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Abstract

Online auctions are auctions held over the internet. Online auctions avoid some of the

problems of traditional auctions, such as geographical and time restrictions, and limited

audiences. However, this has also made them a target for fraud. The majority of pre-

vious approaches for reducing auction fraud make use of machine learning techniques to

identify suspicious users and auctions. However, many of these approaches have generally

encountered the same challenges during implementation and evaluation. These challenges

include lack of good quality datasets, imbalance in the number of normal and fraudulent

examples, heterogeneity of both normal and fraudulent behaviours, and behaviours which

evolve over time. In this thesis, we explore methods of dealing with some of these chal-

lenges.

To address the lack of good datasets, we implement an agent-based simulation for

online auctions as a means of generating synthetic auction data. The simulation models

the behaviour of normal bidders and sellers, based on real online auction data. The

synthetic data was evaluated using three methods, and results show that the synthetic

data is similar to real data. We then applied the simulation to evaluate an existing

fraud detection method to show that the simulation can be used as a source of data for

evaluating fraud detection algorithms.

To address the difficulty in creating detection models for different fraud behaviours

and strategies, we demonstrate using supervised learning methods with our simulation

to easily create models for detecting arbitrary types of fraud. Models created using this
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approach were shown to have higher accuracy compared to an existing fraud detection

method even after tuning. The caveat is the fraud type of interest must be explicitly

defined.

To deal with the limitations of the previous approach and to avoid the need for model

retraining when fraud behaviours change, we propose an unsupervised method based on

anomaly detection. Since the method uses an anomaly detection approach, the model can

adapt to changes in user and fraudulent behaviour: the method will identify users who

behave differently to the majority of other users. The method makes use of additional net-

work information to identify groups of users that appear suspicious. Extensive evaluation

using synthetic data shows that it has higher accuracy than other related approaches.

When applied to a real dataset, our method finds a reasonable number of potentially

fraudulent users who exhibit unusual characteristics when compared to normal users.
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1
Introduction

Data mining is used to extract patterns which are reliable and previously unknown from

different data sources. To apply data mining, the data must be relevant, adequate, and

clean. Data mining has been applied to fraud detection in a wide range of industries

including banking, insurance, healthcare, automotive, and retail. Fraud is defined as

dishonest activity causing actual or potential financial loss to any person or entity1.

Online auction sites such as eBay2 and TradeMe3 allow goods and services to be

bought and sold online anonymously. The most common type of online auction is the

English auction, where bids are placed in ascending order, publicly observable, and the

winner is the final bidder with the highest bid [3]. In 2013, eBay had 128 million active

1https://www.sfo.govt.nz/what-is-serious-fraud
2http://www.ebay.com/
3http://www.trademe.co.nz/
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users and an auction volume of more than $22 billion USD [4]. The volume of auctions,

user anonymity, and low barriers to entry make online auctions a lucrative target for

fraud. The anonymity and simplicity of creating multiple aliases allow unsuspecting users

to be exploited by dishonest users. This exploitation can take many forms, including

shilling, non-delivery, misrepresentation, or the sale of stolen goods [5]. Dishonest users

will also disguise themselves to avoid detection by imitating normal behaviours [6], making

fraudulent behaviours difficult to define. Previous work has noted that users often appear

to behave irrationally [7], and previous attempts at clustering users into predefined types

according to their bidding behaviour have failed to label the majority of users [8]. The

range of potential fraudulent behaviour together with the number and range of legitimate

behaviours makes it difficult to differentiate between fraudulent and legitimate users.

Frauds committed before or after an auction, such as misrepresentation or non-delivery

fraud, are generally identified after-the-fact, for example, when the buyer never receives

the item they paid for. Detection of these frauds generally relies on real-world evidence

as opposed to online prevention and detection mechanisms [5]. This contrasts with in-

auction fraud, such as reputation fraud or shilling, which occur while the auction is in

progress. It can often be difficult to determine when and if in-auction fraud has occurred.

The majority of existing research use machine learning to detect or predict in-auction

fraud. A range of methods have been used, including various regression models such as

logistic regression and probit models; graphical models such as neural networks, Markov

random fields and decision trees; and rule-based systems. Of the proposed methods, the

majority are supervised, which has several drawbacks.

In this chapter, we first describe the challenges in developing methods for detecting

and reducing fraud in Section 1.1. Then in Section 1.2 we propose methods for tackling

each of the challenges. In Section 1.4 we list the contributions of the thesis. Section 1.5

gives an outline of the remaining chapters.
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1.1 Problem definition

There are two main difficulties with producing effective online auction fraud detection

algorithms: first, the lack of publicly available real data, and second, the nature of online

auction fraud. Commercial companies who have access to this data are reluctant to

publicly release it for many reasons, including privacy concerns, and the potential for loss

in user confidence if a high number of fraudulent activities are identified. Evaluation in

previous work has thus generally been performed on synthetic data, or using real data

with limited size and scope.

The nature of online auction fraud also makes it difficult to develop effective fraud de-

tection algorithms, supervised or unsupervised. Firstly, as in many other fraud detection

domains, normal cases vastly outnumber fraudulent ones. eBay self reports an auction

fraud rate of 0.01%, while others have estimated the fraud rate to be 0.211% [9]. This low

number of fraudulent cases makes it difficult to apply some machine learning techniques,

supervised learning in particular, when there is not enough information in the fraudulent

examples to build an accurate model. Secondly, many different types of fraud exist in

online auctions, each of which can be committed using different strategies. It is difficult

to develop algorithms that can detect these diverse types of fraud, especially when nor-

mal behaviour of users is difficult to model as well [8]. Thirdly, as fraudulent accounts

are identified and removed, remaining accounts and any new accounts may change their

behaviour to avoid detection. This is especially a problem given the low barriers to entry

and exit for online auctions [5]. For fraud detection methods to be effective, they must be

able to adapt to evolving fraud behaviour, for example by generating new models or by

using methods that do not require data where fraud cases have been previously identified,

manually or otherwise.
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1.2 Proposed solution

We propose methods to solve each of the problems described in Section 1.1. First, to

tackle the problem of data availability, we design and implement an agent-based auction

simulation. The simulation is modelled on a set of real online auction data, and can be

used to generate auction data containing both fraudulent and non-fraudulent behaviours.

The behaviour of both the bidders and sellers is modelled. This resulting synthetic data

is shown to be similar to real data through multiple quantitative comparisons. We also

demonstrate that the simulation can be used to evaluate the accuracy of an existing fraud

detection method, and its variations, at detecting different types of online auction fraud.

