Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
A New Vision Interface:
"Defining What instead of How"

Making image analysis functions transparent to the user by coupling them to handling tasks in an intuitive interface for materials handling applications

Ian Murray Prescott Sly

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering

December 1997

Manufacturing Systems Group
Department of Mechanical Engineering
The University of Auckland
ABSTRACT

This thesis addresses the need for adaptability in vision systems that measure system state information in a sensory feedback role for the control and coordination of flexible discrete-item materials handling operations, such as those performed by a robotic palletising system. In addition, this thesis addresses the need for vision systems that are more easily configured by users, such as factory technicians and operators, who have lower skill levels than those generally required to (re-)configure a machine vision system.

In response, a unique coupling mechanism and intuitive human-computer interface have been developed, hiding the complexity of image analysis from the end-user and simplifying the way that a machine vision system is configured. The mechanism couples machine vision-related "visual checks" to materials handling tasks in a generic framework of materials handling activities. Visual checks which define what control information is required are implicitly linked to image analysis functions which define how that information is extracted from digitised images of a materials handling system. Consequently, this research has developed a set of task - visual check "building blocks" that can be used in various combinations to define the sequence of actions and image analysis required to perform a variety of materials handling operations. In addition, a number of pre-defined task - visual check combinations and mechanisms for manipulating them have been developed, providing solution templates that can be used immediately or modified to suit application-specific requirements.

These developments have been realised together with several aesthetic, ergonomic and functional features in a machine vision configuration interface, known as SlyVision. SlyVision's modularity, extensibility and upgradeability expressed to both the end-user and the system developer through its underlying object oriented architecture and intuitive user interface design make important contributions to its overall adaptability. Demonstrations involving a typical palletising and a de-palletising operation have shown how SlyVision is used to specify visual checks and configure the associated machine vision components without requiring the end-user to select or apply image analysis techniques or functions. In addition, the relative simplicity of the configuration process is demonstrated.

Consequently, these developments assist people with limited understanding of machine vision technology to set up and maintain a vision system, thereby improving their ability to keep pace with frequent changes in their materials handling operations, while limiting the cost in time, money and effort required to (re-)configure a vision system.
Created by God
Unknown to man
Revealed by God
Recorded by man
To the glory of God
ACKNOWLEDGMENTS

Undertaking this doctorate and completing this thesis has involved many people and substantial resources. I would like to make special mention of the following people and groups for their contributions.

- Dr Rainer Seidel and Dr Mark Andrews for their support, encouragement and guidance.
- The financial assistance received through the Maurice Paykel Scholarship and University Postgraduate Scholarship.
- The Department of Mechanical Engineering and the Manufacturing Systems Group for the equipment used to perform this research.
- The invaluable experience I received at the Fraunhofer-IPA in Stuttgart with the assistance of a DAAD (German Academic Exchange) Scholarship.
- Chris Bowman for his interest and assistance over the last six months.
- Martyn for his friendship and invaluable encouragement, advice and many practical contributions.
- Glenis for her advice on thesis writing, and her encouragement and feedback throughout the writing process.
- Tina for her help in producing several of the figures included in this thesis.
- Jane for helping me to improve my writing style and grammar.
- Reiner and Rolf for their contributions during the early developments of this research.
- Grant for his technical assistance and advice, and Paul, Rachel, Don and others for their support in the Manufacturing Systems Laboratory over this last year.
- Other friends who have been a continual encouragement, especially Mark and Jon.
- My family for their endless love and support, especially through the most challenging times.
- Rhyanne for her unconditional love, encouragement, patience and many hours of help throughout one of the busiest and most exciting times in our lives.

