation curve TC between the points bc0

and R1.

4.3.1 Best match for η

So far in this chapter we have shown that the global dynamics of (4.0.5) closely agree with

those of the normal form case. The main difference we have found is the existence of the

period-doubling bifurcation curve PD0
P (and further period-doubling bifurcation curves)

in the Lorenz case, which forms the left-hand boundary of the stability domain of ΓP .
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Figure 4.11: One-parameter bifurcation diagram in ρ for b0 = 1.4 of (4.0.5), shown in terms of the
amplitude in (a) and the period T in (b). The equilibrium p+ is stable (unstable) when
black (grey), it becomes stable at the Hopf bifurcation point HP (green) from which
bifurcates the branch of periodic orbits ΓP (green). Also shown are the delay-induced Hopf
bifurcation points HL (red) and the torus bifurcation point T0

P (black). Solid (dashed)
curves indicate stable (unstable) periodic orbits. Other parameter values: σ = 10, α = 8

3
and η = 2.8.

As we have already discussed setting η = π
4

in (4.0.5) is not equivalent to setting β = π
4

in the normal form case. From Fig. 4.10 we found that the domain of stability of ΓP is

topologically the same (i.e. bounded by the same bifurcation curves) as in the normal

form case when 2.71 < η < π. We now consider this range of η and, more specifically,

show that (4.0.5) with η = 2.8 provides a near perfect match with the normal form case

for β = π
4
.

Figure 4.11 shows the one-parameter bifurcation diagram in ρ of (4.0.5) for b0 = 1.4 and

η = 2.8. It is shown in panel (a) in terms of its amplitude and in panel (b) in terms of

the observed period T . Shown along the bottom axis of panel (a) is the equilibrium p+,

which is stable when black and unstable when grey. The Hopf bifurcation HP is denoted

by a green dot and two further delay-induced Hopf bifurcations HL are denoted by red

dots. Figure 4.11(a) shows that the periodic orbit ΓP bifurcates stably (solid curve) from

HP. It becomes unstable (dashed curve) at the torus bifurcation point T0
P (black dot),

where a complex conjugate pair of Floquet multipliers leaves the unit circle. Panel (b)

shows that the period of ΓP increases quickly as ρ is reduced. At ρ = ρhom ≈ 13.926 the

period of ΓP goes to infinity as it undergoes a homoclinic bifurcation with a fixed point.

We now compare Fig. 4.11 for the Lorenz case with Fig. 3.1 for the normal form case.

Both figures are topologically equivalent, that is, in both cases the stable periodic orbit

ΓP bifurcates supercritically from the Hopf bifurcation HP before losing stability in the

torus bifurcation T0
P. Also, in both cases the period of ΓP goes to infinity at the left-hand
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boundaries of the respective planes.

Figure 4.12 shows the bifurcation set of (4.0.5) in the (ρ, b0)-plane. As before, the (ρ, b0)-

plane has a left-hand boundary at ρ = ρhom ≈ 13.926, where there is the homoclinic

bifurcation. Figure 4.12(a) shows the Hopf bifurcation HP (green) at ρ = ρH and the

delay-induced Hopf bifurcation curves H1
J, H1

R, H2
R and H3

R (red). It also shows the domain

of stability of ΓP (shaded). In addition, it shows the curve H2
J, which was not present in

the bifurcation set of (4.0.5) for η = π
4

in Fig. 4.3. The curve H2
J emerges out of the

left-hand boundary of the (ρ, b0)-plane at η ≈ 2.63.

Figure 4.12(b) is an enlargement of Fig. 4.12(a) that shows the overall domain of stability

of ΓP (shaded grey) in more detail. The equilibrium is stable in the regions shaded blue

and darker blue areas are regions of bistability. The right-hand boundary of the domain

of stability is the curve HP between the points bc0 and HH0. The upper boundary is the

torus bifurcation curve T0
P, which starts at the double Hopf bifurcation point HH0 and

ends on the transcritical bifurcation curve TC at the 1 :1 resonance point R1. The lower

boundary of the stability domain is the curve TC between its starting point bc0 and the

point R1. There is a small region of bistability between the curves TC and T0
P and to

the left of the curve HL, where both the equilibrium p+ and ΓP are stable. The SNLC

bifurcation curve SL emerges from the degenerate Hopf bifurcation point DHL and ends

on the left-hand boundary of the plane for b0 = 0.

Figure 4.12(c) shows the domain of stability of the delay-induced periodic orbit ΓJ (shaded

grey), which bifurcates from the Hopf bifurcation curve H1
J. The equilibrium p+ is stable in

the regions shaded blue and darker blue areas are regions of bistability. The left boundary

of the stability domain is the curve H1
J between the degenerate Hopf bifurcation point DH1

and the double Hopf bifurcation point HH1
D. Its upper boundary is the torus bifurcation

curve T1
J, which starts at the point HH1

D and ends on the left-hand boundary of the

(ρ, b0)-plane. The lower boundary of the stability domain is the SNLC bifurcation curve

S1
J, which starts at the point DH1 and ends on the left-hand boundary of the plane.

Comparing Fig. 4.12 for the Lorenz case with Figs. 2.4 and 2.6 for the normal form case,

we find that the bifurcation set of the Lorenz case with η = 2.8 very closely matches

the bifurcation set of the normal form case with β = π
4
. In particular, we find that the

overall domain of stability of ΓP is topologically the same in both cases. Furthermore, the

domain of stability of the delay-induced periodic orbit ΓJ that bifurcates from H1
J is also

topologically the same in both cases.

Moreover, in Fig. 4.12 we now find an additional ‘J’-shaped curve H2
J that was not present
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Figure 4.12: Bifurcation set in the (ρ, b0)-plane of (4.0.5). Shown in (a) are the Hopf bifurcation curve
HP (green) and the delay-induced Hopf bifurcation curves HL, H1

J, H
2
J, H

1
R, H

2
R and H3

R
(red). Also shown are the overall domains of stability of ΓP and ΓJ (shaded) and the double
Hopf bifurcation points HH0, HH1, HH2 (green) and HH1

D (violet). An enlargement of the
stability domain of ΓP is shown in (b). The torus bifurcation curve T0

P (grey) meets the
transcritical bifurcation curve TC (purple) at the point R1. Panel (c) is an enlargement of
the stability domain of ΓJ , which in addition shows the SNLC bifurcation curve S1J (blue)
bifurcating from the degenerate Hopf bifurcation point DH1 and the torus bifurcation
curve T1

J (black). The equilibrium p+ is stable in the regions shaded blue. Above the
horizontal boundary at b0 ≈ 0.2 in panel (b), the stability region is not defined, as further
delay-induced Hopf bifurcation curves are not shown. Other parameter values: σ = 10,
α = 8

3 and η = 2.8.
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in Fig. 4.3. It resembles the curve H2
J in Fig. 2.4. There is the difference that in the

Lorenz case H2
J is nested inside H1

J, whereas in the normal form case it is not. Thus, we

find that for η = 2.8 the bifurcation set of the Lorenz case is a slightly less truncated

version of the bifurcation set of the normal form case for β = π
4
. That is, Fig. 4.12 is

Fig. 2.4 “chopped off” a bit further to the left of the plane than Fig. 4.3. There is also

the slight difference that in Fig. 4.12(b) the SNLC bifurcation curve SL exists entirely

to the left of HP, whereas in the normal form case it starts on HL to the right of HP.

Nonetheless, we conclude that the normal form case provides an excellent description of

the Lorenz case over a very wide region of the (ρ, b0)-plane.

4.4 Investigation of delay mismatch

We now consider a delay mismatch in system (4.0.5). That is, we analyze the effect of

setting the delay in (4.0.5) not exactly as the period T (ρ) of the target periodic orbit

ΓP . As opposed to the normal form case (see chapter 3), however, we do not have an

analytic form for T (ρ). Instead, we consider two approximations of T (ρ) derived from the

numerical data set and the extrapolation function (4.1.1), which we used in section 4.1.

Unlike the normal form case, this setup is, therefore, more closely related to an actual

experiment, where in general the user will not have an analytic parameter dependent

function for the target period.

We consider the following two cases of delay mismatch, where we fix σ = 10, α = 8
3

and

also set η = 2.8; that is, we consider the best match between the Lorenz case and the

normal form case.

The constant-period case

Here we set the delay in (4.0.5) as the period of ΓP at the Hopf bifurcation HP, that is,

we set

τ = TC = T (ρH) = 0.6528 (4.4.1)

Thus, the period TC and therefore the delay τ are no longer parameter dependent.

The linear-period case

Here we set the delay in (4.0.5) to the linear approximation

101



τ = TL(ρ) = −0.0345ρ+ 1.5062 (4.4.2)

of the target period T (ρ). The linear approximation (4.4.2) is derived from the period of

ΓP at HP and its slope is derived from the data set which describes T (ρ) at ρ = ρH .