Second, to reduce the effort required to develop classifiers for different types of fraud,

we propose combining machine learning techniques with labelled synthetic data from the

simulation. Classification models for arbitrary types of fraud can be created in this way.

When fraud behaviour changes, a new model is trained using updated synthetic data.

Third, to avoid the need for training new models, we propose using an anomaly de-

tection approach for fraud detection that does not require labelled synthetic data. The

proposed method also aims to identify groups of users committing fraud collaboratively

and to improve accuracy by making use of network information contained in the inter-user

interactions.

1.3 Scope and objectives

The objective of this thesis is to explore methods for detecting multiple types of fraud in

online auctions while addressing the challenges described previously. The work done to

achieve this can be divided into two parts: implementing a method for generating labelled

synthetic data, and exploring two fraud detection approaches.

The scope of the first part is limited to implementing an online auction simulation,

and evaluating the synthetic data generated to ensure its similarity to real online auction

data. The simulation is based on two sets of real online auction data from TradeMe
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over two different periods. We limit our source of real data to TradeMe, though we

expect our work to extend to other similar online auction sites such as eBay. We also

select a set of continuous features into which the raw data (a set of auctions and bids)

is transformed. This is necessary to understand user behaviour in the real data, and

subsequently for comparing the synthetic data to the real data. The set of features we

choose are all per-user features, as opposed to per-auction (e.g., average bid value for a

particular user instead of for a particular auction). Although per-auction features can

also reveal bidding patterns, our aim is to model individual users, which makes per-user

features more appropriate.

The scope of the second part is limited to developing approaches for fraud detec-

tion, and evaluating their effectiveness. We propose two approaches. The first proposed

approach uses two supervised learning algorithms together with the labelled synthetic

data to generate fraud detection models. The algorithms we use are neural networks and

decision trees. Other supervised learning schemes are available, such as probit models,

regression models or linear support vector machines, but the two algorithms we use are

sufficient for demonstrating our first approach. The second proposed approach is based

on anomaly detection. It requires a method for generating anomaly scores for each user.

To demonstrate the overall approach, we use a relative density method that calculates a

local outlier factor for each user. In the future, this can be replaced with methods such

as k-means or EM-clustering [10] which may yield higher accuracy.

As part of the scope for the second part, we also evaluate both approaches. To evaluate

these approaches, we focus on synthetic data containing two types of fraud, shilling fraud

and reputation fraud, and their variations. Although there are many other types of fraud,

these two fraud types are the most frequently described in previous literature, and are

sufficient for demonstrating our approaches.

1.4 Contributions

The contributions of this thesis are:
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1. We survey literature related to online auction fraud, and discuss and compare them

in terms of the three main stages in developing fraud detection techniques: definition

of the fraud of interest, feature set selection, and model construction.

2. We design and implement an agent-based simulation of online auctions based on

real online auction data. The simulation can be used to generate synthetic auction

data. The synthetic data is objectively compared against real auction data using

statistical and clustering methods, and the results show that the synthetic data is

similar to real auction data.

3. We demonstrate the simulation as a tool for evaluating fraud detection algorithms.

Using the generated synthetic data and additional fraud agents, the accuracy of

different fraud detection algorithms can be evaluated and compared.

4. We present a framework for creating classifiers using supervised machine learning

methods by extending the simulation using additional agents. The method allows

classifiers for arbitrary fraud types to be constructed, given that they are defined

as agents in the simulation. Evaluation performed using synthetic data containing

three different types of fraud shows that the classifiers are more accurate than

previous methods, and evaluation using real data shows that they identify users

who appear suspicious. We also propose a set of features that characterise general

bidding behaviour and which produce classifiers with higher accuracy.

5. We propose an unsupervised fraud detection algorithm based on anomaly detection

in graphs. The method identifies groups of closely collaborating users who exhibit

unusual characteristics. Network information was used to improve accuracy by

revising the initial anomaly score value. The method is evaluated using synthetic

data under a range of conditions and compares favourably to other related methods.

A case-study using real data shows the method identifies a reasonable number of

users, who appear to be different from the majority of users, as suspicious.
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1.5 Thesis outline

Chapter 2 surveys existing work in the area of online auction fraud. We discuss the ap-

proaches proposed for fraud detection and prediction, including the fraud types targeted,

selected features, and their general limitations. Chapter 3 describes the agent-based sim-

ulation. It first provides background about agent-based simulation and modelling, and

the use of simulations in online auctions in previous literature. It then defines the auction

model, and describes the design and implementation of the simulation. Chapter 4 applies

the simulation to evaluating variations of a fraud detection algorithm. Chapter 5 demon-

strates the generation of classification models for fraud detection, using the simulation

and supervised learning techniques. Multiple types of fraud are defined, and models to

detect them are generated for each. Chapter 6 presents our unsupervised approach for

fraud detection based on anomaly detection in graphs, called SPAN. It defines multiple

types of collaborative fraud and presents results comparing SPAN to other related meth-

ods. Chapter 7 presents a case study applying SPAN to a real online auction dataset.

Chapter 8 concludes the thesis.
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2
Related work

In this chapter, we describe previous work in the area of auction fraud. Section 2.1

describes different types of online auction fraud and the strategies used to commit them.

Section 2.2 describes methods for preventing or detecting auction fraud in terms of the

targeted fraud type, selected features, and the technique used. Some of the limitations of

previous work are also discussed.

2.1 Fraud types

There are several types of fraud that are common in online auctions. These fraud types

can be classified according to when they occur in an auction: before, during or after.

Frauds that occur before the auction begins include misrepresentation, for example by

9
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giving false or misleading information about the item, and sale of stolen goods. Frauds

that occur after the auction has concluded include non-delivery, where the item is not

delivered after payment, and fee-stacking, where additional fees are charged after the

auction completes. These fraud types are described in more detail in [5].

The main types of fraud previously studied in online auctions are shilling and reputa-

tion inflation, which occur during auctions. Other types of fraud, described in [5] cannot

occur in English auctions, since they do not allow bid retractions. Even though there are

only two main types of fraud that occur during auctions, there are subtypes that have

different goals, and each have multiple ways of achieving those goals.