Many thanks to you all.
TABLE OF CONTENTS

ABSTRACT ... I

ACKNOWLEDGMENTS .. V

LIST OF FIGURES ... XI

LIST OF TABLES .. XIV

LIST OF ABBREVIATIONS ... XV

CHAPTER 1 INRODUCTION .. 1

1.1 Background .. 1
1.2 The Role and Importance of Materials Handling .. 3
1.3 An Overview of Machine Vision .. 7
1.4 The Research Issues, Objectives and Boundaries ... 9
1.5 The Research Benefits ... 12
1.6 Organisation of Chapters .. 13

CHAPTER 2 LITERATURE REVIEW ... 15

2.1 Background .. 15
2.2 Machine Vision for Flexible Materials Handling ... 21
 2.2.1 Characteristics of flexible manufacturing systems .. 22
 2.2.2 Robot Vision and discrete-item materials handling applications 24
2.3 Relevant Machine Vision Issues, Research Contributions and Commercial Developments ... 28
 2.3.1 Long and costly development ... 28
 2.3.2 Integrated development knowledge ... 29
 2.3.3 Systematic, balanced development .. 29
 2.3.4 Software versus hardware implementation ... 30
 2.3.5 Standardisation of machine vision components .. 31
2.3.6 Modularity, generic elements and object oriented architectures ... 33
2.3.7 Skill level, training and design aids ... 37
2.3.8 Interactive development environments .. 39
2.3.9 User interfaces and configurable systems .. 45
2.3.10 Automatic program generation .. 55
2.4 Defining a New Solution Approach ... 58
 2.4.1 Evaluation of existing approaches ... 58
 2.4.2 A New Vision Interface: Defining What instead of How ... 61
 2.4.3 Research approach to solution development ... 64

CHAPTER 3 DEVELOPMENT OF A GENERIC FRAMEWORK AND COUPLING MECHANISM ... 67
 3.1 The Proposed Solution and Development Procedure .. 67
 3.2 The Development of a Framework for Describing Materials Handling Activities 69
 3.2.1 The Robotic Palletising System .. 70
 3.2.2 The Automated Manufacturing Cell (AMCell) ... 74
 3.2.3 Standard terms and a standardised hierarchy of elements .. 76
 3.2.4 Re-development of the existing framework of tasks and operations 81
 3.3 Coupling Image Analysis to Materials Handling Activities ... 94
 3.3.1 Analysis of the information required to perform flexible discrete-item handling 95
 3.3.2 Operations, Tasks and Visual checks ... 103
 3.3.3 More on visual checks ... 109
 3.4 Visual Checks and Image Analysis - The Link between What and How 113
 3.4.1 Alternative image analysis strategies and methods .. 114
 3.4.2 The chosen approach ... 116
 3.4.3 Alternative analysis approaches and selection ... 120
 3.5 Summary .. 121

CHAPTER 4 DESIGN OF A UNIQUE MACHINE VISION CONFIGURATION INTERFACE ... 123
 4.1 SlyVision's Fundamental Characteristics and Development Approach 123
 4.2 A Description of SlyVision ... 126
 4.2.1 An overview of SlyVision's operation ... 126
 4.2.2 A choice of implementation ... 130
 4.2.3 SlyVision's architecture .. 130
 4.3 Design of the User Interface Module .. 135
 4.3.1 User interface style, design principles and characteristics 135
CHAPTER 5 A DEMONSTRATION OF SlyVISION

5.1 Equipment and Operating Conditions ... 172
5.2 Demonstration A - Defining New Operations and Task Sequences 175
 5.2.1 A description of the application and the important features demonstrated 175
 5.2.2 Constructing a Configuration containing a new palletising operation 177
 5.2.3 Running the Configuration - executing visual checks 193
5.3 Demonstration B - Using Pre-defined Operations and Task Sequences 207
 5.3.1 A description of the application and the important features demonstrated 207
 5.3.2 Adding a De-palletising Operation to the previous Configuration 208
5.4 Summary... 215