We compare these two cases to the analysis of (4.0.5) presented in Figs. 4.11 and 4.12,

which we refer to as the benchmark exact-period case. Note that the delay at the Hopf

bifurcation HP for ρ = ρH is again the same in all three period cases, that is,

τ = T (ρH) = TC = TL(ρ) = 0.6528 (4.4.3)

As before, we say that the Pyragas control scheme has been successful if the three criteria

(A), (B) and (C), from chapter 3 are satisfied. We only consider the Pyragas control

scheme successful if the periodic orbit stabilized in the constant-period and linear-period

cases exists for ρ < ρH and for similar values of b0 as ΓP in the benchmark exact-period

case; see Figs. 4.11 and 4.12. More specifically, the domain of stability in the constant-

period and linear-period cases should exist to the left of the Hopf bifurcation curve HP

and be bounded by bifurcation curves similar to T0
P and TC in the exact-period case.

4.4.1 The constant-period case

Figure 4.13 shows the one-parameter bifurcation diagram in ρ for b0 = 1.4 for the constant-

period case. It is shown in panel (a) in terms of its amplitude and in panel (b) in terms

of the observed period T . Shown along the bottom axis of panel (a) is the equilibrium

solution p+, which is stable when black and unstable when grey. It is stable between the

Hopf bifurcation points H1
D (red) and HP (green). From HP bifurcates the stable branch

of periodic orbits ΓC (green). In contrast to the target branch ΓP , the branch ΓC exists

for ρ > ρH . The branch ΓC loses stability at the torus bifurcation T0
P (black dot), where

a complex conjugate pair of Floquet multipliers leave the unit circle. There is a SNLC

bifurcation S1
P (blue dot) on the unstable part of ΓC , where a further Floquet multiplier

leaves the unit circle. The branch ends at the delay-induced Hopf bifurcation H1
D.

Figure 4.13(b) shows how the observed period T of ΓC changes as ρ is varied. Recall that

both ΓP and ΓC have period equal to 0.6528 at the Hopf bifurcation point HP. As ρ is

varied the period increases gradually and reaches its maximum at H1
D. We cannot directly
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Figure 4.13: One-parameter bifurcation diagram in ρ for b0 = 1.4 of (4.0.5) for the constant-period
case, shown in terms of the amplitude in (a) and the period T in (b). The equilibrium p+ is
stable (unstable) when black (grey), it becomes unstable at the Hopf bifurcation point HP
(green) from which bifurcates the branch of periodic orbits ΓC (green). Also shown is the
delay-induced Hopf bifurcation point H1

D (red), the torus bifurcation point T0
P (black) and

the SNLC bifurcation point S1P (blue). Solid (dashed) curves indicate stable (unstable)
periodic orbits. Panel (c) shows the u, v and w components of the solution profile (green)
of the stable periodic orbit ΓC at ρ = 25.5 and b0 = 1.4; the red curves are the solution
profiles of the residual feedback components Ku[u(t − τ) − u(t)],Kv[v(t − τ) − v(t)] and
Kw[w(t − τ) − w(t)] (defined in the text). Other parameter values: σ = 10, α = 8

3 and
η = 2.8.

compare the observed periods of ΓP and ΓC , because whilst stable, both branches exist

for different ranges of ρ. Figure 4.13(c) shows the solution profile (green) of the stable

periodic orbit ΓC at ρ = 25.5 and b0 = 1.4, which is close to the torus bifurcation T0
P.

Also shown are the residual control force components Ku[u(t − τ) − u(t)], Kv[v(t − τ) −
v(t)], Kw[w(t − τ) − w(t)] (red). Here we define Ku as the sum of the terms in the first

column of the matrix Π from (4.0.5), that is, the summation of the feedback gain with

respect to the variable u. The terms Kv and Kw are defined in a similar fashion for the

variables v and w using the second and third columns of Π respectively. Figure 4.13(c)

shows that the residual control force is large; the maximum amplitude of Ku[u(t−τ)−u(t)]

is approximately 35% of the amplitude of the maximum solution u(t). Therefore, criterion

(B) for successful stabilization is not satisfied.
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Figure 4.14: Bifurcation set in the (ρ, b0)-plane of (4.0.5) for the constant-period case. Shown are the
Hopf bifurcation curve HP (green) and the delay-induced Hopf bifurcation curves H1

D, H
2
D

and H3
D (red). Also shown are the double Hopf bifurcation points HH0, HH1 and HH2

(green). An enlargement of the overall domain of stability of ΓC (shaded) is shown in (b).
The torus bifurcation curve T0

P (grey) meets the SNLC bifurcation curve S1P (blue) at the
point R1. Other parameter values: σ = 10, α = 8

3 and η = 2.8.
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Figure 4.14 shows the bifurcation set in the (ρ, b0)-plane of (4.0.5) for the constant-period

case. Note that the b0-ranges of Fig. 4.14 are the same as in Fig 4.12 but the ρ ranges are

different. The Hopf bifurcation curve HP (green) is the vertical curve at ρH ≈ 24.7368.

As all three cases are the same at ρH , the curve HP is intersected by delay-induced Hopf

bifurcation curves (red) at the same double Hopf bifurcation points HH0, HH1 and HH2

(green) as in the exact-period case. However, unlike in the exact-period case, the delay-

induced Hopf bifurcations H1
D, H2

D and H3
D do not form distinct families. Figure 4.14(a)

also shows the domain of stability of ΓC (shaded).

The enlargement in Fig. 4.14(b) shows that the overall domain of stability of ΓC exists

to the right of the curve HP in the (ρ, b0)-plane. The left-hand boundary of the stability

domain is the curve HP between the points bc0 and HH0. Its upper boundary is the

torus bifurcation curve T0
P (black), which starts at the point HH0 and ends on the SNLC

bifurcation curve S1
P (blue) at the 1:1 resonance point R1. The lower boundary of the

stability domain is the curve S1
P between the points bc0 and R1.

As ΓC is not stable in the same neighborhood of HP as the target periodic orbit ΓP , the

constant-period case does not satisfy criterion (C). Thus, we conclude that keeping the

period constant does not result in a successful form of control for the Lorenz case; this

result agrees with our findings for the normal form case in chapter 2. In both cases control

is not successful and the stability domain of ΓC is topologically the same. In particular,

it exists to the right of the curve HP in the respective parameter planes.

4.4.2 The linear-period case

Figure 4.15 shows the one-parameter bifurcation diagram in ρ for b0 = 1.4 for the linear-

period case. It is shown in panel (a) in terms of its amplitude and in panel (b) in terms

of the observed period T . Shown along the bottom axis of panel (a) is the equilibrium

solution p+, which is stable when black and unstable when grey. From the Hopf bifurcation

point HP (green) bifurcates the stable branch of periodic orbits ΓL, which exists for ρ < ρH .

The branch ΓL is only stable between HP and the torus bifurcation point T0
P, where a

complex conjugate pair of Floquet multipliers leave the unit circle. The branch ends at

the delay-induced Hopf bifurcation H1
D. Whilst ΓL is stable it has an amplitude very close

to that of ΓP ; compare with ΓP (black) in Fig. 4.15(a). Figure 4.15(b) shows how the

observed period T of ΓL changes as ρ is varied. For reference the period of ΓP (black)

from 4.11(b) is also shown. Both ΓP and ΓL have period equal to 0.6528 at the Hopf

bifurcation point HP. The periods of ΓP and ΓL are almost identical whilst both branches
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Figure 4.15: One-parameter bifurcation diagram in ρ for b0 = 1.4 of (4.0.5) for the linear-period case,
shown in terms of the amplitude in (a) and the period T in (b). The equilibrium p+ is
stable (unstable) when black (grey), it becomes stable at the Hopf bifurcation point HP
(green) from which bifurcates the branch of periodic orbits ΓL (green). Also shown are the
delay-induced Hopf bifurcation points H1

D (red) and the torus bifurcation point T0
P (black).

For reference the branch of periodic orbits ΓP (black) from Fig. 4.11 is also shown. Solid
(dashed) curves indicate stable (unstable) periodic orbits. Panel (c) shows the u, v and
w components of the solution profile (green) of the stable periodic orbit ΓC at ρ = 25.5
and b0 = 1.4; the red curves are the solution profiles of the residual feedback components
Ku[u(t− τ)− u(t)],Kv[v(t− τ)− v(t)] and Kw[w(t− τ)−w(t)]. Other parameter values:
σ = 10, α = 8

3 and η = 2.8.

are stable, that is, for 22.5 . ρ < ρH . For ρ . 22.5, the periods diverge, with the period

of ΓP increasing quickly and going to infinity at ρ = ρhom. The period of ΓL increases

more gradually, reaching its maximum at the Hopf bifurcation point H1
D.

Figure 4.15(c) shows the solution profile (green) of the stable periodic orbit ΓL at ρ = 24

and b0 = 1.4, which is close to the torus bifurcation T0
P. Also shown are the residual

control force components Ku[u(t−τ)−u(t)], Kv[v(t−τ)−v(t)], Kw[w(t−τ)−w(t)] (red),

where Ku,v,w is the feedback gain with respect to the variables u, v and w. Figure 4.15(c)

shows that the residual control force is small; the maximum amplitude of Ku[u(t−τ)−u(t)]

is approximately 4% of the amplitude of the maximum solution u(t). We conclude that

the linear-period case satisfies criteria (A) and (B) for successful stabilization.
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Figure 4.16 is the bifurcation set in the (ρ, b0)-plane of (4.0.5) for the linear-period case.