For example, Kauffman et al. [11] described a type of shilling called reserve-price

shilling, where the goal is to avoid paying auction house fees. This type of fraud is

possible only under particular auction fee structures, where fees increase as the starting

price increases. As a result, it is beneficial for the seller to set the starting price low, and

use a collaborating bidder to make a bid after the auction begins to have a high starting

auction price without paying the corresponding fee. In another type of shilling, called

buy-back shilling, the seller prevents an item from being sold below its value by using

an account the seller controls to win the item rather than let the item be sold at a low

price [5]. The loss incurred from selling the item below its value outweighs the auction fees

incurred as a result. A third type of shilling, competitive shilling has the goal of increasing

the final price of items sold to legitimate sellers. This is done using one or more other

accounts to submit fraudulent bids in the auction to increase the price. This fraud type

has been investigated by Trevathan and Read [12] where they implemented a simple shill

agent, and a collection of “zero-intelligence” agents that model normal users to generate

synthetic data for evaluation. This is similar to our work in Chapters 3 and 4. However

there are two key differences: first, we focus on simulating user behaviour over time and

over multiple auctions, rather than individual auctions. Secondly, our normal agents are

modelled on real data, and the resulting synthetic data is validated. Competitive shilling

is described in greater detail in Section 4.2.2 of Chapter 4.

Reputation manipulation has also been identified [13, 9, 14], where accounts coordi-



2.2 Methods for predicting or detecting fraud 11

nate to give each other positive feedback to inflate their positive reputation and appear

trustworthy. The accounts can then be used to commit non-delivery fraud. One way this

is achieved is by using two sets of accounts, accomplice accounts and fraud accounts. The

purpose of the accomplice accounts are to inflate the reputation of fraud accounts, and

all frauds are committed using the fraud accounts. When the fraud accounts are iden-

tified and removed, the accomplice accounts may remain undetected since they did not

directly commit fraud, and can continue to inflate the reputation of other fraud accounts.

The benefits of a positive reputation for sellers has been shown in [15]. Synthetic data

containing reputation fraud is used in Chapter 6.

There is another type of fraud called credit-card phantom transactions [16], observed

in online auctions in Korea. The goal is to provide illegal loans to the bidder using a

collaborating seller. The seller creates an auction for an item valued at the loan requested,

which the bidder will pay for using a credit card. The seller receives payment, and the

bidder is given the loan by the seller, minus the advanced interest (typically 15-25% of

loan). The bidder may then fail to repay the credit card company.

For both competitive shilling and reputation inflation, the goal can be accomplished by

accounts working together in pairs, or in large networks. Chapters 4 and 5 focus on pairs

of collaborating fraud agents. Chapters 6 and 7 investigates networks of collaborating

fraud agents.

2.2 Methods for predicting or detecting fraud

The approaches used in previous work to create fraud detection methods for online auc-

tions generally follow three main steps: (1) define the behaviour of interest, (2) identify

features that differentiate normal and fraudulent users or auctions, and (3) develop a fraud

detection algorithm based on the selected set of features. Below, we describe previous

work in terms of these three steps from Sections 2.2.1 to 2.2.3.
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2.2.1 Fraudulent behaviours

We concentrate on three types of fraud most commonly investigated in previous literature:

shilling fraud, reputation manipulation, and non-delivery fraud. Other types of online

auction fraud have been described in detail in [5].

Shilling fraud has been investigated in [5, 11, 17, 18], and described in detail in Chap-

ter 4. Reputation manipulation has been investigated in [13, 9, 19, 14]. Non-delivery

fraud has been investigated in [20, 6].

2.2.2 Feature selection

Features used to differentiate between fraudulent and normal users can be divided into

user level and network level features. User level features describe the behaviour of indi-

vidual users, such as the number of auctions they participate in, or the average value and

frequency of their bids. Chang and Chang [6] list a comprehensive set of user-level features

along with a brief description for each. Network level features describe the relationships

between users. Network features are discussed in greater detail in Chapter 6.

The vast majority of previous work uses only user-level features [20, 6, 5, 9, 11, 17, 18,

14], and does not make use of network-level features to detect fraudulent users or auctions.

Since users are considered individually, those proposed methods are not very effective for

identifying groups of users committing fraud collaboratively. The only exception is the

work by Chau et al. [13], where the network is used to identify groups of fraudulent users,

and to a limited extent the work by Lin et al. [19], which uses the network to derive a

feature as part of the set of inputs to a neural network.

2.2.3 Proposed methods

The methods that have been proposed to reduce fraud can be divided into broad categories

of detection and prediction. Methods in fraud prediction include work by [11, 18, 6, 20].

Kauffman et al. [11] constructed a probit model to predict the auctions in which reserve-

price shilling is likely to occur. The dataset is a set of coin auctions from eBay, with
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an auction classified as fraudulent if a “questionable bid” occurred in the auction, and

legitimate otherwise.

Xu et al. [18] proposed a real-time model checking method for detecting suspicious

bidding behaviours. The method consists of three main parts: a dynamic auction model,

which is updated as the auction state changes with new bids and time; a set of linear tem-

poral logic (LTL) formulas which define shilling behaviour, and a model checker (SPIN)

which recognises when the LTL formulas are violated. Action can then be taken accord-

ing to the number and types of suspicious behaviours identified. However, the set of LTL

rules used in the model and the model detection performance were not reported. Chang

et al. [6] proposed a partitioning technique for identifying fraudulent users. User histories

are partitioned into two parts according to time. For fraudulent users, the later part will

contain the fraudulent transactions. Since the goal is to identify fraudulent users in their

latent stage, before they commit fraud, only the transactions contained in the first part

are used as training data in an instance-based learner. A recall of 93% was reported over

a commercial dataset with 1,467 instances.

Almendra and Enachescu [20] proposed the use of boosted trees for identifying non-

delivery frauds before they are completed. Auctions are assigned rankings that reflect how

likely they are to be fraudulent. Detection performance is improved using score propaga-

tion, whereby if an auction is found to be fraudulent, other auctions by the same seller

will have their rankings increased as they are more likely to be fraudulent. Evaluation

results were reported over a commercial dataset, classified in a previous work by [21] using

textual comments indicating non-delivery fraud.

Fraud detection methods include work proposed by [13, 19, 17, 22]. Trevathan et al. [17]

combined five heuristic features into one final rating for each user, and used it to rank

users in order of degree of suspicion. Users above a user-defined threshold were classified

as fraudulent.

Chau et al. [13] describe an algorithm, called 2LFS, specifically for detecting collusive

fraud. In 2LFS, users and transactions are modelled as a Markov random field (MRF),

where each user is a node in the graph, and an edge between two nodes represents an
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interaction between the two users. ‘User’ refers to a node in the graph: multiple users

may be controlled by the same person. 2LFS attempts to identify groups of users that

engage in reputation inflation, and subsequently engage in non-delivery fraud when they

have a sufficiently high reputation. The authors hypothesise that users will be split into

two groups with different roles. The first will only perform legitimate transactions and

be used to increase the reputation of a second group of users, which will be used to

commit non-delivery fraud. In the graph, these two groups will form a bipartite core,

where only the accomplices will interact with users outside the core. Thus each node can

exist in one of three states: ‘accomplice’ and ‘fraud’, which correspond to the two user

groups, and a third state ‘honest’, which represents legitimate users. Using a specifically

tailored compatibility matrix, and a loopy belief propagation algorithm, 2LFS can identify

fraud-accomplice bipartite cores.