CHAPTER 6 COMPARISON OF SlyVISION TO RELATED MACHINE VISION DEVELOPMENTS

6.1 Application Programming and Algorithm Design 217
6.2 Machine Vision and Robotic Handling .. 221
6.3 Vision Task Description.. 222
6.4 Automatic Program Generating Systems ... 222
6.5 Object Oriented Vision Systems .. 224
6.6 Hierarchical Program Structure .. 225
6.7 Alternative Camera Set-ups... 228
6.8 Application Independent Operator Interface 228

CHAPTER 7 SUMMARY AND CONCLUSIONS ... 229

CHAPTER 8 SUGGESTIONS FOR FUTURE RESEARCH AND DEVELOPMENT ... 235
REFERENCES ... 241

APPENDIX A REVIEW TABLES ... 263
A.1 Literature Review Table .. 265
A.2 Commercial Review Table .. 287

APPENDIX B GENERIC FRAMEWORK ELEMENTS 305
B.1 Generic Tasks and Example Command Sequences 305
B.2 Generic Operations and Example Task Sequences 307
B.3 Generic Tasks with Coupled Visual Checks 315
 Pick-&-Place Tasks .. 315
 Conveyor Tasks ... 324
 Actuator Tasks ... 325
B.4 Visual Checks Arranged According to System Components 326

APPENDIX C INTERFACE DESIGN ... 331
C.1 Additional User Interface Module Components 331
 C.1.1 The Set-up Camera, lights ... dialog 331
 C.1.2 Set-up Design phase (Step 4) ... 332
 C.1.3 Camera set-up, test and calibrate dialog (Step 5) 333
 C.1.4 Image Processing Sequence dialog (Step 6) 334
 C.1.5 Analysis Region dialog (Step 7) 336
 C.1.6 Item & Pallet Descriptions dialog (Step 8) 338
C.2 Additional Configuration Module Components 341
 C.2.1 Camera Configuration classes 341
 C.2.2 Reusable Component classes 351
C.3 Object Oriented Notation and Terminology 355
 C.3.1 Object oriented analysis and design notation 355
 C.3.2 Object oriented terminology 358
C.4 SlyVision's Object Oriented Design Model 360
C.5 Configuration Module Class Definitions 362
LIST OF FIGURES

CHAPTER 2

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>A comparison of end-user understanding and system flexibility</td>
<td>20</td>
</tr>
<tr>
<td>2-2</td>
<td>Alternative Robot Vision arrangements</td>
<td>24</td>
</tr>
<tr>
<td>2-3</td>
<td>Image processing commands classified as conditioning and processing</td>
<td>40</td>
</tr>
<tr>
<td>2-4</td>
<td>Automatix Standard Application Package (ASAP) Organisation</td>
<td>48</td>
</tr>
<tr>
<td>2-5</td>
<td>An example NeuroCheck® inspection “test tree”</td>
<td>54</td>
</tr>
<tr>
<td>2-6</td>
<td>End-user understanding and system flexibility showing the target region</td>
<td>59</td>
</tr>
<tr>
<td>2-7</td>
<td>Configurable elements</td>
<td>63</td>
</tr>
<tr>
<td>2-8</td>
<td>Concurrent development - the "Baseball" model</td>
<td>65</td>
</tr>
</tbody>
</table>

