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Abstract

The design of rubble mound breakwaters is typically based on empirical formulae and physicd

modelling. One limitation of this approach is that different aspects of wave interaction with a

breakwater, such as the elevation of the runup tip and armour stability, are treated separately.

Therefore the development of a numerical model of wave runup on a rubble mound breakwater

was the primary objective of the research described in this thesis.

Because of the range of slope conditions encountered with rubble mound breakwaters and

revetments, two t'?es of armour layer are considered. The first is impermeable and so only the

flow within the external region is modelled. The flow is assumed to be governed by the unsteady

one{imensional shallow water wave equations and only regular waves are considered. It is

shown how the use of the finite element method with a mesh of isoparametric elements that

deforms and is fitted !o the runup tip has a number of advantages over the traditional use of the

finite difference method with a fixed grid.

Reasonably good results were obtained for the numerical modelling of wave runup on a riprap

armoured l:3 impermeable slope indicating that the numerical model may, in conjunction with a

physical model, be of practical use in the design of revetments. Wave runup on smooth and

Dolos armoured 1:1.5 impermeable slopas was modelled poorly. Therefore the model is more

appropriate for wave runup on a revetment than a rubble mound breakwater.

The second type of armour layer is permeable and so the flow within the external region and

armour layer is modelled simultaneously by coupling numerical models for the respective regions.

It is concluded that this approach is unlikely to give acceptable results for the runup of regular

waves on a steep, permeable iumour layer unless it dso accounts for the non-hydrostatic

distribution of pressure within the external region.

An experiment is described in which continuous time histories of wave runup and dynamic

pressure due to regular waves on smooth and Dolos armoured 1:1.5 slopes were mqnured. The

results are used to discuss the assumption of hydrostatic pressure.

A method of assessing annour stability requirements which takes into consideration the effects of

armour unit interaction is proposed. It is recommended that this is examined further.
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List of Notation

With the exception of the dimensionless variables defined in Appendix E, and U, bold upper case

symbols are matrices wittr | | inOicating 'the determinant of . Similarly, with the exception of

the dimensionless variables defined in Appendix E, bold lower case symbols and bold greek

symbols are vectors. Global vectors and matrices are subscripted, g and, unless otherwise

annotated, vectors and matrices are defined at element level and therefore comprise local values.

The subscripts indicate an association with a particular node whereas the superscripts are

generally iteration or time step counters.

For simplicity, specific notation is not used to distinguish between experimentally measured and

averaged values or between experimentally measured and numerically computed values. Instead

the distinction is noted within the text.

A Surface area of armour laYer

A, B Dimensionless coefficients (Eqn 2.20)

A Amplitude factor

Ar, B, Dimensionless coefficients @qn 2.21b)

A,, Bu Dimensionless coefficients (Eqn 2.21a)

a,b Forchheimer constants
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e, br, g, 4 Dimensionless coefficients @qn 5.5b)
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Cr Friction factor

Cp Pressure distribution correction factor

c Wave celeritY

e Volumetric porosity

F Fractional volume of fluid

f Friction factor

f,,.., fr,.* Unbalanced element forces for the continuity and momentum equations

respectively (mth local node, kth iteration)
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tt Local vector ofunbalanced forces

frt Global vector of unbalanced forces

g Gravitationd acceleration

H Wave height

H Dimensionless wave height @qns E.4a and E.4b)

Ho Unrefracted deepwater wave height
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h Water depth

h Local vector of water depth

hR Water depth at nrnup tip

h, Still water depth

\. lnterpolated previous time step water depth at the jth global node

hro, hri, hr', hri*' Global vectors of water depth at t=0, f, t' and t'*t respectively

hi, hc, hi*r Local vectors of water depth at t=f, f and d*r re.spectively

h' l,ocal vector of interpolated previous time step values of water depth

i Time step counter

I Total number of global nodes

J Jacobian matrix

Jo, J, Bessel functions of the first kind

j Global node counter

K Hydraulic conductivity

K' Average hydraulic conductivity for element, e

KD Stability coefficient

k Permeability: Iteration counter

kA Layer coefficient

L Wavelength: Number of integration points for an element

Lo Deepwater or offshore wavelength

I Length of channel: Integration point counter

f Horizontal length of fluid element

f. Slope-parallel length of the runup tip

lb t.z, {3 Total water depths at local nodes 1, 2 and 3 respectively

l' Minimum or maximum total water depth

li, tc, li*r Length of fluid element at t=ti, C and f*r respectively

M, N Total number of nodes connected to an element

M Element mass matrix

m Local node counter

m Horizontal mass flowrate across the seaward edge of the armour layer

N, Total number of armour units

N. Stability number



List of Notation

n Number of layers comprising primary armour layer: Local node counter

P Average porosity of ttre primary cover layer

p Pressure

pp Dynamic pressure

a Volumetric flowrate across the seaward edge of the armour layer

q Bulk or macroscopic velocity

gr Volumetric flux

q' Volumetric flow rate per unit horizontal length of the armour layer

q Average volumetric flow rate per unit horizontal length of the armour layer

& Maximum rundown

& Maximum runup

R..,, Maximum rundown at location where total water depth (h+a) equals 15mm

Ru,rr Maximum runup at location where total water depth (h+7) equals 15mm

r Roughness and porosity correction factor

r Vector of boundary and initial conditions

rw Waist ratio (=B/C)

r,, ry Unit normal vectors in the x and y directions respectively

S Element stiffness matrix

Sk Element tangent stiffness matrix

S.t Global tangent stiffness matrix

S, Specific gravity of an armour unit (=1"/1*)