Lin et al. [19] use a fuzzy neural network, ANFIS, to identify collusive reputation

inflation using a dataset with some identified fraudulent users. The three features used as

input to ANFIS are Date Difference, Credit, and AFR. AFR (Auction Fraud Rank) is a

modified page rank score, where each users “page rank” is modified using two additional

terms that should be higher if they are committing reputation fraud. Thus AFR should

be higher for groups that are committing reputation fraud together.

Zhang et al. [22] proposed a online probit model framework, using features selected

by experts. As new auctions are submitted, a subset of them are labelled as either

fraudulent or legitimate by experts. The subset is not random, but is selected using an

existing expert system for detecting fraud. This partially labelled data is used to train and

revise the model, using the assumption that the unchecked auctions are legitimate. As

fraud behaviours change over time, the model adapts as well by revising the importance

of each feature for detecting fraud using the labelled instances. The authors did not give

the feature set used, citing company policy.

Table 2.1 shows a summary of approaches taken by previous work to generate classi-

fication models. The table lists the method used to generate the classification model, the

types of features used, the evaluation dataset used, and the fraud type targeted. The last
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two rows of the table shows how our work presented in Chapters 5 and 6 compare with

the others.

Table 2.1
Summary of previous work proposing fraud classification models.

First author Year Classification model Features used Fraud Type

Unsupervised Supervised Other Transaction User Network

Kauffman 2005 X X X Shilling
Chau 2006 X X X X Reputation
Chae 2007 X X Credit-card
Trevathan 2007 X X X Shilling
Xu 2009 X X Shilling
Lin 2012 X X X Shilling
Zhang 2012 X ? ? ? General
Almendra 2013 X X X Non-delivery
Chang 2012 X X X Non-delivery

Chapter 5 X X X Shilling
Chapter 6 X X X X Collaborative

Xindicates the model or feature type used
? indicates the feature types used are unknown

2.2.4 Limitations of previous work

The work described above illustrates some of the problems mentioned earlier, and which

our approach is able to address. Firstly, there are difficulties with using real datasets for

evaluation where ground truth is unknown. In [23], where an unsupervised approach was

used, it is difficult to measure the false negative rate, since it is infeasible to manually

examine all cases classified as legitimate for all but the smallest datasets. In [20, 16, 24, 22],

which used supervised approaches, it is difficult to assess the accuracy of classification

labels. In cases where instances are manually labelled, the datasets are small [24]. In [20,

25], where the authors specify rules to label instances as either legitimate or fraudulent,

it is necessary to show that the rules used are independent to the proposed detection

method, otherwise evaluation results are unreliable.

Secondly, each labelled dataset can only be used to build classifiers for one purpose.

For example, given a set of labels for non-delivery fraud and normal users, as in [20],

classifiers can only be trained to detect non-delivery fraud. Different sets of labels can be

allocated to the same dataset denoting different behaviours, however this must be done

carefully to ensure labels are accurate.
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Thirdly, some of the features selected are only useful in detecting specific types of

fraud, such as those in [16, 25, 2]. More general attributes such as those used in [20], or

the use of a larger set of attributes in [24] will increase the likelihood that those same

features will be useful in the detection of multiple types of fraud.

Our work in Chapter 5 alleviates all three problems by: (1) using a validated synthetic

data generator in which ground truth is known; (2) allowing new datasets to be created by

implementing a corresponding fraud agent; and (3) using the proposed set of 10 features

that capture general bidder behaviour to detect multiple types of fraud.

2.2.5 Other methods against fraud

Here we describe additional work on reducing the impact of fraud in auctions. Instead

of directly identifying fraud, these methods aim to combat fraud indirectly by making it

unprofitable.

Wang et al. [26] proposed the shill proof fee schedule to make reserve-price shilling

unprofitable. The idea is to calculate commission fee as a function of, not the final price,

but as the difference between the final price and the seller’s reserve price.

Bhargava et al. [27] proposed a bidding strategy SCBS (shill-counteracting bidding

strategy) that minimises the amount an honest bidder will pay given the presence of a

competitive shill bidder. Evaluation of SCBS against five other bidding strategies showed

that bidders using SCBS paid the least in longer auctions, where a shiller has the most

time to act. Intuitively, SCBS encourages bidders to stop bidding in an auction instead

of being cheated. This reduces the benefit of shilling.

Li et al. [28] proposed a method of determining whether a user is trustworthy in a

reputation system where feedback is sparse, and contains potential feedback manipulation.

The authors claim the method is resilient against feedback manipulation.
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3.1 Introduction

In order to develop and evaluate fraud detection methods, it is necessary to have auction

data to operate on. Past work in online auction fraud detection is based on either real

data from commercial sites, or synthetic data. For synthetic data, the fraudulent bids,

auctions, or users are known. For real data, instances may be labelled as fraudulent using

prior knowledge, or using certain criteria that make them seem suspicious.

Both synthetic and real datasets have drawbacks. Synthetic data that is dissimilar to

real data will produce models and results that do not extend to the real world. Although it

is possible to modify the synthetic data to simulate the real world, this is non-trivial due to

the range of possible bidding and selling behaviours and their interactions. Shah et al. [8]

17
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have previously attempted to classify bidders into categories depending on their bidding

strategies: evaluate, skeptic, snipe, late bidder and unmask, and found that 88% of users

do not fall into any of these categories. However, synthetic data is appealing because the

instances and types of fraud can be controlled.

Evaluation using auction data collected from commercial sites may give results that

are more representative of the real world than synthetic data. In some cases, a fraction

of instances are labelled, perhaps as a result of user complaints. For small datasets, it

is possible to manually examine each user to classify them as either fraudulent or non-

fraudulent. For larger datasets, manual classification is infeasible. In addition, it is

often time-consuming to gather and process data collected from auction sites, as seen in

[23] which used an elaborate system to collect auction data from eBay. Also, data may

be selectively missing or removed by administrators of the auction site, such as profiles

of users that have been identified as fraudsters, or auctions that have been identified

afterwards as fraudulent. This further complicates evaluation using real data.