CHAPTER 3

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Relationships between materials handling operations, tasks, visual checks</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>and image analysis functions</td>
<td></td>
</tr>
<tr>
<td>3-2</td>
<td>The Robotic Palletising System and functional sequence</td>
<td>70</td>
</tr>
<tr>
<td>3-3</td>
<td>The Automated Manufacturing Cell (AMCell)</td>
<td>75</td>
</tr>
<tr>
<td>3-4</td>
<td>Standard terms used to categorise mechanical components</td>
<td>77</td>
</tr>
<tr>
<td>3-5</td>
<td>A standardised hierarchy of elements in manufacturing</td>
<td>78</td>
</tr>
<tr>
<td>3-6</td>
<td>The set of generic tasks</td>
<td>83</td>
</tr>
<tr>
<td>3-7</td>
<td>The set of generic operations arranged in an intuitive structure</td>
<td>86</td>
</tr>
<tr>
<td>3-8</td>
<td>Palletising items from a storage buffer</td>
<td>87</td>
</tr>
<tr>
<td>3-9</td>
<td>Sorting items using a pick-&-place device</td>
<td>91</td>
</tr>
<tr>
<td>3-10</td>
<td>Sorting items using actuators</td>
<td>91</td>
</tr>
<tr>
<td>3-11</td>
<td>Control information is used as both input and output</td>
<td>95</td>
</tr>
<tr>
<td>3-12</td>
<td>The relationship and exchange of information between a materials handling</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>control system and a vision monitoring sub-system</td>
<td></td>
</tr>
<tr>
<td>3-13</td>
<td>The standardised hierarchy incorporating visual checks</td>
<td>98</td>
</tr>
<tr>
<td>3-14</td>
<td>Information required to control a transfer item task within a palletising</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>operation</td>
<td></td>
</tr>
<tr>
<td>3-15</td>
<td>The generic task transfer item with associated visual checks preceding</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>and following the task</td>
<td></td>
</tr>
<tr>
<td>3-16</td>
<td>A palletising operation's task sequence incorporating visual checks</td>
<td>105</td>
</tr>
<tr>
<td>3-17</td>
<td>A default task sequence for a operation palletising items from a buffer</td>
<td>107</td>
</tr>
<tr>
<td>3-18</td>
<td>Item pick-up checks made once for all items</td>
<td>108</td>
</tr>
<tr>
<td>3-19</td>
<td>Item placement checks made once for a full pallet</td>
<td>109</td>
</tr>
</tbody>
</table>
CHAPTER 4