Again, the ranges of b0 shown in Fig. 4.16 are the same as in Figs. 4.12 and 4.14 but

the ρ-ranges are different. Figure 4.16(a) shows that the curve HP (green) is intersected

by the delay-induced Hopf bifurcation curves H1
D, H2

D and H3
D at the points bc0, HH0, HH1

and HH2. The curve H1
D resembles the curve HL in the exact-period case; see Fig. 4.12.

It has a point of self-intersection labelled HHc. Also shown in Fig. 4.16(a) is the overall

domain of stability of ΓL (shaded).

The enlargement in Fig. 4.16(b) shows the domain of stability of ΓL (shaded) in more

detail. In particular, it shows that the stability domain exists entirely to the left of the

curve HP. The right-hand boundary of this domain is the curve HP between the points bc0

and HH0. The lower boundary of the stability domain is the curve H1
D between the points

bc0 and HHc. Its upper boundary is the torus bifurcation curve T0
P (black), which starts

at the point HH0 and ends at the point HHc.

The periodic orbit ΓL only bifurcates stably between the points bc0 and HH0. The criti-

cality of HP changes at bc0 from subcritical below to supercritical above. Above HH0 the

criticality of HP once again changes to being subcritical.

Comparing Figs. 4.12 and 4.16, we see that for 18 . ρ . 26, the bifurcation set in

the (ρ, b0)-plane for the linear-period case resembles that for the exact-period case very

closely. In particular, the stability domain in both cases exists entirely to the left of the

curve HP and its upper boundary is given by the torus bifurcation curve T0
P. There is

the slight difference that in the linear-period case the lower boundary of the domain of

stability is the Hopf bifurcation curve H1
D rather than a transcritical bifurcation curve as

in the exact-period case. Nevertheless, we say that for the linear-period case criterion (C)

for successful stabilization is fulfilled.

Therefore, the linear-period case satisfies all three stabilization criteria, and thus, we

conclude that it constitutes a successful form of control for the Lorenz case; again this

result agrees with that for the normal form case in chapter 2. Comparing the bifurcation

sets of the two linear-period cases, shown in Fig. 4.16 and Fig. 3.7, we see that domain

of stability of ΓL in the Lorenz case closely agrees with that in the normal form case.

There is the slight difference that in the Lorenz case the lower boundary of the stability

domain is the Hopf bifurcation curve H1
D rather than the SNLC bifurcation curve S2

P in

the normal form case. However, if we compare Fig. 4.16 with Fig. 3.8(c), which shows

the domain of stability of ΓL for a linear-period approximation with a shallower slope, we

find that the stability domains in both cases are topologically the same.
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Figure 4.16: Bifurcation set in the (ρ, b0)-plane of (4.0.5) for the linear-period case. Shown are the
Hopf bifurcation curve HP (green) and the delay-induced Hopf bifurcation curves H1

D, H
2
D

and H3
D (red). Also shown are the double Hopf bifurcation points HH0, HH1 and HH2

(green). An enlargement of the overall domain of stability of ΓL (shaded) is shown in (b).
The torus bifurcation curve T0

P (grey) meets the Hopf bifurcation curve H1
D (blue) at the

point HHc. Other parameter values: σ = 10, α = 8
3 and η = 2.8.
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Overall, we have shown that the normal form case is predictive of the dynamics of the

Lorenz case not only in the standard setup of Pyragas control (exact-period case) but

also when there is a delay mismatch in the control scheme.

4.5 Conclusions

Our aim was to show that the global dynamics found in the normal form case can also be

found in any system with Pyragas control near a subcritical Hopf bifurcation. Therefore,

we considered as a specific example, the Lorenz equations subject to Pyragas time-delayed

feedback control. Overall, we found that the normal form case is predictive, over a very

large area of the relevant parameter plane, for global dynamics induced when Pyragas

control is applied near a subcritical Hopf bifurcation. We have shown the existence of a

further stable delay-induced periodic orbit in both the normal form and Lorenz cases. We

have also shown that the normal form case is predictive of the dynamics induced when

there is a delay mismatch in the system. This work can be interpreted as a considerable

extension of that of Brown [14] who showed that the normal form case is predictive of

the dynamics close to the subcritical Hopf bifurcation, where the target periodic orbit is

born.

The analysis presented here does suggest that the predictiveness of the normal form

depends on the parameter range over which the target periodic orbit exists and how it

disappears. For example, in the Lorenz case the target periodic orbit does not exist for all

ρ and disappears in a homoclinic bifurcation. As such, we found that the bifurcation set

of the Lorenz case is a truncated version of the bifurcation set of the normal form case.

In this regard, an important consideration is to make a choice for the feedback phase in

the control term before transformation, in such a way that it matches the feedback phase

in the normal form case. Future work will be focused on investigating other systems with

periodic orbits that disappear in different bifurcations, to examine the predictiveness of

the normal form case.

The results presented here are directly relevant for experiments as we have shown that the

normal form case has a wider reach than just near the Hopf bifurcation HP. Therefore,

even if equations for the system are unknown, the user should be aware of the global

dynamics of the normal form case. We expect differences in different experiments but, in

general, all global features of the normal form case must be expected. Whether they all

occur or not will depend on the system and, in particular, on the region of existence of

the target periodic orbit and the mechanism of its disappearance.
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5
The complex Ginzburg–Landau

equation subject to Pyragas feedback
control

5.1 Introduction

Understanding pattern formation in spatially extended non-equilibrium systems has been

a research topic of great interest for a number of years. The existence of simple spatial or

spatio-temporal patterns in such systems is well understood on the basis of equivariant

bifurcation theory [30]. In certain systems these patterns can be unstable, in which case

the system may reach a state of spatio-temporal chaos. Recently, there has been a large

amount of research into schemes designed to control this spatio-temporal chaos, with

the aim of realizing an otherwise unstable patterned state [2, 47, 75, 90, 98]. In nonlinear

optics for example, Fourier filters have been used successfully to control spatio-temporal

patterns [8,54,97]. Here, we consider time-delayed feedback control of the form suggested

by Pyragas [69].
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Socolar et al. [92] introduced a generalization of Pyragas time-delayed feedback control

referred to as “extended time-delay autosynchronisation” (ETDAS). For a system V (x, t),

the ETDAS control scheme has a temporal feedback term of the form

εV (x, t) = κ
∞∑
n=0

Rn[V (x, tn)− V (x, tn+1)], (5.1.1)

where tn = t− nτ , κ ∈ R is the feedback gain and R ∈ R is a parameter chosen between

0 and 1. In [10], Bleich and Socolar apply the ETDAS control scheme to the supercritical

cubic complex Ginzburg–Landau equation (CGLE) with one spatial variable. The CGLE

is a partial differential equation (PDE) originally introduced to describe superconduc-

tivity. It also describes nonlinear waves, Rayleigh-Bérnard convection and a number of

other phenomena. For more information on the CGLE see, for example [1,18,48] and the

references therein. In [10] the authors found that the addition of feedback can stabilize

unstable traveling wave solutions of the CGLE. In particular, the control scheme is suc-

cessful even in parameter regimes where spatio-temporal chaos is found in the uncontrolled

system.

In [33], Harrington and Socolar found that unstable traveling wave solutions of the two-

dimensional (i.e. with two spatial independent variables) supercritical cubic CGLE could

not be stabilized using the ETDAS control scheme. This is due to the existence of so-called

torsion-free modes, that is, modes which have purely real Floquet multipliers. This result

is based on the “odd-number limitation” developed by Nakajima [57], which states that a

periodic orbit with an odd number of positive real Floquet multipliers cannot be stabilized

by Pyragas control for any feedback gain value. Although the odd-number limitation has

been disproved for periodic orbits [24] it is still relevant to hyperbolic equilibrium points.

In [33] the analysis of the traveling wave solutions of the CGLE is reduced to an analysis

of the stability of an equilibrium point, and therefore, the theory of Nakajima is still

applicable.

Lu et al. [53] modified the original Pyragas time-delayed feedback control scheme to

include a spatial feedback term, which takes into account the spatial periodicity of the

targeted pattern. They applied a linear combination of time-delay and spatial feedback

to the two-dimensional Maxwell-Bloch equations, describing the evolution of a complex

electric field E of a laser system. The overall spatial feedback term applied in [53] is of

the form,

FS = ρ{[E(x+ x0, y, t)− E(x, y, t)] + [E(x, y + y0, t)− E(x, y, t)]}, (5.1.2)
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where, g1= (x0, 0) and g2= (0, y0) are translation vectors of the feedback. The feedback

is non-invasive when the targeted pattern is periodic in both of the gj-directions with

spatial periods |gj| [64]. Using this modified Pyragas method, Lu et al. [53] were able to

remove spatio-temporal chaos or optical turbulence from a three level laser system.