In this chapter, we present an approach which is a middle ground between synthetic

and real data, and hope to capture the benefits of both types, while avoiding the draw-

backs. We implement an agent-based simulation where agents are modelled on users

in real auction data. The simulation can be used to quickly generate realistic auction

data. We validate our simulation by performing quantitative evaluations comparing the

generated data to commercial TradeMe auction data, and show that the generated and

commercial data show a high degree of similarity.

The simulation can be easily extended with additional agents to inject fraudulent

behaviour. Since the simulation models users (as opposed to auctions), the synthetic data

with injected fraud will be valuable for effective evaluation of fraud detection algorithms

which often focus on per-user features.
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3.2 Background and related work

Agent-based simulation and modelling (ABM) has been used in many different domains,

including traffic flow modelling [29], ecological systems [30], economic systems [31, 32],

and social phenomena [33]. Macal and North [34] propose four possible reasons for the

widespread use of ABM. First, systems of interest are increasingly complex in terms

of their dependencies, so that traditional modelling tools may no longer be sufficient.

Second, some systems have always required certain assumptions to be computationally

tractable, for example in economic models: perfect information, rationality and long-run

equilibrium [34], which are not necessary in ABM. Third, the increase in granularity of

data collected provides sufficient information for individual-based simulation. Fourthly,

increase in computing power allows simulations to be computed that were previously

infeasible.

However, these reasons only state why ABMs are feasible among other modelling

methods. The benefits of ABM over other modelling techniques is due to three reasons

[35]. First, they are able to capture emergent phenomena. Emergent phenomena are a

result of interactions of individual entities in the system, and are most naturally mod-

elled by ABMs, where entities (agents) in the system interact to produce the emergent

behaviour. Second, ABM is often the most natural way of describing a system of entities.

For example, in traffic flow models, it is more natural to describe individual vehicles, than

to develop equations that govern the speed and density of traffic. Third, ABM is flexible,

where the number of agents, their behaviour, and the exchange of information can be

controlled.

An agent in ABM individually assesses its situation based on available information,

and acts based on a set of rules. Different agents may have different roles and behaviours,

and interact with other agents based on the rules of interaction. Some agents can also

adapt, where their behaviour changes to better achieve certain objectives. Thus, agents

can be arbitrarily complex, using neural networks or evolutionary algorithms to learn and

adapt, or simple, using only a static set of rules to govern their behaviour.
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From the description of ABM and agents, we can see that ABM can be naturally

applied to the domain of online auctions. Bidders and sellers are naturally modelled

by agents, and online auction sites contain sufficient individual user data for agents to

be developed. Assumptions previously used in formal auction analysis such as perfect

rationality, perfect market and homogeneous agents are not necessary in ABM. In addi-

tion, though the agents themselves may be complex, their observable actions and rules of

communication between agents are defined.

One of the earliest works in agent-based simulation in auctions was done by Mizuta and

Steiglitz [7], who modelled agents of two types: early bidders and snipers, and investigated

the effects of the strategies on the probability of winning, auction price increment, and

final auction price. More recently, agent-based modelling of bidders has been used to

perform evaluations of fraud related algorithms [27, 17]. However, the models were not

based on real auction data, and the model was not validated.

Bhargava et al. [27] developed a bidding strategy to counteract shill bidding in online

auctions. To test this strategy, they used an ABM with five agent types based on bidding

strategies described by Shah et al. [8], a shill agent, and an agent using the bidding

strategy they developed. The performance of each type of agent was then calculated over

multiple iterations, where performance is the expected difference between the winning

agent’s perceived value of the item and that agent’s final bid.

Bapna et al. [36] constructed a simulation model of Yankee auctions, a type of multi-

item auction. They identified three broad types of bidders according to their bidding

strategies: evaluators, participators and opportunists, and constructed a model containing

agents that used each strategy. The simulation model is validated by comparing the

simulated revenue with the observed revenue from data collected from 21 real auctions.

The model was used to investigate the effect of bid increment size on seller revenue, and

to find the bid increment that maximises revenue.

Yue et al. [37] applied genetic network programming to allow agents to evolve their

bidding behaviour over multiple auction iterations. These agents were used in two auction

models, each of which have some similarities with the English auction model. The goal
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was to observe whether agents would improve their performance over time under different

auction conditions, where performance depends on the number of auctions won and the

amount of money spent.

We know of no previous work that attempts to generate accurate synthetic online

auction data using agent-based modelling.

Resampling methods such as bootstrapping [38] provide an alternative to ABMs for

generating datasets from a single real dataset. Variation can be introduced by adding zero

centred noise or by changing resampling weights. Resampling would likely be done at the

auction level since sampling at the bid level makes it difficult to take dependencies between

bids into account. However, it is not obvious how to incorporate different fraudulent

behaviours into the resulting samples, making it difficult to apply this approach.

3.3 Auction Model

In this section we present a formal model for English auctions, which consists of a set

of users U , a set of auctions A, a set of bids B, and a set of rules that govern the

relationship between them. The notation used in this section is also used to describe the

features defined in Section 3.5.4. Figure 3.1 gives an overview of the entities and their

relationships.

Auction a0

User u0
(seller)

Auction attributes: Ma0

Bid
b0

Bid
b1

Bid
b2

User u1
(bidder)

User u2
(bidder)

User attributes: Gu2

Bid time: ta3 , t
a,2
2

Bid value: va3 , v
a,2
2

Fig. 3.1. Relationship between bids, auctions and users
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3.3.1 User Model

A user can list auctions, and participate in auctions by bidding. For user u ∈ U , let

Su = {m |m ∈ A ,m is listed by u}, where Su is the set of auctions listed by u; let

Pu = {m |m ∈ A, u bids in m}, where Pu is the set of auctions u participated in; and let

Gu represent a set of attributes associated with user u, such as account age and reputation

score.

3.3.2 Auction and Bid Model

An auction can have no bids, one bid, or multiple bids. For auction a ∈ A, let Ba be

the complete set of bids submitted to a, and let bac , where 1 ≤ c ≤ |Ba|, be the cth bid

submitted to a.

Each auction has a set of attributes. The set of attributes includes reserve price (RS),

start time (ST), end time (ET) and duration (D). For a ∈ A, letMa = {ma
RS, m

a
ST , m

a
ET , m

a
D}

be the set of auction attributes for auction a.

For auction a ∈ A and user u ∈ U , let Ba,u be the complete set of bids submitted to

a by u, and let ba,uc , 1 ≤ c ≤ |Ba| be the cth bid submitted to a by u, and GqPosRep and

GqNegRep be the positive and negative feedback received by q respectively.