Figure 4-1 Alternative mechanisms for specifying the visual checks associated with a materials handling operation .. 127
Figure 4-2 SlyVision’s eight step Configuration Sequence 128
Figure 4-3 Indirect integration of SlyVision ... 129
Figure 4-4 Executing visual checks when SlyVision is directly integrated within the AMCell control ... 129
Figure 4-5 SlyVision’s multi-layer, multiple component architecture 131
Figure 4-6 SlyVision’s operating modes .. 137
Figure 4-7 SlyVision’s Main Application Window ... 138
Figure 4-8 User Interaction with SlyVision .. 140
Figure 4-9 An example Configuration Tree ... 141
Figure 4-10 Applying the same visual checks at two locations in a sorting operation .. 144
Figure 4-11 The Operations dialog ... 146
Figure 4-12 Adding a new operation type - showing the new operation added to the Operations Tree ... 147
Figure 4-13 The Task Sequence dialog showing a pre-defined palletising operation’s task sequence ... 149
Figure 4-14 The Add Visual Check menu .. 151
Figure 4-15 The Add Task menu used to select a Conveyor-related generic task and the subsequent addition of the task and coupled visual checks within the Task Sequence Tree ... 153
Figure 4-16 The “Include associated visual checks” check-box - unchecked 153
Figure 4-17 The Relocate Item(s) dialog .. 154
Figure 4-18 SlyVision’s object oriented architecture and its relationships to other system elements ... 158
Figure 4-19 System Configuration classes ... 161
Figure 4-20 The System Configuration component classes directly integrated within the AMCell control and configuration system 166
Figure 4-21 Routing visual checks using request numbers 167
Figure 4-22 A generalised Request Interface class and specialisations 167
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>The AMCell set-up</td>
<td>172</td>
</tr>
<tr>
<td>5-2</td>
<td>The Gantry Type Robot</td>
<td>173</td>
</tr>
<tr>
<td>5-3</td>
<td>Illustration of the palletising operation</td>
<td>175</td>
</tr>
<tr>
<td>5-4</td>
<td>User Interaction Steps in the Configuration Sequence</td>
<td>176</td>
</tr>
<tr>
<td>5-5</td>
<td>SlyVision's Main Application Window and Configuration Name dialog</td>
<td>177</td>
</tr>
<tr>
<td>5-6</td>
<td>The System Configuration node and object</td>
<td>178</td>
</tr>
<tr>
<td>5-7</td>
<td>Adding a new Operation to the Operations Tree</td>
<td>179</td>
</tr>
<tr>
<td>5-8</td>
<td>The Operation node and object</td>
<td>180</td>
</tr>
<tr>
<td>5-9</td>
<td>The Task Sequence dialog with an empty Task Sequence Tree</td>
<td>181</td>
</tr>
<tr>
<td>5-10</td>
<td>Building a task sequence for the new palletising operation</td>
<td>182</td>
</tr>
<tr>
<td>5-11</td>
<td>Modifying the basic sequence to suit the application's requirements</td>
<td>184</td>
</tr>
<tr>
<td>5-12</td>
<td>The Task Sequence, Repeat-loop, Task and Visual Check nodes and objects</td>
<td>185</td>
</tr>
<tr>
<td>5-13</td>
<td>The Camera Set-up, test and calibrate dialog</td>
<td>187</td>
</tr>
<tr>
<td>5-14</td>
<td>Calibrating Camera 2 using the second tab page</td>
<td>188</td>
</tr>
<tr>
<td>5-15</td>
<td>The Camera set-up node</td>
<td>189</td>
</tr>
<tr>
<td>5-16</td>
<td>The Analysis Region dialog - drawing an analysis region</td>
<td>190</td>
</tr>
<tr>
<td>5-17</td>
<td>The Analysis Region dialog - attaching item and pallet descriptions</td>
<td>191</td>
</tr>
<tr>
<td>5-18</td>
<td>The Analysis Region node</td>
<td>192</td>
</tr>
<tr>
<td>5-19</td>
<td>A complete Configuration for the palletising operation</td>
<td>193</td>
</tr>
<tr>
<td>5-20</td>
<td>SlyVision's Run Mode Interface</td>
<td>194</td>
</tr>
<tr>
<td>5-21</td>
<td>Input Data for Visual Check 1</td>
<td>196</td>
</tr>
<tr>
<td>5-22</td>
<td>Nearest empty pallet in conveyor position 2</td>
<td>196</td>
</tr>
<tr>
<td>5-23</td>
<td>Results for Visual Check 1 - Situation A</td>
<td>197</td>
</tr>
<tr>
<td>5-24</td>
<td>Nearest empty pallet in conveyor position 3 with another empty pallet in position 2</td>
<td>197</td>
</tr>
<tr>
<td>5-25</td>
<td>No empty pallets on conveyor</td>
<td>198</td>
</tr>
<tr>
<td>5-26</td>
<td>Empty pallet present</td>
<td>199</td>
</tr>
<tr>
<td>5-27</td>
<td>Results for Visual Check 2 - Situation A</td>
<td>199</td>
</tr>
<tr>
<td>5-28</td>
<td>Partially-full pallet present</td>
<td>200</td>
</tr>
<tr>
<td>5-29</td>
<td>No pallet present</td>
<td>200</td>
</tr>
<tr>
<td>5-30</td>
<td>Four items located at the pick-up site</td>
<td>201</td>
</tr>
<tr>
<td>5-31</td>
<td>Results for Visual check 5</td>
<td>202</td>
</tr>
<tr>
<td>5-32</td>
<td>Input Data for Visual Check 6</td>
<td>202</td>
</tr>
<tr>
<td>5-33</td>
<td>Sun-Maid packet placed at specified location on pallet</td>
<td>203</td>
</tr>
<tr>
<td>5-34</td>
<td>Results for Visual Check 6 - Situation A</td>
<td>203</td>
</tr>
<tr>
<td>5-35</td>
<td>Item not present due to a failed pick-up</td>
<td>204</td>
</tr>
<tr>
<td>5-36</td>
<td>Sun-Maid packet still present at pick-up site</td>
<td>204</td>
</tr>
</tbody>
</table>
Figure 5-37 Input Data for Visual Check 8 ... 205
Figure 5-38 All items in correct locations ... 205
Figure 5-39 A misplaced or moved packet .. 206
Figure 5-40 Illustration of the de-palletising operation .. 207
Figure 5-41 The Operations dialog .. 208
Figure 5-42 Another Operation node ... 209
Figure 5-43 The pre-defined task sequence ... 210
Figure 5-44 Modifying the task sequence ... 212
Figure 5-45 The newly modified task sequence added to the Configuration Tree .. 213
Figure 5-46 A partially-complete Configuration for the de-palletising operation 214

