

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

THE ONE DIMENSIONAL BEHAVIOUR OF SAND

by

R.C.K. ALEXANDER

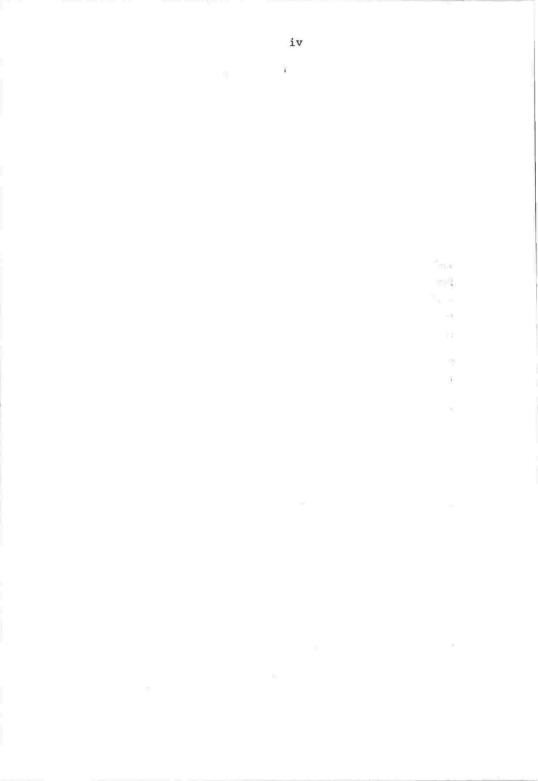
A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

> Supervised by Professor P.W. Taylor

Department of Civil Engineering University of Auckland Private Bag Auckland New Zealand

June 1984

University of Auckland Library ENGINEERING LIBRARY


Thesis 1984-A36 85/6/954886/0/01 22 · 2 · 85

Abstract

This study examines the one dimensional response of sand. For this purpose a compression shear apparatus based on a multi-ring consolidometer has been developed in which one dimensional loading and unloading tests can be performed without wall friction, and in which simple shear distortion of an enclosed sand can be evaluated. The apparatus is also used to examine one dimensional unloading following horizontal shearing of a vertically loaded sample, which is of special interest for one dimensional behaviour in liquefaction associated phenomena.

The one dimensional experimental results obtained from this apparatus are modelled using a mechanistic theory proposed by Dr G.R. Martin. In addition, particulate techniques are developed to investigate the underlying mechanisms occurring in the sand. To assist in this investigation special one dimensional, triaxial, and shear tests were performed and use was made of experimental results from published sources.

5

Acknowledgements

The work presented in this thesis was carried out in the Civil Engineering Department, University of Auckland, initially under the supervision of Dr G.R. Martin, then Professor P.W. Taylor. The author wishes to acknowledge and express his appreciation for the impetus provided by Dr Martin and the advice, assistance, and encouragement supplied by Professor Taylor.

The author would also like to express his gratitude to the following:

- Messrs G. Duske, J. Graham and M. Jones for their technical assistance and advice in the laboratory;
- Mr J. Brown and his workshop staff for their excellent work in the construction of the experimental apparatus;
- Mr G. Carter for the design and construction of the electronic control systems;
- Messrs G. Fraknovary and T. Mead for their assistance with the data collection systems and PDP-12 mini-computer;
- The staff of the Computer Centre for their cheerful assistance;
- M. O'Halloran for the proof reading of this thesis;
- Mr C. Collins for his photographic efforts;
- Mrs E. Arecco for her excellent work in the typing of this thesis;

v

-

Fellow research students for their advice, assistance, and friendship.

The author also wishes to express his deepest gratitude to his parents for their unfailing support, help, and encouragement over a number of years.

Finally the author wishes to recognise the financial support provided in the form of a McKee Trust Postgraduate Scholarship.

Contents

				PAGE
ABSTRACT		100		iii v
ACKNOWLEDGEMENTS			vii	
CONTENTS	5			
CHAPTER	1	INTRODU	ICTION	1
CHAPTER	2	LITERAT	URE REVIEW	3
	2.1	Introdu	action	3
	2.2	Particu	late Modelling	3
	2.3	One Din Sand	mensional Characteristics of	11
		2.3.1	One Dimensional Apparatus	11
		2.3.2	Coefficient of Earth Pressure at Rest	13
		2.3.3	One Dimensional Stress-Strain Measurement	16
		2.3.4	Influence of One Dimensional Loading on Liquefaction	18
CHAPTER	3	MARTIN	THEORY	21
	3.1	Introd	uction	21
	3.2		rtin One Dimensional Recoverable ation Theory	21
		3.2.1	Introduction	21
		3.2.2	Summary of the Theoretical Formulation	32
		3.2.3	Effect of Cyclic Shear on Recoverable Axial Strains	

D	Z	C	P
L	n	64	Ľ

			,		
CHAPTE	z 4	EXPERI	IMENTAL APPARATUS	35	
	4.1	Introduction			
	4.2	Compre	ession-Shear Device	35	
	4.3	Loadir	ng Systems	37	
	4.4	Reacti	on Frame for the Old Apparatus	38	
¥.	4.5	Reacti	on Frame for the New Apparatus	43	
		4.5.1	Evaluation of Deflections in the New Apparatus	50	
	4.6	Intrum	entation	53	
		4.6.1	Vertical-Horizontal Low Deformation Load Cell	53	
		4.6.2	Lateral Stress Measurement in the Compression-Shear Device	57	
		4.6.3	Lever Arm Displacement Transducer	59	
		4.6.4	Directly Coupled Displacement Transducer	59	
		4.6.5	Vertical 1000 lb Load Cell	60	
		4.6.6	Recording Systems for the Static One Dimensional Test	60	
CHAPTER	5	EXPERI	MENTAL RESULTS	63	
	5.1	Introd	uction	63	
	5.2	Descri	ption of Sand	63	
	5.3	Draine Tests	d Compression-Extension Triaxial	66	
		5.3.1	Introduction	66	
		5.3.2	Test Results	66	
		5.3.3	Observations	71	
	5.4	Determi Frictio	ination of interparticle	75	
		5.4.1	Observations	75	
	5.5	Static	One Dimensional Tests	75	
		5.5.1	Introduction	75	
		5.5.2	Results	77	
		5.5.3	Commentary	93	
	5.6	Partial Tests	ly Unloaded One Dimensional	93	
	9	5.6.1	Observations	100	
	5.7	Dynamic	One Dimensional Tests	101	
	5.8	Constan	t Strain Amplitude Shear Tests	112	
			Comments	119	