3.3.3 Model of Auction Rules

In online auctions, bid values and times increase monotonically. Given bac (the cth bid

in auction a), we define tac as the time since the auction start time (waST ) that bac was

submitted, and let T a = {tac | 1 ≤ c ≤ |Ba|} be the set of bid submission times for auction

a. Correspondingly, given ba,uc (the cth bid by user u in auction a), let ta,uc be the time

since the auction’s start that ba,uc was submitted. Let T a,u = {ta,uc | 1 ≤ c ≤ |Ba|} be the

set of submission times for bids by user u in auction a.

Given ba,uc , let va,uc be the value of ba,uc , and Va,u = {va,uc | 1 ≤ c ≤ |Ba|} be the set of

values of bids submitted by user u in auction a.

According to the mechanics of online auctions:
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a) The time and value of each bid submitted must be greater than the previous bid in

the auction, if one exists. That is,

∀a ∈ A, x ∈ N, (tax, tax−1) ∈ T a → tax > tax−1, (v
a
x, v

a
x−1) ∈ Va → vax > vax−1.

b) An auction accepts no new bids after the auction has ended. That is, ∀a ∈ A, tac ∈

T a → tac ≤ waET .

c) The winner of an auction is the bidder who made the last bid in the auction, given that

the reserve price is met. That is, for a ∈ A, let Ha = (u ∈ U | ba|Ba| ∈ Ba,u, va|Ba| > aRP )

be the winner of auction a.

Finally, let the set of auctions won by user u ∈ U be Wu = {a | a ∈ Pu,Ha = u} and

let the set of auctions lost by user u be Lu = {a | a ∈ Pu,Ha 6= u}.

3.4 Auction simulation overview

Our data generator is an agent-based simulation of online English auctions, the auction

type used in online auction sites such as eBay1 and TradeMe2. For more details on the

English auction and other auction types, see [3]. Auction data is generated by running

the simulation and recording the actions of all of the agents, such as auctions listed and

bids made. By carefully specifying the behaviour of the agents, we can generate synthetic

auction data that closely approximates real auction data.

We choose to use per-user features instead of per-auction features because the sim-

ulation is used to evaluate fraud related algorithms which tend to use per-user features

instead of per-auction features [27, 23, 17].

There are three main stages in the implementation of the simulation:

Stage 1. The framework for an agent-based auction simulation is written in Java with

the following parts:

1http://www.ebay.com/
2http://www.trademe.co.nz/
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1. An auctioneer agent that enforces the auction rules. The rules are based on

the auction mechanism of TradeMe, however, they can be easily changed to

model other auction sites, such as eBay.

2. A collection of agents, each of which behave independently according to a set

of rules. Each agent represents a bidder or seller. Agents communicate with

an Auctioneer entity to submit bids or list auctions.

Stage 2. Auction and user data is collected from TradeMe. The data is cleaned, and the

sequence of auctions and bids transformed into a set of features for each user.

Stage 3. We iteratively modify the rules governing agents according to patterns identi-

fied in the TradeMe data. Examples of rules are given in Section 3.5.3. Iteration

continues until the synthetic data is similar to the collected data. The two measures

of similarity used is described in Section 3.6.

Each of these stages is described further in the Sections 3.4.2 to 3.5.3.

3.4.1 Generated auction example

Table 3.1 gives an example of an auction generated by the simulation. Table 3.1a lists the

bids made for that auction. Table 3.1b gives information about the auction. Bid Time,

Start Time, and End Time represent time units since the beginning of the simulator

execution, with each unit representing five minutes. Duration is the number of time units

the auction runs for.

There are 8 bids made for this auction, and User 2285 wins the item for $40.61 at

time 2026. Note that Duration is less than the difference between the start and end times

because the auction was extended due to a bid submission in the last 3 time units.

3.4.2 Simulation execution over one time unit

Figure 3.2 shows events over one time unit in the simulation. Each time unit is split into

two stages: an Auctioneer phase (A), and an Agent phase (B). During the Auctioneer
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Table 3.1
Example of a generated auction

(a) Auction bids

BidID UserID BidTime BidAmount
(cents)

1 801 871 2.50
2 1820 1710 23.61
3 801 1735 26.61
4 2910 1963 27.61
5 1820 1998 37.61
6 2285 2014 38.61
7 801 2025 39.61
8 2285 2026 40.61

(b) Auction information

Attribute Value

SellerId 3000
ListingId 0
StartTime 11
EndTime 2029
Duration 2016
ItemValuation (cents) 39.35
itemTypeId 1
startPrice (cents) 1.00

phase, the Auctioneer sends and receives messages, and enforces auction rules. All other

agents are inactive. The messages sent by the auctioneer are announcements for agents.

The messages may be for new auctions, auctions updated by new bids from other agents,

or for the results of auctions that have terminated. During the agent phase only agents

act, and the auctioneer is inactive. Agents retrieve the messages from the auctioneer,

decide on what actions to take, and send any new messages to the auctioneer, such as to

list new auctions or to submit bids to existing auctions. The pseudocode for simulation

execution is given in Section A.1 in Appendix A.

3.4.3 Controlling agent behaviours

The behaviour of agents is governed by a collection of rules. These rules are applied at

different moments, such as at the beginning of each time unit to decide what actions to

perform, and when. This is shown in Table 3.2. Each agent acts on the information

available locally, such as the current auction state, current time, and its previous actions.

Agents do not have a global view of the system. To craft the agent rules, we began initially

with very simple rules, then added complexity to the rules until the resulting synthetic

data has an empirical distribution similar to that of the real data from TradeMe, based

on 10 user features defined below in Section 3.5.4.

The parameter for a specific rule for a group of agents can be parameterised using a

probability distribution. Different values drawn from the distribution contributes to the

variation in agent behaviour. By controlling the statistical variance of the distributions, we
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Agent1

· · ·

Agentk

Message
store for
agents

Message
store for

auctioneer

Message
store for

auctioneer

4

6

4

6

1

3

5
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2

A. Beginning of Auctioneer phase

1. Retrieve messages from Agents

2. Process messages

a. update auction states, terminate expired auctions

b. ensure auctions and bids have valid states before and after update

3. Send messages (current time, new auction, end of auction, price change messages)

B. Beginning of Agent phase

4. Retrieve and process messages from Auctioneer

5. Decide on what actions to take, if any

6. Send messages (new auctions or bids)

Fig. 3.2. Events during the execution of the simulator in one time unit

can also control the variation seen in agent behaviour. For example, an agent generates a

perceived value v for all items it bids on. This value is drawn from a normal distribution.