CHAPTER 6

Figure 6-1 SlyVision's relative position compared to the assessed level of end-user understanding and system flexibility exhibited by each vision system category 220

APPENDIX C

Figure C-1 The Set-up Camera, lights ... dialog .. 331
Figure C-2 Camera set-up, test and calibrate dialog ... 333
Figure C-3 Image Processing Sequence dialog .. 335
Figure C-4 Analysis Region dialog ... 336
Figure C-5 The Item & Pallet Descriptions dialog .. 338
Figure C-6 Camera Configuration classes ... 342
Figure C-7 The many-to-many relationship between visual checks and analysis regions... 346
Figure C-8 Blob objects constructed for each blob found in an analysis region and their relationship to the Analysis Region object ... 348
Figure C-9 The Camera - Field of View object pair ... 352
Figure C-10 The Analysis Region object and attached Expected Item View objects 354

LIST OF TABLES

Table 1 Example visual checks and their analysis functions...................................... 119
Table 2 Review of relevant research .. 265
Table 3 Review of selected machine vision systems and associated products 287
Table 4 Visual Checks categorised by materials handling component 326
LIST OF ABBREVIATIONS

ABB Asea Brown Boveri
AGV Automated Guided Vehicle
AMCell Automated Manufacturing Cell
APP Associative Pattern Processor
ASAP Automatix Standard Application Package
ASICs Application Specific Integrated Circuits
CAD Computer Aided Design
CASE Computer-Aided Software Engineering
CCD Charge Coupled Device
CNC Computer Numerical Control
dsp Digital Signal Processor
EVA European Vision Association
FIC Flexible Inspection Cell
GLIDE Global Lab Image Development Environment
GTR Gantry Type Robot
GUI Graphical User Interface
HCI Human-Computer Interface
HIPS High resolution Image Processing System
IAMS Institute for Advanced Manufacturing Sciences
ISO International Standards Organisation
MIL Matrox Imaging Library
MIT Massachusetts Institute of Technology
MMS Manufacturing Message Specification
MPW C The Macintosh Programmer’s Workshop C
MSG Manufacturing Systems Group
MVA Machine Vision Association
OCR Optical Character Recognition
OEM Original Equipment Manufacturer
OOA Object Oriented Analysis
OOD Object Oriented Design
OOP Object Oriented Programming
OPA Object-Process Analysis
PC Personal Computer
PCI Peripheral Component Interconnect
PIP Programming in Prolog
PLC Programmable Logic Controller
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPT</td>
<td>Pattern Processing Technology</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>RIA</td>
<td>The Robotics Industries Association</td>
</tr>
<tr>
<td>RISC</td>
<td>Reduced Instruction Set Computer</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of Interest</td>
</tr>
<tr>
<td>SCARA</td>
<td>Selective Compliant Automatic Robotic Arm</td>
</tr>
<tr>
<td>SME</td>
<td>Society of Manufacturing Engineers</td>
</tr>
<tr>
<td>SRI</td>
<td>Stanford Research Institute</td>
</tr>
<tr>
<td>UKIVA</td>
<td>United Kingdom Industrial Vision Association</td>
</tr>
<tr>
<td>VIM</td>
<td>Vision Input Module</td>
</tr>
<tr>
<td>VPM</td>
<td>Vision Program Manager</td>
</tr>
</tbody>
</table>