Montgomery and Silber [56] applied the modified Pyragas control scheme suggested in [53]

to the supercritical cubic CGLE with one complex spatial variable, which is given by

∂A

∂t
= A+ (1 + ib1)∇2A− (b3 − i)|A|2A, (5.1.3)

where A = A(x, t) ∈ C and b1, b3 ∈ R; since the Hopf bifurcation is supercritical we

require b3 > 0. The aim of [56] was to stabilize traveling wave solutions of the CGLE

(5.1.3) in the Benjamin–Feir regime, where all traveling wave solutions are unstable to

long-wave perturbations. In [7], Benjamin and Feir analyzed the instability of periodic

waves in deep water. This work was subsequently extended by Lange and Newell [49].

Specifically, the authors of [7,49] found that all uniform oscillations (k = 0) of (5.1.3) are

unstable if b1 > b3 > 0. The Benjamin–Feir instability is in fact a generalization of the

Eckhaus instability [34].

The authors of [56] considered traveling wave solutions of the form Reikx+iωt, where R is

the amplitude of the solution, k is the wavenumber and ω is its frequency. They analyzed

the linear stability of these traveling wave solutions by considering the effect of small

amplitude perturbations for some perturbation wavenumber q. The resulting linearised

uncontrolled system has one eigenvalue that is always stable (negative real part) and one

eigenvalue which has real part (for small q) given by

q2

[(
b1

b3

− 1

)
+

2k2

b3R2

(
1 +

1

b2
3

)]
+O(q3). (5.1.4)

In the Benjamin–Feir regime where b1 > b3 > 0, (5.1.4) is positive for all k, and thus, the

eigenvalue is unstable. In other words, long-wave (i.e small q) perturbations will grow.

In [56] the Pyragas feedback term takes the form

F = K[A(x, t)− A(x, t− τ)] + ρ[A(x+ ∆x, t)− A(x, t)], (5.1.5)

where the parameter K is the gain of the temporal feedback and ρ is the gain of the

spatial feedback term. It should be noted that in [56] both K and ρ are taken as purely

real parameters. The delay is set as τ = 2π
ω

and the spatial shift is set as ∆x = 2π
|k| .
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Montgomery and Silber found that traveling wave solutions of (5.1.3) can be stabilized

using purely temporal feedback, and that there is an optimal level of feedback gain given

by K = − 1
τ
. That is, they found that one only need consider K = − 1

τ
to determine if the

target traveling wave can be stabilized by temporal feedback.

The analysis presented in [56] was extended to the supercritical CGLE with two spatial

independent variables by Postlethwaite and Silber [64]. These authors also extend the

result of [33] by showing that the addition of spatial feedback allows for the stabilization

of traveling wave solutions for all perturbation wavevectors q. In particular, [64] describes

how the spatial feedback terms ∆xj must be chosen in two dimensions to ensure that the

control remains non-invasive and to select the direction of the targeted traveling wave

solutions. Furthermore, they show that if ∆xj are chosen appropriately, then the optimal

level of temporal feedback gain K = − 1
τ

derived in [56] for the one-dimensional CGLE,

is also the optimal level for the two-dimensional CGLE.

Here we aim to extend the results of [56] to the subcritical cubic CGLE with one spatial

variable. That is, we perform a linear stability analysis of the traveling wave solutions

of the system and attempt to stabilize the equilibrium of the linearized system for all

perturbation wavenumbers q. Our aim is to remove the instability associated with the

subcriticality of the CGLE. We do not investigate the existence of any Benjamin–Feir-type

instability in the system. We find that traveling wave solutions of the subcritical cubic

CGLE with one spatial variable cannot be stabilized for all q with the modified Pyragas

control scheme. In particular, we show that the linearized system always has an unstable

eigenvalue for the perturbation wavenumber q = 0. This result is proved analytically for

the case of purely real temporal feedback gain. We conjecture that the same is true of

the case where temporal feedback gain is complex and we provide numerical evidence to

support this theory.

This chapter is organized as follows. Section 5.2 presents a linear stability analysis of

the subcritical CGLE, firstly without feedback and then with feedback. In section 5.3

we consider the stability of traveling wave solutions of the subcritical CGLE when purely

spatial feedback is applied. In sections 5.4 and 5.5, we consider the effects of temporal

feedback, firstly, with a real feedback gain, and secondly, with a complex feedback gain.

Section 5.6 contains a discussion and conclusions.
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5.2 Linear stability analysis

The subcritical cubic CGLE with one complex spatial variable is an amplitude equation

that describes a disturbance Â(x̂, t̂) ∈ C in a spatially extended system close to the onset

of a Hopf bifurcation; it is given by

∂Â

∂t̂
= (c0 − ic1)Â+ (c2 − ic3)∇2Â+ (c4 − ic5)|Â|2Â. (5.2.1)

As we consider a subcritical Hopf bifurcation we assume c4 > 0, and to avoid backward

diffusion c2 > 0. Equation (5.2.1) can be rescaled to a form similar to that of (5.1.3) as

follows [34]. We first apply the transformation Â→ Âe−ic1t to give

∂Â

∂t̂
= c0Â+ (c2 − ic3)∇2Â+ (c4 − ic5)|Â|2Â. (5.2.2)

We then rescale the amplitude Â =

√(
c0
c5

)
A and apply the coordinate transformation

x =

√(
c0
c2

)
x̂ and t = c0t̂, which gives

∇2Â =
(
c0
c2

)
∇2A and ∂Â

∂t̂
= c0

∂A
∂t

.

Substituting these terms into (5.2.2) gives

∂A

∂t
= A+

(
1− ic3

c2

)
∇2A+

(
c4

c5

− i
)
|A|2A. (5.2.3)

Let b1 = − c3
c2

and b3 = c4
c5

to give

∂A

∂t
= A+ (1 + ib1)∇2A+ (b3 − i)|A|2A. (5.2.4)

Here, b1 and b3 are real parameters and since we consider the case of a subcritical Hopf

bifurcation, the parameter b3 is positive. We again consider traveling wave solutions of

the form

A = Reikx+iωt, (5.2.5)
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where R is the amplitude of the solution and ω is its frequency. The amplitude R and

frequency ω are linked by the wavenumber k through the following dispersion relations

R2 =
k2 − 1

b3

,

ω = −b1k
2 −R2.

(5.2.6)

As b3 is positive, the wavenumber satisfies |k| > 1. We calculate the linear stability of the

traveling wave solution by considering small-amplitude perturbations for a perturbation

wavenumber q. We substitute the ansatz

A = Reikx+iωt(1 + a+(t)eiqx + a−(t)e−iqx) (5.2.7)

into (5.2.4) and linearize in a+ and a−. This gives the following system of ordinary

differential equations (ODEs) in the complex variables a+ and a∗− (the complex conjugate

of a−),

d

dt

(
a+(t)

a∗−(t)

)
=

(
−2kqd1 − q2d1 + d2R

2 d2R
2

d∗2R
2 2kqd∗1 − q2d∗1 + d∗2R

2

)(
a+(t)

a∗−(t)

)
, (5.2.8)

such that d1 = 1 + ib1, d2 = b3 − i. The characteristic equation of system (5.2.8) is

φ2+[−2b3R
2 + (4ikb1)q + 2q2]φ

+[(−i4kR2(1 + b1b3))q + (−4k2(1 + b2
1)− 2R2(b3 − b1))q2 + (1 + b2

1)q4] = 0.
(5.2.9)

The eigenvalues of (5.2.8) are thus

φ1,2 =
(2b3R

2 − (4ikb1)q − 2q2)±
√
D

2
, (5.2.10)

where

D = [4b2
3R

4 + (i16kR2)q + (16k2 − 8R2b1)q2 + (i16kb1)q3 − 4b2
1q

4]. (5.2.11)

Ignoring higher-order terms in q the expansion of the square root of the discriminant D

is
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√
D = 2b3R

2

[
1 +

2ikq

b2
3R

2
− b1q

2

b2
3R

2
+

2k2q2

b2
3R

4
+

2k2q2

b4
3R

4
. . .

]
. (5.2.12)

Thus, for small q system (5.2.8) has one eigenvalue with real part given by

φ1 = 2(k2 − 1) +

[
−
(

1 +
b1

b3

)
+

2k2

b3R2

(
1 +

1

b2
3

)]
q2 +O(q3). (5.2.13)

and one eigenvalue with real part given by

φ2 =

[
−
(

1− b1

b3

)
− 2k2

b3R2

(
1 +

1

b2
3

)]
q2 +O(q3). (5.2.14)

Note that for b1/b3 < 1 the eigenvalue φ2 is always less than or equal to zero for small

q. When q = 0 the eigenvalue φ1 given by (5.2.13) is equal to 2(k2 − 1), which is always

positive as, from the dispersion relation (5.2.6), |k| > 1. The eigenvalue φ2 given by

(5.2.14) is equal to zero at q = 0.

Figure 5.1 shows how the real part of the two eigenvalues of (5.2.8) changes as q is increased

for k = 1.8, b1 = 2.5 and b3 = 2. When q is large enough, that is, the perturbations are

sufficiently short wave, both eigenvalues are stable.

In this chapter we focus primarily on the instability at q = 0. Since we consider control

successful only if the traveling wave is stabilized for all perturbation wavenumbers q, it is

sufficient to show that Pyragas control is not successful overall by showing that it cannot

remove the instability at q = 0.