T Wave period

T Dimensionless wave period @qns E.4a and E.4b)

Ts Significant wave period

t Time

f Dimensionless time @qns E.4a and E.4b)

U Depth-averaged horizontal velocity

U Local vector of horizontal velocity

U Dimensionless depth-averaged horizontal velocity (Eqns E.4a and E.4b)

U" Elemental velocity

Up Depth-averaged horizontal velocity within the armour layer

Ub Depth-averaged horizontal velocity at seaward edge of armour layer

Uj' Interpolated previous time step horizontal velocity at the jth global node

U*t, U*t, fI*t*t, U** Horizontal velocity of the runup tip at t=f, tf, ti*t and the kth

iteration respectively

IJ.o, f]ri, frrt, IJri*r Globat vectors of horizontal velocity at t=0, t', t'and ti*r respectively

Ut, Ut, Ut*t, U* Local vectors of horizontal velocity at t:d, tt, ti*t and the kth

iteration re.spectivel y
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u, v Horizontal and vertical components of velocity

ue, vr Horizontal and vertical @mponents respectively of vertical velocity at node A

u' Horizontal velocity at the seaward edge of the armour layer

ii Average horizontal velocity at the seaward edge of the armour layer

u'^ vl Transformed horizontal and vertical components respectively of velocity at

node A

us Horizontal component of velocity at node C

W Dry weight of an individual armour unit in the primary cover layer

Wr lntegration weight for the lth integration point

Wso Median weight

wr Unit weight of an armour unit

Xj'*t Horizontal global coordinate of the jth global node at t=f*r

4 Horizontal global coordinate of pressure tapping

X*i, X*i*r, X*k Horizontal global coordinates of the runup tip at t=f, ti*r and the lrtt
iteration respectively

Xit Horizontal globd coordinate of node A at t=f+r
XJt Horizontal globd coordinate of node C at t=ti*r

x Horizontal global coordinate

x Dimensionless horizontal global coordinate @qns E.4a and E.4b)

x' Rotated horizontal global coordinate

xro, x.i, xr0, x.i*t Global vectors of horizontal global coordinate.s at t=0, t, f and f*r respectively

xi, x0, xi*t Local vectors of the horizontal global coordinates of the nodes of an element at

t=f, C and ti*r respectively
yj, n'"t Transformed vertical global coordinates of node A at t=f, f*r respectively

Yit Vertical global coordinate of node A at t=f*r
VJt Vertical global coordinate of node C at t=t'*r

y Vertical global coordinate

y' Rotated vertical global coordinate

Zp Elevation of pressure tapping

ZRi, Zei*t, Z{ Elevation of the seaward slope at the location of the runup tip at t=f, ti*r and the

lttr iteration respectively

a Angle of seaward slope

ac Critical angle of seaward slope

At Time step size

d Node position tolerance

6j Potential distance moved by the jth global node

€rn Newton-Raphson iteration convergence tolerance

€p Runup tip elevation tolerance
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€16 Hydraulicconductivityiterationtolerance

€w lnternal water surface elevation tolerance

11 Water surface elevation

z Dimensionless elevation @qns E.4a and E.ab)

4. Elevation of crest of incident wave

rtn Water surface elevation at location where total water depth equals h"

4r Water surface elevation at location where total water depth e4uds lSmm

In Water surface elevation within annour layer at location where total water depth

equals tt-

Ij Water surface elevation corresponding with d
?oi*r water surface elevation at the seaward boundary at t=ti*r

,lj' Interpolated previous time step water surface elevation at ttre jth global node

?*r, ?n'*t, Tnk Elevation of the runup tip at t=f, ti*r and ttre kttr iteration respectively

rlgo,I;,4:, q:*t Global vectors of water surface elevation at t=0, f, C and ti*r respectively

i, rlt, i*', r' Local vectors of water surface elevation at t=f, C, t'*t and the kth

iteration respectively

4' Local vector of interpolated previous time step values of water surface elevation

4 Local vector of water surface elevation

'f , Unit weight (saturated surface dry) of an armour unit

T* Unit weight of water

d Time weighting parameter

)r Dimensionless coefFtcient @qns E.4a and E.4b)

{ Surf similarity parameter (alternatively termed the Iribarren number, Ir): Local

coordinate in spatial domain

t' Local coordinate corresponding with water depth h'

tr Local coordinate corresponding with water depth h"

tr Breaker surf parameter

t. Offshore surf parameter

tp o: Local coordinates of the jth global node

fr, or Local coordinates of the lth integration point

t, Local coordinate corresponding with \
r Element mass

7( Pi = 3.141..

p Fluid density

r Friction coefFrcient

O Local vector ofnodal values ofq and U at t = f*r

6 Piezometric head

Ad.t*' Global vector of corrections to {rk



{rn, d.t*t Globd vectors of nodal values of tr and U at the kth urd (k+ l)th
iterations respectively

L Shape function fur the nth local node of an elcment

0 Domain of integration

o Incd coordinate in the time domain: Local coordinate in the vertical

direction: Dimensionless variable (Eqns E.4a and E.4b)

u Weighting frrnction

a,E Weigbting function for the mth local node

c Dimensionless coeffrcient @ru E.4a and E.4b)