The probability of an agent submitting a bid to that auction correlates with the ratio

between the current price and the item’s perceived value, so that as price increases,

probability of bidding decreases. Changing how this perceived value is distributed for a

group of agents results in different synthetic data, where agents with a high perceived

value are more likely to win. The pseudocode for the bidder agent implementation is

given in Section A.2 in Appendix A.
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Table 3.2
Bidding agent decisions

Moment Decision Factors considered

Beginning of time unit Whether to begin participating
in an existing auction

The agent’s auction participation frequency; agent’s
interest in the item category; time remaining for auc-
tion; number of previous auctions won

Received outbid notifications Whether to rebid in running
auctions

Current price vs. perceived value of the item,

3.5 Commercial dataset

Commercial data is used to construct the rules for simulation agents and to select their

parameters. This section describes the method for gathering and storing the auction data,

the cleaning procedure, and the limitations of the dataset.

3.5.1 Data collection and storage

Data is collected from the TradeMe online auction site using a web crawler. There are

two types of web pages of interest: the auction history page, and the completed auction

page. Each auction history page contains information about a particular user, and a

list of links to previous auctions the user participated in. Each of these links lead to an

auction history page, which contains information about a completed auction; and a table

of bids made by different users in that auction. Each row of the table contains a link to

the completed auction page of the user who submitted the bid. The page also contains a

link to the auction history page for the seller. This is shown in Figure 3.3.

Auction history page Completed auction page

1..*

1..*

Fig. 3.3. Links between the auction history page and the completed auction page

To collect information about users and their bidding history, we simply select a random

auction history page, and follow all links to either page types. This is done in a breadth

first order, so that all of the available information for a user is collected before we move on

to another user. From auction history pages, we extracted the number of positive, neutral

and negative feedback each user received, and the number of auctions they participated in.
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From completed auction pages, we extracted seller name, reputation, bid times and bid

values, and the item name. This information is stored in a database, with the database

schema shown in Figure 3.4.

There are several limits to the information available for collection. Firstly, only the

most recent 20 bids are retrievable for a completed auction. Secondly, bid histories for

auctions are available only for 60 days after it has completed. Thirdly, auctions that were

not sold successfully are not displayed in a user’s history. Fourthly, the user pages for

removed accounts cannot be viewed. The reason for removal is not given, but a possibility

is that those accounts belong to identified fraudsters. This may be an advantage since

we only wish to model legitimate users; and removal of suspicious users will improve data

quality.

Fig. 3.4. Tables used to store auction data

Dataset cleaning

During the cleaning process, we identified auctions and users who were not useful for

modelling user bidding behaviour. Items that were sold using “buy now” were removed,
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since the auction process did not occur. Users who did not have an accessible auction

history page were not included during the analysis of users, though their bids were retained

during the calculation of user features for other users. We excluded users for whom we

did not collect all available history. We also excluded certain categories of auctions, such

as vehicle and real estate, most of which did not go through an auction process. UserIds

were also anonymised at this stage.

3.5.2 Dataset statistics

Two datasets were collected from TradeMe over two different time periods. The first,

smaller dataset was collected during October 2011. The second was collected during

August 2012. The Oct 2011 dataset is used to implement the simulation agent models in

this section, while the Aug 2012 dataset is used for evaluation in Section 3.6. Table 3.3

shows the number of users, bids and auctions before and after cleaning for each of the

datasets. Table 3.4 shows the number of users who acted as bidders only, who won one

or more auctions, or acted as sellers only, or combinations thereof. Table 3.5 shows the

number of users with net positive or negative feedback scores, and the total number

of positive and negative feedback received by users. As shown, the amount of negative

feedback given is extremely low. This may be partially due to the removal or abandonment

of accounts that have high numbers of negative feedback.

Table 3.3
Dataset statistics

Dataset date User count Bid count Auction count

Oct 2011 Before cleaning 93197 351878 161895
After cleaning 66862 298938 54630

Aug 2012 Before cleaning 256889 1040745 668017
After cleaning 113411 703645 153239

Table 3.4
User behaviour counts

Dataset date Bid only Win only Sell only Bid and sell Win and sell

Oct 2011 49104 19067 12911 4847 3304
Aug 2012 80290 53212 21796 11325 8965
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Table 3.5
Reputation statistics

(a) Net reputation counts

Dataset Date Net positive Neutral Net negative

Oct 2011 66856 6 0
Aug 2012 113194 194 23

(b) Total feedback counts

Dataset Date Total positive Total negative

Oct 2011 20486893 94608
Aug 2012 35338601 167904

3.5.3 Modelling bidder-agent behaviour

To understand the general patterns in user behaviour, the sequence of bids and auctions

of each user in the Oct 2011 dataset was transformed into a set of 10 continuous attributes

defined in Section 3.5.4. Each feature summarises an aspect of the users’ bidding pattern.

To identify patterns, the 10-feature vectors were clustered. Two methods were used to

find the appropriate number of clusters C. The first is a stability based measure proposed

by Lange et al. [39] to measure the appropriateness of C by calculating the stability of

cluster labels over multiple runs of a clustering algorithm. The clustering algorithm we

used was simple k-means, testing values of C between 2 and 10. The highest stability was

observed when C was 4, as shown in Figure 3.5(a).

The second method used was X-means [40], which is an extension of the k-means

algorithm where the Bayesian information criterion measure (BIC) is used to select the

best model given a range of C. The BIC measures the probability of observing the model

given the data, and includes a penalty for the number of parameters (centroids) in the

model. Since X-means relies on k-means, which is sensitive to initialisation conditions,

BIC was calculated for 30 iterations of X-means. Figure 3.5(b) shows the median BIC

values over 30 runs of the X-means algorithm at each C. As before, the best model found

by X-means had 4 clusters.

We then identified patterns from the cluster model. For example: a significant number

of users only bid close to the end of the auction and rebid quickly after they have been

outbid; users who bid close to the end win more often; and users who bid early and win

are often the only bidder in an auction. Bidder agents are given behaviours that allow

the synthetic data to contain these same patterns. For example, for the last pattern, the

rule may be to increase the likelihood of entering a bid as the number of existing bids in
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Fig. 3.5. Quality of clustering for C between 2 and 10

the auction increases, which leaves a fraction of auctions to have only one participating

bidder. These identified patterns are used to design the agent rules and to select their

parameters.

However, it should be noted that the user clusters cannot be directly translated into

agent types or agent rules. This is because some of the patterns emerge from agent

interactions, and cannot be directly controlled using rules. For example, the proportion

of auctions won by a particular agent depends on the behaviour of other agents. Therefore,

the clusters can only provide guidance to what the rules should be in order to observe

similar feature-value distributions to that of the collected dataset.