We apply the modified Pyragas control scheme of the form suggested in [53,56] to (5.2.4)

to give

∂A

∂t
= A+ (1 + ib1)∇2A+ (b3 − i)|A|2A+ F, (5.2.15)

where

F = K[A(x, t)− A(x, t− τ)] + ρ[A(x+ ∆x, t)− A(x, t)]. (5.2.16)

Again ρ ∈ R is the gain of the spatial feedback term and K is the gain of the temporal

feedback. In this chapter we consider temporal feedback gain of the form

K = b0e
iβ. (5.2.17)
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Figure 5.1: The blue curves are the real part of the two eigenvalues of (5.2.18) without feedback as the
parameter q is increased. The horizontal red line is where the real part of the eigenvalues
is equal to zero. Other parameter values: k = 1.8, b1 = 2.5, b3 = 2.

where b0 ∈ R is the feedback strength and β is the 2π-periodic feedback phase. We

consider both the case when the temporal feedback gain is real, β = 0, and the case when

temporal feedback is complex. It should be noted that if a solution A(x, t) is temporally

periodic with period T = τ
n

(n ∈ Z) and spatially periodic with period S = ∆x
m

(m ∈ Z),

the feedback vanishes on the target, and therefore, the control is non-invasive. Thus, for

a targeted traveling wave with wavenumber k and frequency ω the delay τ is set as 2π
|ω|

(assuming ω 6= 0) and the spatial shift is set as ∆x = 2π
k

. Throughout our analysis we

fix the delay and spatial shift as these functions. Note that the delay and spatial shift

cannot be set independently as they are related through the dispersion relation (5.2.6).

We substitute the ansatz (5.2.7) into the system with feedback (5.2.15). This now gives

the following system of DDEs in a+ and a∗− (the complex conjugate of a−),

d

dt

(
a+(t)

a∗−(t)

)
= J

(
a+(t)

a∗−(t)

)
+K

[(
a+(t)

a∗−(t)

)
−
(
a+(t− τ)

a∗−(t− τ)

)]
, (5.2.18)

where

J =

(
−2kqd1 − q2d1 + d2R

2 + ρ(eiq∆x − 1) d2R
2

d∗2R
2 2kqd∗1 − q2d∗1 + d∗2R

2 + ρ(eiq∆x − 1)

)
(5.2.19)
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and d1 = 1 + ib1, d2 = b3 − i. The matrix J has eigenvalues m1 and m2 such that

Re(m1) > Re(m2). In the rest of this chapter we consider the controlled system (5.2.18)

and analyze the effects of spatial and temporal feedback.

5.3 Spatial feedback in one-dimension

In this section we consider (5.2.18) with purely spatial feedback, that is, ρ 6= 0 and

K = b0 = 0. We start by reviewing a result from [56] for the supercritical CGLE (5.1.3).

In [56] Montgomery and Silber showed that the addition of spatial feedback adds the term

ρ (cos(q∆x)− 1) to the real part of the two eigenvalues of (5.1.3). Recall that, to ensure

that the feedback is non-invasive in the one-dimensional system, the spatial shift term

∆x is set to 2π
k

. Therefore, when the perturbation wavenumber q is an integer multiple

of the wavenumber k, the term ρ
(
cos(q 2π

k
)− 1

)
= 0. Moreover, this term is also equal to

zero when q = 0.

The spatial feedback term applied here for the linearized system (5.2.18) is the same as

in the supercritical case. Thus, the real part of the eigenvalues m1 and m2 of the matrix

J in (5.2.19) are the same as the real part of the eigenvalues φ1 and φ2 in uncontrolled

system (5.2.8), but with the added term ρ (cos(q∆x)− 1). Hence, the real part of the

eigenvalues of J are

Re(m1) = Re(φ1) + ρ (cos(q∆x)− 1)

Re(m2) = Re(φ2) + ρ (cos(q∆x)− 1)
(5.3.1)

Therefore, as with the supercritical case in [56], when q is zero or a multiple of k the

spatial feedback term is zero and the spatial control switches off. When this happens the

real part of the eigenvalues is the same as without feedback, that is m1 = φ1 and m2 = φ2.

In particular, the unstable eigenvalue at q = 0 is still given by m1 = φ1 = 2(k2 − 1).

Figure 5.2 shows the real part of the two eigenvalues of (5.2.18) as q is changed for

ρ = 10, k = 1.8, b1 = 2.5 and b3 = 2. The dashed curve shows the leading eigenvalue from

Fig. 5.1 for the system (5.2.18) without feedback. Figure 5.2 shows that the unstable

eigenvalue is stabilized for some values of q but for q = 0, q = 1.8 and q = 3.6, that is,

where q is an integer multiple of k, the eigenvalue becomes unstable again. At these points

the eigenvalues m1 and m2 are the same as the eigenvalues φ1 and φ2 of the uncontrolled

system (5.2.8). This switching on and off the feedback results in the oscillatory pattern

visible in Fig. 5.2. As in the case with no feedback, the unstable eigenvalue does eventually
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Figure 5.2: The blue curves are the real part of the two eigenvalues of (5.2.18) for ρ = 10 as the
parameter q is increased. The horizontal red line is where the real part of the eigenvalues
is equal to zero. The dashed black curve is the real part of the leading eigenvalue of 5.2.18
without feedback as in Fig. 1. Other parameter values: k = 1.8, b1 = 2.5, b3 = 2, b0 = 0.

become stable with sufficiently short-wave perturbation wavenumber q. However, spatial

feedback alone is not sufficient to stabilize traveling wave solutions of (5.2.15) for all

perturbation wavenumbers q.

5.4 Temporal feedback with real feedback gain

We now consider system (5.2.18) with purely temporal feedback with a real feedback

gain, that is, K = b0 6= 0, and b0 ∈ R. Throughout this section we restrict our analysis of

(5.2.18) to the case where q = 0.

To analyze the effect of the temporal feedback we first diagonalize the matrix J (5.2.19)

and change coordinates in the manner suggested in [64]. This gives

α̇1(t) = m1α1(t) + b0(α1(t)− α1(t− τ)),

α̇2(t) = m2α2(t) + b0(α2(t)− α2(t− τ)),
(5.4.1)

where α1,2 are the transformed variables, that is, they are linear combinations of a+ and

a∗−. Again the terms m1 and m2 are the eigenvalues of the matrix J , such that Re(m1) >
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Re(m2). Note that the change of coordinates associated with the diagonalization of J

does not affect the Pyragas feedback terms. This is explained as follows. The system

(5.2.18) can be written as

Ẋ = JX + b0Xτ , (5.4.2)

where

X =

(
a+(t)

a∗−(t)

)
and Xτ =

[(
a+(t)

a∗−(t)

)
−
(
a+(t− τ)

a∗−(t− τ)

)]
. (5.4.3)

The matrix J is diagonalized by the transformation J = PDP−1, where D is the diagonal

matrix of eigenvalues m1 and m2. Substituting J = PDP−1 into (5.4.2) results in the

coordinate transformation Y = P−1X. Therefore, the system given in terms of Y is

Ẏ = P−1Ẋ = P−1(PDP−1PY + b0Yτ ),

Ẏ = DY + b0Yτ ,
(5.4.4)

which is of the same form as (5.4.2).

We now consider the case when q = 0. Recall that for q = 0 the spatial feedback term

vanishes and so the eigenvalue m1 in (5.4.1) is the same as in the uncontrolled system,

that is, m1 = φ1 = 2(k2 − 1). The characteristic equation associated with the solution

α1(t) = eψ1t of (5.4.1) is

ψ1 = m1 + b0(1− e−ψ1τ ), (5.4.5)

where ψ1 = µ+ iν. Equation (5.4.5) has infinitely many solutions, one of which is purely

real, i.e. ν = 0. This eigenvalue is the solution of f(µ) = µ where

f(µ) = 2(k2 − 1) + b0(1− e−µτ ). (5.4.6)

Recall that 2(k2−1) > 0 and τ > 0. We claim that equation (5.4.6) always has a positive

solution regardless of the sign of b0. If b0 > 0 and µ > 0, the continuous function f(µ)

is increasing and f(0) = 2(k2 − 1) > 0. It has a horizontal asymptote at f(µ) = b0 > 0.

Thus, for µ large enough, f(µ) < µ and, therefore, since f(µ) is continuous there must

be a µ > 0 for which f(µ) = µ. Hence, there will always be an unstable eigenvalue. If

b0 < 0 and µ > 0, the function f(µ) is decreasing and again f(0) = 2(k2 − 1) > 0. It
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Figure 5.3: The function f(µ) for b0 = 5 (cyan), b0 = 1
τ (green), b0 = − 1

τ (red) and b0 = −5 (blue). The
dashed horizontal and vertical black lines are at f(µ) = 0 and µ = 0 respectively, the solid
black line is where f(µ) = µ. Other parameter values: k = 1.8, b1 = 2.5, b3 = 2, q = 0, ρ = 0.

again has a horizontal asymptote at f(µ) = b0 < 0. Again, for µ large enough, f(µ) < µ

and, therefore, since f(µ) is continuous there must be a µ > 0 for which f(µ) = µ.The

function is, therefore, positive for small positive µ; specifically, it is positive for

0 < µ < − ln(1+
2(k2−1)

b0
)

τ
.

