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Abstract

Local scour at cylindrical bridge piers in both uniform and
non-uniform cohesionless sediments was investigated
experimentally. The aim of the study was to improve under-
standing of local scour around bridge piers with sediment
transport. Three empirical functions which relate the
equilibrium depth of scour with approach velocity, flow
depth and sediment size were obtained for uniform sediments.
The effects of armouring and sedimenf sizes were also
investigated for non-uniform sediments.

The experimental results for the variation of egquilibrium
scour depth (normalised with the pier diameter) with

approach velocity show that the equilibrium scour depth reaches
a maximum at the threshold condition of the bed sediment.
Above the threshold velocity, the scour depth first

decreases and then increases again with increasing velocity
to a maximum at the transition flat bed condition. At still
higher velocities, the equilibrium scour depth decreases

due to the formation of antidunes. Lesser scour depths are
recorded with ripple forming sediment at threshold conditions
because the bed associated with a ripple forming sediment

is unable to remain planar. In live-bed conditions, the
effect of rippling diminishes for increasing velocity and
becomes negligible for UO/UOc > 2

The experimental results for the variation of equilibrium
scour depth with flow depth show that the trend for live-bed
scour of increasing scour depth with increasing YO/D until

a maximum influence of YO/D is reached, is similar to that
for clear water scour as shown by Ettema (1980). A flow
depth adjustment factor, K(YO/D), which is related to YO/D
with D/d50 as the third parameter is presented which
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indicates to a designer the sequence of estimation of the
effect of flow depth on the equilibrium depth of scour.

The effect of sediment size on the equilibrium scour depth
is presented in terms of the relative size of pier to
sediment, D/dso. A familv of curves, at various values of
UO/UOC, which relate daV/D and D/d50 for live-bed scour was
obtained. The curves show that the equilibrium scour
depth increases almost linearly for increasing values of
D/d50
the scour depth becomes independent of D/dso' A similar

until it reaches the value of D/d50 = 50 after which

trend was obtained by Ettema (1980) for clear water scour.
For design purposes, the data for large values of YO/D
are presented in terms of a sediment adjustment factor,
K(D/d), which is shown to be independent of the flow
velocity. Both flow depth and sediment size functions
include results by Shen et al (1966), Ettema (1980), Chee
(1982), and the present study.

Armouring and sediment size play an important role in
reducing the equilibrium scour depth for non-uniform
sediments. The latter is particularly significant in
laboratory experiments where the size of the pier is generally
small relative to the size of the coarse particles in non-
uniform sediments. Experiments were conducted under
dynamic equilibrium conditions where there is continuous
sediment input from upstream of the scour hole such that at
equilibrium, the amount of sediment entering the bridge

site is equal to that leaving. Both the effects of
armouring and sediment size diminish for increasing velocity.
At high velocity where all the sediment particles are

mobile, the non-uniform sediment behaves like a uniform

sediment. Hence, armouring does not occur and the
equivalent size used for sediment adjustment is based on the
d50 size of the sediment bed. At low velocity, armouring

at the base of the scour hole is prominent and adjustment of

D/d is based on the d90 size of the original mixture.
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An alternative condition can exist in natural rivers in
contrast to the dynamic equilibrium conditions simulated in
this study. This is where the upstream river is armoured
such that there is little or no sediment input to the scour
hole. It is postulated that, in this case, the eguilibrium
scour depth can approach the maximum equilibrium scour

depth for clear water conditions (i.e. dav/D + 2.3) when the
approach velocity is equal to the critical velocity of the

non-uniform sediment.

Finally, a design flow chart is presented for estimation of
the equilibrium depth of local scour for design purposes.
In live-bed scour where bed features are present, the
results show that half the height of the bed features can
be added to the estimated equilibrium scour depth.
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Symbols

a Constant

b Constant

B Width of the flume

e Cohesiveness

(& Total sediment concentration, % by weight

Cs Sediment concentration in the sediment line,
% by weight

Cy Sediment concentration in the water line,
% by weight

d, d50 Mean particle size

D Pier diameter

ds Local scour depth

dav’ dse’

dsea Equilibrium scour depth

d{max},

dsem Maximum scour depth

d{min},

dses Minimum scour depth

FY Froude Number

Fc Froude Number at critical velocity of the bed
sediment

g Gravitational acceleration

ho Height of bed feature

Hl, HZ Pump head

Hb Local scour due to bed forms

Hp Local scour due to the pier

k, k' Size of entrainment zone

R(D/d) Sediment size adjustment factor

Ks Pier shape factor

K(YO/D) Tlow depth adjustment factor
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Flow alignment factor

Speed in RPM

Sediment number, Uo//TEEZTTEE

Protrusion of a particle into the flow

Flow rate per metre width

The rate of local scouring in volume per unit time
The rate of sediment transported into the scour
hole in volume per unit time

The rate of sediment transported out of the scour
hole in volume per unit time

Flow rate in the sediment line

Flow rate in the water line

Total flow rate

Correlation factor

Reynolds Number

Energy slope

Specific gravity of sediment

Time

Temperature

Mean velocity

Shear velocity, /E—ngg

Critical shear velocity for particle entrainment
Critical mean velocity for particle entrainment
Mean velocity which corresponds to the (first)
maximum local equilibrium scour depth with
non-uniform sediment

Mean velocity above which armouring of a bed
does not occur

Pier downflow velocity

Fall velocity

Flow depth

Normal distance from channel wall

Static angle of repose

Specific weight of water

Specific weight of sediment

Fluctuation of the scour depth, ds{max}_ ds{min}
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Circulation

Dimensionless shear stress, uf/(ss - 1l)gd
Critical value of & for particle entrainment,
w2 /(s - Ligd

Wavelength

Kinematic viscosity

Density of fluid

Standard deviation

Temporal mean bed shear stress

Critical shear stress for particle entrainment
Shear stress corresponding to the grain particles,
or surface drag

Shear stress corresponding to the bed feature,
or form drag

Stream power

Shape factor
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