			PAGE
CHAPTER	6	DISCUSSION OF THE MARTIN THEORY	121
1	6.1	Introduction	121
t.	6.2	Discussion	121
1			
CHAPTER	7	DISCUSSION OF THE UNDERLYING SAND MECHANISMS	141
	7.1	Introduction	141
	7.2	Particulate Techniques	142
<u>*</u>		7.2.1 Sliding Particulate Contact Response	144
U. 14		7.2.2 Non-Sliding Particulate Response	148
		7.2.3 Particule Sand Matrix Interaction	150
8. j		7.2.4 Non-Sliding Stress Strain Techniques	152
> 24		7.2.5 Sliding Stress Ratio-Strain Ratio Techniques	154
8		7.2.6 Sliding Mechanics	157
0.4		7.2.7 One Dimensional Techniques	161
	7.3	Back Analysis of Loading Phase	162
432	7.4	Back Analysis of Unloading Phase	171
^	7.5	Unloading Behaviour Approaching Zero Stress	189
Ŧ	7.6	Compaction of Sand	190
875	7.7	Limited Sliding in the Partially Unloaded Test	192
	7.8	Closure	197
CHAPTER	8	DISCUSSION OF THE ONE DIMENSIONAL RESPONSE FOLLOWING CYCLIC SHEAR	199
	8.1	Introduction	199
	8.2	Underlying Mechanism	200
	8.3	The Extension to the Martin Theory	214
CHAPTER	2 9	SUMMARY AND CONCLUSIONS	223
	9.1	Summary	223
	9.2	Conclusions	224
	93	Recommendations for Further Research	226

ix

		×	
			PAGE
BIBLIOGRA	APHY		229
NOTATION			243
APPENDIC	ES		251
APPENDIX	Al	NOTES ON A ONE DIMENSIONAL RECOVERABLE DEFORMATION THEORY FOR SAND	251
	A1.1	Introduction	251
	A1.2	Loading from Zero Stress Conditions	253
1.2	A1.3	Unloading Following First Loading to σ_{10} , ε_{10}	257
	A1.4	Summary	260
	A1.5	Comparison of Theory with Experimental Results	261
	A1.6	Effect of Cyclic Simple Shear Tests on Recoverable Axial Strain on Unloading	261
			3
APPENDIX	A2	PROOF OF HORNE'S DERIVATION FOR THE STRAIN RELATIONSHIP	268
APPENDIX	A3	THE ELECTRO-PNEUMATIC LOADING SYSTEM	272
		System Description	272
		Electro-Pneumatic Converter	277
		Operating Instructions	278
		Operation	283
APPENDIX	A4	SAMPLE PREPARATION FOR THE COMPRESSION SHEAR DEVICE	284
APPENDIX	A5	INSTALLATION PROCEDURE	286
APPENDIX	A6	CALIBRATION OF INSTRUMENTATION	288
	A6.1	Displacement Transducers	288
	A6.2	Load Cells	288
	A6.3	Lateral Confining Rings	289

x

PAGE

APPENDIX	A7	ON SATURATED SAND	291
	A7.1	Experimental Apparatus	291
k =	A7.2	Sample Preparation and Installation Procedure	291
2^{2^2}	A7.3	Test Procedure	292
APPENDIX		SOURCES OF ERROR IN THE ONE DIMENSIONAL STRESS STRAIN LOADING AND UNLOADING CURVES	294
1.25	A8.1	Non-Zero Residual Stresses in the Older Apparatus	294
x ³ 5; 84 - 5	A8.2	Determination of Zero Strain in the Newer Apparatus	294
APPENDIX	A9	DYNAMIC ONE DIMENSIONAL TEST EXPERIMENTAL APPARATUS AND PREPARATION	297
	A10	CONSTANT STRAIN AMPLITUDE SHEAR TESTS EXPERIMENTAL APPARATUS	299
APPENDIX	A11	DISPLACEMENT SHIFT DUE TO REVERSAL OF THE DIRECTION OF MOTION	301
APPENDIX	A12	DERIVATION OF THE CONTACT ELEMENT FOR HORIZONTAL SHEAR-FORCE	303
APPENDIX	A13	NORMAL AND TANGENTIAL COMPLIANCE BETWEEN UNIFORM ELASTIC SPHERES	310
APPENDIX	K Al4	THE STRESS STRAIN-FORCE DISPLACEMENT RELATIONSHIPS FOR REGULAR PACKING STRUCTURES	333
APPENDIX	K A15	THE NON-SLIDING PARTICULATE RESPONSE TO LOADING AT A CONSTANT STRESS RATIO	345
APPENDI	X A16	A COMPARISON OF THE ROWE AND PARTICULAT STRESS DILATANCY EQUATIONS	E 349
APPENDI	X A17	SLIDING IN THE FIRST QUARTER CYCLE OF HORIZONTAL SHEAR	359