The function f(µ) will always intersect the line µ = f(µ) in this interval and, thus, there

is always a positive solution and, therefore, an unstable eigenvalue.

Figure 5.3 shows this result for four different choices of feedback gain: b0 = −5 (blue),

b0 = 5 (cyan), b0 = 1(green) and b0 = −1 (red). For each value of b0 there is an

intersection between the curve f(µ) and the line µ = f(µ) (black) in the first quadrant of

the (µ, f(µ))-plane, indicating a positive solution.

We have shown that for any real b0, system (5.2.18) always has an unstable eigenvalue,

specifically when q = 0. Thus, temporal feedback with real feedback gain cannot stabilize

traveling wave solutions of (5.2.15). Note that we only consider τ > 0; if τ < 0 then

(5.2.18) would be an advanced equation rather than a delay equation, analysis of which

is beyond the scope of this work.
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Figure 5.4: The surface of the real part of the leading complex conjugate pair of eigenvalues of (5.2.18)
for temporal feedback with complex feedback gain for a range of the parameters b0 and β;
shown in different perspectives in panels (a) and (b), together with the (red) zero plane.
Other parameter values: k = 1.8, b1 = 2.5, b3 = 2, q = 0, ρ = 0.

5.5 Temporal feedback with complex feedback gain

In this section we consider system (5.2.18) with complex temporal feedback gain K =

b0e
iβ, where b0 is the strength of the feedback and β is the 2π-periodic feedback phase.

This is a more natural choice of feedback gain as all the coefficients and the variable in
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the CGLE are complex. Furthermore, it has been shown in other applications of Pyragas

control [13, 65] that stabilization of the target solution is not possible with a purely real

feedback gain. Similarly to the previous section, we restrict our analysis of (5.2.18) to

the case where q = 0, for which the spatial feedback term vanishes. In contrast to the

case in the previous section, the eigenvalue ψ1 of (5.2.18) with the largest real part is now

complex (one of a complex conjugate pair of eigenvalues). It satisfies

ψ1 = m1 + b0e
iβ(1− e−ψ1τ ), (5.5.1)

where ψ1 = µ + iν and again m1 is the eigenvalue with the largest positive real part of

the matrix J . Setting q = 0 and splitting (5.5.1) into real and imaginary parts yields

µ = 2(k2 − 1) + b0(cos(β)− e−µτ cos(β) cos(ντ)− e−µτ sin(β) sin(ντ)),

ν = b0e
−µτ (cos(β) sin(ντ)− sin(β) cos(ντ)).

(5.5.2)

Proving that there is always an unstable eigenvalue at q = 0 from (5.5.2) is difficult.

Instead, we use DDE-Biftool to continue the equilibrium solution with its stability in-

formation (in the form of the leading 100 eigenvalues) in the parameters b0, β, b1, b3 and

k, whilst maintaining the parameter restrictions k > 1 and b3 > 0. In this process, we

fix q = 0 and continue the equilibrium solution of (5.2.18) in a chosen parameter. We

stop the continuation when the real part of the leading pair of eigenvalues is closest to

zero and then continue from this point in a different parameter. As is presented next, we

find that the real part of the leading eigenvalue appears to be always positive. Hence,

we conjecture that the control scheme cannot successfully stabilize the targeted traveling

wave solution.

We start with continuation in the temporal feedback parameters b0 and β. The surface

in Fig. 5.4(a) shows the real part of the leading complex conjugate pair of eigenvalues

Re(ψmax) of (5.2.18) against the feedback parameters b0 and β. The red plane is where

Re(ψmax) = 0. The blue surface is found from a series of continuations of the equilibrium

solution and its eigenvalues in the parameters β and b0. The other parameters are fixed

as k = 1.8, b1 = 2.5 and b3 = 2. From the continuation data we find by a post-processing

step the leading complex conjugate pair of eigenvalues of the equilibrium and then plot

it for the respective value of β and b0. Therefore, the surface shown in Fig. 5.4(a) is

not a continuation of a single eigenvalue, but rather, different sections of the surface may

correspond to different eigenvalues with switch-over points between them. In other words,

where two relevant branches of eigenvalues cross, meaning there are two eigenvalues with
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Figure 5.5: Panel (a) shows a part of the surface from Fig. 5.4(a) for 0 < β < 2π and 0 < b0 < 5. Panel
(b) is the corresponding slice through the surface at b0 = 5, which shows the real part of
the leading eigenvalue Re(ψmax) (blue) and the real parts of additional eigenvalues (green)
of (5.2.18). The green dots indicate switch-over points between different eigenvalues. Other
parameter values: k = 1.8, b1 = 2.5, b3 = 2, q = 0, ρ = 0.

equal largest real part, we switch to plot the increasing branch of eigenvalues. This

is why the surface is not smooth everywhere, and points on the surface where there is

discontinuous derivative correspond to switch-over points of eigenvalues.

The surface of the eigenvalue with largest real part in Fig. 5.4(a) is 2π-periodic in β. This

is most easily seen by following the edge of the surface along the β-axis. Figure 5.4(b)

shows the same surface but from a different perspective. Here we clearly see that the

surface never intersects the plane at Re(ψmax) = 0 and, hence, there is no combination of

b0 and β for which the equilibrium solution is stable.

Figure 5.5(a) shows the surface from Fig. 5.4(a) in the smaller parameter ranges 0 < b0 <

5 and 0 < β < 2π. For β ≈ 2.5 and b0 ≈ 5 the surface starts to dip downwards (outlined

by a green circle) and it appears that Re(ψmax) will approach zero as b0 is increased.

This dip is more easily seen in Fig. 5.5(b), which is the slice through the surface at

b0 = 5. The blue curve represents the surface and the dip in the surface can now be seen

to be the switch-over point S1 (green dot). Here, two branches of eigenvalues cross and

a new branch is now the one with the largest real part. Figure 5.5(b) also shows other

switch-over points (green dots) between branches of eigenvalues including the symmetric

counterpart of S1 the point S2. Here, the branch of eigenvalues with the largest real part

once again switches. The points S1 and S2 are the global minima of the surface shown in
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Figure 5.6: Panel (a) shows the real part of the leading eigenvalue Re(ψmax) (blue) and the real part
of additional eigenvalues (green) of (5.2.18) for complex temporal feedback gain as the
parameter b0 is changed. Panel (b) shows the number of unstable eigenvalues of the (5.2.18)
for complex temporal feedback gain as b0 is changed. Other parameter values: k = 1.8, b1 =
2.5, b3 = 2, q = 0, ρ = 0, β = 2.5.

Fig. 5.5(a) and are therefore the “best choices” of β. Since the feedback phase is periodic,

adding or subtracting 2π from these values of β also results in another “best choice”. It

should be noted that there are many more branches of eigenvalues with negative real part

close to zero. As such there are many more switch-over points and, therefore, plotting

these branches accurately becomes quite difficult.

Figure 5.6(a) shows a continuation of the equilibrium solution and its leading eigenvalues

in a large range of b0 from the point S1, i.e. the point with β ≈ 2.5 shown in Fig. 5.5(b).

We continue the equilibrium and its eigenvalues for both increasing and decreasing values

of b0. Note that the continuation does not contain the constraint that the two eigenvalues

at S1 remain equal. Such a continuation would require an additional condition that the

two eigenvalues at this point are always equal and, as such, would make the continuation

far more computationally intensive.
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Figure 5.6(a) shows the eigenvalue with the largest real part Re(ψmax) (blue) for each value

of b0 and some additional leading eigenvalues (green). It shows that, as b0 is increased

from zero, Re(ψmax) does initially decrease. As b0 is further increased more eigenvalues

(green) cross the real axis and become unstable. These additional unstable eigenvalues

give rise to a series of switch-over points (green dots) where the eigenvalue with the largest

real part changes; the first three switch-over points are shown in Fig. 5.6(a). The more b0

is increased the more eigenvalues become unstable. These eigenvalues accumulate along

a horizontal asymptote at Re(ψmax) ≈ 0.4.

Figure 5.6(b) shows the number of unstable eigenvalues of (5.2.18) as b0 is changed, again

for β = 2.5. It shows that, the number of unstable eigenvalues increases effectively linearly

with b0. As previously discussed, the unstable eigenvalues accumulate along a horizontal

asymptote. Thus, due to this increasing number of unstable eigenvalues, we conclude that

increasing b0 does not lead to a better parameter choice. This increasing instability as

the value of b0 becomes larger is common in systems with time-delayed feedback; see, for

example, chapter 2, where Pyragas control is applied to the subcritical Hopf normal form.

The analysis presented so far shows that the surface in Fig. 5.4(a) does not cross the zero

plane. The task is now to consider the effect that the parameters b1, b3 and k have on

the surface. In other words, is the surface above the zero plane for all values of b1, b3 and

k? Since the equilibrium and its eigenvalues are dependent continuously on parameters,

this must be the case for b1, b3 and k suitably close to the values b1 = 2.5, b3 = 2 and

k = 1.8 for which the surface in Fig. 5.4(a) was obtained. However, the real task is to

show that the surface is above the zero plane for any choice of b1, b3 and k. Showing

this by a three-parameter continuation of the surface itself is not feasible. Hence, as an

alternative we continue here the equilibrium solution and its eigenvalues from the point

S1 in each of the three parameters. This is a specific check to see whether the real part

of the leading eigenvalue of the equilibrium is ever negative. It should be noted that a

change in b1, b3 or k changes the frequency ω in (5.2.6), which in turn changes the delay

τ .

We start by continuing the equilibrium solution and its eigenvalues from S1 in the param-

eter b1; all other parameters are fixed.

Figure 5.7(a) shows the eigenvalue with the largest real part Re(ψmax) (blue) and a further

eigenvalue (green) of the equilibrium solution for −10 < b1 < 10. It shows that, as b1

is increased from its starting value of b1 = 2.5, Re(ψmax) does not change significantly.

However, as b1 is decreased from 2.5 the value of Re(ψmax) decreases. For b1 ≈ −0.3,

we find a switch-over point between two branches of eigenvalues. As before, at this
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Figure 5.7: Panel (a) shows the real part of the leading eigenvalue Re(ψmax) (blue) and the real part
of an additional eigenvalue (green) of (5.2.18) for complex temporal feedback gain as the
parameter b1 is changed. Panel (b) shows the number of unstable eigenvalues of (5.2.18) for
complex temporal feedback gain as b1 is changed. Other parameter values: k = 1.8, b0 =
5, b3 = 2, q = 0, ρ = 0, β = 2.5.

point there are two eigenvalues with the largest real part. As b1 is decreased further,

Re(ψmax) increases. Thus, it appears as if a small negative value of b1 is an optimum

choice; however, from Fig. 5.7(b) we see that there is a peak in the number of unstable

eigenvalues of (5.2.18) at b1 ≈ −0.3. When b1 is small and negative, the number of

unstable eigenvalues increases substantially. This is a direct result of a large increase

in the delay for this range of b1; see (5.2.6). We do not show these additional unstable

eigenvalues in Fig. 5.7(a) due to the difficulty in identifying individual branches. The

unstable eigenvalues are very close to each other near zero and, therefore, DDE-Biftool

frequently switches between different branches of eigenvalues. This means that extracting

accurate branches becomes very difficult. For more negative values of b1, the number of

unstable eigenvalues levels out at 4 and for positive values of b1 the number of eigenvalues

levels out at 6. We have found no value of b1 in our numerous continuations for which

the number of unstable eigenvalues is zero.
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Figure 5.8: Panel (a) shows the real part of the leading eigenvalue Re(ψmax) (blue) of (5.2.18) for
complex temporal feedback gain as the parameter b3 is changed. Panel (b) shows the
number of unstable eigenvalues of (5.2.18) for complex temporal feedback gain as b3 is
changed. Other parameter values: k = 1.8, b0 = 5, b1 = 2.5, q = 0, ρ = 0, β = 2.5.

We now continue the equilibrium solution and its leading eigenvalues from S1 in the

parameter b3, again all other parameters are fixed and again b1 = 2.5. Figure 5.8(a) shows

the eigenvalue with the largest real part Re(ψmax) (blue) of the equilibrium solution for

0 < b3 < 10. As previously discussed, b3 is always taken to be positive, so in this analysis

we do not consider b3 < 0. Figure 5.8(a) shows that an increase in the parameter b3

has little effect on Re(ψmax). We have found that an increase in b3 does not significantly

change the delay τ . As b3 is reduced, however, the delay also decreases and Re(ψmax)

increases slightly. When b3 is very close to zero, the delay is very small. It is well known

that the numerical routines of DDE-Biftool lose reliability for very small delay and, as

such, we cannot continue all the way to b3 = 0. Moreover, we managed to continue

the equilibrium and its leading eigenvalues down to b3 = 0.001. Figure 5.8(b) shows the

number of unstable eigenvalues of (5.2.18) as b3 is changed. For the range shown, a change

in b3 does not effect the number of unstable eigenvalues, which remains at 6 in this case.

We found this to be the case in all our continuations in b3.
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We now continue the equilibrium solution from S1 in the parameter k, again all other

parameters are fixed and again b3 = 2. Figure 5.9(a) shows the eigenvalue with the

largest real part Re(ψmax) (blue) of the equilibrium solution for 1 < k < 9. It shows

that, as k is increased, Re(ψmax) grows quickly. As k is reduced, Re(ψmax) decreases and

approaches zero. The inset in Figure 5.9(a) is an enlargement near k = 1, which shows

that Re(ψmax) is positive for all k > 1. Recall that in this analysis we only consider

|k| > 1, since for |k| = 1 the amplitude R given in (5.2.6) is zero. The inset appears to

show that at k = 1 the eigenvalue Re(ψmax) = 0; however, there are in fact two pairs of

unstable complex conjugate eigenvalues with very small real part. Figure 5.9(b) shows the

number of unstable eigenvalues of (5.2.18) as k is changed. It shows that, for the range of

k shown, there are always at least four unstable eigenvalues. In all of our continuations,

we have found no value of k for which the surface crosses the zero plane.

Overall, we have performed a large number of calculations of the leading eigenvalue; the

ones presented here in Figs. 5.4–5.9 provide a representative sample. Our numerical inves-

tigation leads us to conjecture that the control scheme with complex temporal feedback

gain is never successful in stabilizing traveling wave solutions of (5.2.15). Whilst finding

a mathematical proof of this conjecture remains a considerable challenge, the analysis

presented here gives us confidence that this might be possible.

5.6 Conclusions

In this chapter we implemented the modified version of Pyragas feedback control suggested

in [53] in an attempt to stabilize traveling wave solutions of the subcritical cubic CGLE

(5.2.4). We considered both spatial and temporal feedback of the form suggested in [53,56].

In a similar fashion to [56], we performed a linear stability analysis of the full system

and studied the stability of the equilibrium solution of the linearized system. We have

shown that traveling wave solutions of (5.2.15) cannot be stabilized for all perturbation

wavenumbers q with this particular this setup of Pyragas control. Specifically for q = 0, we

have shown that the spatial feedback term becomes zero and we have shown analytically

that (5.2.15) always has an unstable eigenvalue when the temporal feedback gain is real.

Furthermore, we have provided strong numerical evidence that suggests that there is

always an unstable eigenvalue even if the temporal feedback gain is complex.

Recently, Puzyrev et al. [68] considered the stability of traveling wave solutions of the

cubic-quintic CGLE with delayed feedback; this feedback was purely temporal and not of

Pyragas type. They found that in the subcritical case, where the real part of the cubic

129



k

k

(a)

(b)

Re(ψi)
#

o
f
u
n
st
a
b
le

e
ig
e
n
v
a
lu
e
s

1 3 6 9

1 3 6 9

1 1.1

0

2

4

6

8

0

25

50

75

100

0

0.1

Figure 5.9: Panel (a) shows the real part of the leading eigenvalue Re(ψmax) (blue) of (5.2.18) for
complex temporal feedback gain as the parameter k is changed. Panel (b) shows the number
of unstable eigenvalues of (5.2.18) for complex temporal feedback gain as k is changed. Other
parameter values: b1 = 2.5, b0 = 5, b3 = 2, q = 0, ρ = 0, β = 2.5.

nonlinearity is positive, a quintic term was required for the traveling wave solution to

become stable. We refer the reader to [68] for a full explanation of this mechanism of

stabilization. The authors of [68] also use the real part of the linear coefficient of the

CGLE as the main bifurcation parameter. In our study of the subcritical CGLE, this

parameter has been scaled to unity. Therefore, analysis of the subcritical cubic-quintic

CGLE subject to the modified Pyragas scheme does seem like a promising avenue of

research.

One could also apply Pyragas control of this form to other one-dimensional spatially

extended systems near a subcritical Hopf bifurcation and see if the control scheme is

successful or not in these systems. In fact, Kraft et al. [45] have already shown that

the modified Pyragas scheme does not stabilize traveling wave solutions of the Swift-

Hohenberg equation. Thus, it may be that further modifications of the Pyragas scheme

suggested by [53] are required for control to be successful in these spatially extended
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systems.
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6
Discussion and future work

This thesis analyzed the global dynamics that are induced when Pyragas time-delayed

feedback control is employed to stabilize an unstable periodic orbit that bifurcates from

a subcritical Hopf bifurcation. We also analyzed the effect of a delay mismatch in the

Pyragas control scheme. Our analysis of the global dynamics of both the Hopf normal

form and the Lorenz system subject to Pyragas control highlighted the care that must be

taken when applying the control scheme. In particular, we showed that it is important

to consider the global dynamics of a Pyragas controlled system to ensure that the desired

target state is indeed achieved. A comparison of the two controlled systems showed that

the Hopf normal form subject to Pyragas control is predictive of the global dynamics

of other Pyragas controlled systems near a subcritical Hopf bifurcation. The extent of

this predictive nature is dependent on the parameter range over which the target periodic

orbit exists and also how this periodic orbit disappears. Furthermore, we have shown that

the Hopf normal form is also predictive of the success of the control scheme when there

is a delay mismatch in the system. We also considered the application of Pyragas control

to a spatially extended system, namely, the subcritical cubic CGLE. We showed that the

control scheme is not successful in stabilizing traveling wave solutions of the CGLE with

either spatial or temporal feedback.
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In chapter 2, we presented the global dynamics of the subcritical Hopf normal form subject

to Pyragas control. We defined the overall domain of stability of the target periodic

orbit and characterized the bifurcation curves that form its boundaries. Furthermore, we

showed how this stability domain changes when the feedback phase β and the Hopf normal

form parameter γ are varied. In particular, we found the exact values of β and γ for which

the control scheme is not successful. We also showed that the addition of feedback induces

infinitely many Hopf bifurcation curves and possibly infinitely many stable periodic orbits.

Moreover, we found regions of bistability, where both the equilibrium solution and the

target periodic orbit are stable. The existence of bistability and further stable periodic

orbits means that the user must carefully choose parameter values and the initial condition

so that the system reaches the intended target state. It is difficult to choose these suitable

parameter values without considering the global dynamics of the controlled system.

Chapter 3 considered the effect of a delay mismatch in the Pyragas control scheme. Specif-

ically, we considered the subcritical Hopf normal form subject to Pyragas control as in

chapter 2, but where the delay was now set, firstly, as a constant approximation of the

target period and, secondly, as a linear approximation of the target period. We showed

that for the control scheme to be considered successful the delay must be set as at least a

linear approximation of the target parameter-dependent period. Furthermore, we showed

that the control scheme is successful even with a linear approximation with a considerably

shallower slope.

In chapter 4 we considered the Lorenz system subject to Pyragas control. We analyzed

both the global dynamics that are induced when Pyragas control is applied in its standard

form and also the dynamics when there is a delay mismatch. We found that the Hopf

normal form with feedback is predictive of the dynamics found in the Lorenz system

with feedback. In particular, we found that the region of stability of the target periodic

orbit in parameter space is topologically the same for each system provided the feedback

phase is chosen to match. That is, it is bounded by the same bifurcation curves that

start and finish at the same points. We also showed the existence of further stable delay-

induced periodic orbits in the Lorenz system, which again have stability domains that

are topologically the same as those in the Hopf normal form. We found that the Hopf

normal form is also predictive of the dynamics when there is a delay mismatch. In both

the Lorenz system and the Hopf normal form we found that the delay must be set as at

least a linear approximation of the target period for the control scheme to be considered

successful.

In chapter 5 we applied the spatially extended Pyragas control scheme developed in [53] to

the subcritical cubic CGLE. Our aim was to stabilize traveling wave solutions of the CGLE
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in a similar fashion to Montogomery and Silber [56] who successfully stabilized traveling

wave solutions of the supercritical cubic CGLE. However, we showed that traveling wave

solutions of the subcritical cubic CGLE cannot be stabilized using spatial or temporal

feedback. This was proved analytically for the case of spatial feedback and temporal

feedback with real feedback gain. For the case of temporal feedback with complex feedback

gain we provided numerical evidence that supports our conjecture that stabilization of

traveling wave solutions is not possible.

The work presented in this thesis suggests a number of different directions for future

work. Experimental verification of our findings is an appealing prospect. In particular,

the results of chapters 2–4 are relevant for experiments in which Pyragas control is applied

near a subcritical Hopf bifurcation, for example, those in [9, 29, 73, 77, 80]. Our results

suggest that, even if the equations of the experimental system are unknown, the user

should expect all of the global features of the Hopf normal form subject to Pyragas

control. As previously discussed, the appearance of all these features is dependent on

the region of existence of the target periodic orbit. Furthermore, our analysis of a delay

mismatch suggests an approach to setting the delay in the control scheme that is far less

computationally intensive than the methods in [74, 88]. In this approach the user could

derive a linear approximation of the target period from a limited number of experimental

measurements and set this approximation as the delay in the control scheme.

Another direction of future work would be to apply Pyragas control to systems that have

an unstable periodic orbit that bifurcates from another type of bifurcation, such as a fold

bifurcation or homoclinic bifurcation, rather than the subcritical Hopf bifurcation that

has been the focus of this thesis. Fiedler et al. [25] have successfully applied Pyragas

control to stabilize rotating waves near a fold bifurcation. Here, it would be interesting

to see whether there is a general mechanism of stabilization of a periodic orbit near a fold

bifurcation as there seems to be for a periodic orbit near a subcritical Hopf bifurcation,

and also whether the global dynamics of two controlled systems near a fold bifurcation

are similar. Based on the results presented here for Pyragas controlled systems near a

subcritical Hopf bifurcation, it is not unreasonable to expect that two Pyragas controlled

systems near a fold bifurcation may well have similar dynamics. Postlethwaite and Watson

(personal correspondence, 2012–2014) suggest that Pyragas control cannot stabilize an

unstable periodic orbit bifurcating from a homoclinic bifurcation. It would be interesting

to determine exactly why this is the case and what alterations if any we can make to

the control scheme that result in successful stabilization. This analysis may also gives us

some insight into why and where the Pyragas scheme fails and, thus, may explain why

stabilization of traveling waves of the CGLE in chapter 5 was not successful.
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Future work on spatially extended systems will be focused on applying the modified

Pyragas control scheme to the subcritical cubic-quintic CGLE. Puzyrev et al. [99] analyze

the stability of traveling wave solutions of the cubic-quintic CGLE with delayed feedback,

albeit not for a feedback of Pyragas type. They find that a quintic term is required for

the traveling wave solution to become stable. Furthermore, they use the real part of the

linear coefficient as the primary bifurcation parameter. It may well be that the modified

Pyragas scheme is not able to stabilize traveling wave solutions of the cubic CGLE. In this

case one could apply another control scheme, such as one of those suggested in [54,75,90],

or combine Pyragas control with spatio-temporal filtering as in [2].
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A
Parametrization of the delay-induced

Hopf bifurcation curves

A parametrization for the delay-induced Hopf bifurcations is found by entering the ansatz

z(t) = reiωt into (2.0.1) and splitting the resulting equation into real and imaginary parts,

yielding

0 = λ+ r2 + b0(cos(β − ωτ)− cos β),

ω = 1 + γr2 + b0(sin(β − ωτ)− sin β).
(A.0.1)

At a Hopf bifurcation, r = 0; therefore, after re-arranging, equations (A.0.1) can be

written as

−λ
b0

+ cos β = cos(β − ωτ),

ω − 1

b0

+ sin β = sin(β − ωτ).

(A.0.2)

Squaring both equations of (A.0.2) and adding them yields the expression (after simplifi-

cation)
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− 2λb0 cos β + λ2 + (ω − 1)2 + 2(ω − 1)b0 sin β = 0. (A.0.3)

Solving for b0 yields the relationship (2.3.2).
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B
The double Hopf bifurcation points in

the set HHK

To find an expression for the b0 coordinate of the set of double Hopf bifurcation points

HHK on HP, we substitute λ = 0 (as the points in the set HHK lie on the curve HP) and

τ = 2π (the delay at λ = 0) into the equations (A.0.2). This gives

cos β = cos(β − 2πω),

ω − 1

b0

+ sin β = sin(β − 2πω).
(B.0.1)

Therefore, from (B.0.1) either β = β − 2πω + 2πk, which gives ω = k, or β = −(β −
2πω) + 2πk, which gives ω = β

π
+ k. Setting ω = β

π
+ k in (B.0.1) and solving for b0 gives

the set of b0-coordinates

b0 =
π(1 + k)− β

2π(sin β)
. (B.0.2)

The (λ, b0)-coordinates of the set of double Hopf bifurcation points HHK are thus given

by

138



HHK =
(

0,
π(1 + k)− β

2π(sin β)

)
. (B.0.3)

As discussed in this in chapter 2, for stabilization to be possible, given a positive b0 the

point bc0 (2.1.4) must be below the point HH0 (2.3.1). If we consider both positive and

negative values of b0, stabilization is only possible when the following inequality is satisfied

−β
2π(sin β)

<
−1

2π(cos β + γ sin β)
<

π − β
2π(sin β)

. (B.0.4)

Here b0 6= 0 and the expression −β
2π(sinβ)

is the point HH−1, which is the first negative

point of the set HHK . This inequality cannot be satisfied when γ = 0, therefore, at this

value of the parameter stabilization is impossible [13,63]. Rearranging the right-hand in-

equality of (B.0.4) gives the function (2.5.1) along which stabilization fails for a positive b0.
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[2] N. Baba, A. Amann, E. Schöll, and W. Just. Giant improvement of time-delayed

feedback control by spatio-temporal filtering. Phys. Rev. Lett., 89(7):074101, 2002.

[3] B. Balachandran, T. Kalmár-Nagy, and D. E. Gilsinn. Delay differential equations:

Recent advances and new directions. Springer, New York, 2009.

[4] A. G. Balanov, N. B. Janson, and E. Schöll. Delayed feedback control of chaos:
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