3.5.4 User features

It is possible to view the sequence of bids and auctions in different ways to calculate fea-

tures, such as per-auction, and per-user. Below, we defined per-user features, though it

is also possible to define per-auction features. However, it is more difficult to understand

user behaviour in order to implement the agent-based simulation using per-auction fea-

tures, since they cannot capture the dependency between user behaviour across different

auctions.

Below, we describe the ten user features into which the collected data is transformed.
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Many of the features described here have been used in previous literature described in

Section 3.2 for modelling users, identifying bidder behaviour ([36, 8]) and for detecting

different types of auction fraud, ([16, 25, 2]). The 10 features, labelled φ1 to φ10, are

defined for the user q ∈ U , where |Pq| > 0:

Definition 1 φ1, or bid amount, gives the average value of bids user q made in an auction,

averaged over all auctions participated in, Pq.

φ1 = ln

(
1 +

1

|Pq|
∑
a∈Pq

1

|Ba,q|
∑
b∈Ba,q

b

)
(3.1)

For example, if the user made bids with value {$4.00, $10.00}, and {$5.00} in only 2

auctions, then φ1 = ln(1 + 6).

Definition 2 φ2, or excess bid increment, gives the average increment of the user’s bid

over the preceding bid, after subtracting the required minimum increment.

Let minV al : N → N be a function mapping a bid value to the minimum allowed

increment. For example, minInc($20.00) = $0.80.

Let prevV al(va,qc ) = vad , where va,qc ∈ Va, vad ∈ Va, a ∈ A, 2 ≤ c ≤ |Ba|, and va,qc =

vad+1 be a function that maps from a bid’s value (va,qc ) to the value of the bid immediately

preceding it (vad) in the same auction a. Then,

φ2 = ln

1 +
1

|Pq|
∑
a∈Pq

1

|∆V a,q|
∑

∆va,qc ∈∆V a,q

∆va,qc −minV al(prevV al(∆va,qc ))

 (3.2)

For example, if the average increments were {$4, $8} and {$5} in two auctions, then

φ2 = ln(1 + 5.5).

Definition 3 φ3, or win proportion, is the number of auctions a user won divided by the
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number of auctions the user participated in.

φ3 =
|Wq|
|Pq|

(3.3)

For example, a user winning 2 out of 5 auctions will have φ3 = 0.4.

Definition 4 φ4, or bids per auction, is the average number of bids made per auction by

the user.

φ4 = ln

(
1

|Pq|
∑
a∈Pq
|Ba,q|

)
(3.4)

For example, if a bidder made 2 and 6 bids in 2 auctions respectively, then φ4 = ln(4).

Definition 5 φ5, or bid time, gives the user’s average bid time as a fraction of auction

time elapsed, averaged over auctions Pq.

Given an auction a ∈ A, let timeFrac(ta,qc ) = (ta,qc −ma
ST )/ma

D, where ta,qc ∈ T a,q is

a function N 7→ [0 − 1] that returns the proportion of auction time elapsed for a given

bid-submission time. For example, if the auction beginning at time 1,000 has duration

2000, then a bid submitted at time 1500 would have timeFrac = 0.25.

φ5 =
1

|Pq|
∑
a∈Pq

1

|T a,q|
∑
s∈T a,q

timeFrac(s) (3.5)

For example, φ5 = 0.71 for user who made only one bid 5 days after the start of a 7-day

auction.

Definition 6 φ6, or bid amount proportion, gives the user q’s bid values as a proportion

of the maximum (final) bid in that auction, averaged over auctions Pq.

φ6 =
1

|Pq|
∑
a∈Pq

1

|Va,q|
∑
r∈Va,q

r

va|Ba|
(3.6)

For example, if a user made one bid in one auction with a bid valued at $6, and the

highest bid was $10, then φ6 = 0.6.



34 Auction simulation

Definition 7 φ7, or bid proportion, gives the number of bids made by the user divided

by the total number of bids submitted in an auction, averaged over auctions Pq.

φ7 =
1

|Pq|
∑
a∈Pq

|Ba,q|
|Ba|

(3.7)

For example, if a user made 3 bids out of a total of 5 bids in a single auction, then

φ7 = 0.6.

Definition 8 φ8, or auction count, is the number of auctions the user participated in.

φ8 = ln (Pq) (3.8)

Definition 9 φ9, or net reputation, is the difference between the number of positive and

negative feedback.

φ9 =


ln
(
GqPosRep − G

q
NegRep + 1

)
if GqPosRep > G

q
NegRep

0 if GqPosRep = GqNegRep

ln
(
GqNegRep − G

q
PosRep + 1

)
if GqPosRep < G

q
NegRep

(3.9)

Definition 10 φ10, or first bid time, is the average time the first bid was made by the

user in each auction.

φ10 = ln

(
1

Pq
∑
a∈Pq

ta,q0

)
(3.10)

Some features are log-transformed so that values are spread out more evenly during

clustering, since many values are very similar for some features.

Some features, such as φ8 (auction count), φ4 (bids per auction), and φ10 (first bid

time), can be directly used in rules for bidder-agents. Other features, such as φ6 (bid

amount proportion), φ3 (win proportion), and φ7 (bid proportion), cannot, since their

values depend on the behaviour of other agents. However, those features can be used to

determine whether synthetic data from the generator is sufficiently similar to the TradeMe

data.
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Other features were also considered. These features include the standard deviations

of the features selected, and other features based on user bidding times relative to other

bids. They are defined in Appendix B, and the correlation matrix for all features is shown

in Table B.1. The features which were not used have a high correlation with one or more

other features. For each set of highly correlated features, the simplest is chosen. For the

set of chosen features, the highest correlation is 0.68 between φ3 and φ7, the lowest is 0.01,

and the average pairwise correlation is 0.058. The correlation matrix for the 10 chosen

features is shown in Table 3.6. The Pearson’s correlation measure is used.

Table 3.6
Feature correlation matrix

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10

φ1 1 0.26 0.1 0.34 0.14 0.42 0.01 -0.01 -0.06 -0.21
φ2 0.26 1 -0.04 0.15 -0.02 -0.03 0.05 0.1 0.02 0.07
φ3 0.1 -0.04 1 -0.09 -0.09 0.54 0.68 0.21 0.12 -0.16
φ4 0.34 0.15 -0.09 1 0.29 -0.06 -0.03 0.01 -0.03 -0.1
φ5 0.14 -0.02 -0.09 0.29 1 0.09 -0.39 0.04 0.02 -0.42
φ6 0.42 -0.03 0.54 -0.06 0.09 1 0.54 0.03 0.07 -0.38
φ7 0.01 0.05 0.68 -0.03 -0.39 0.54 1 0.16 0.12 -0.04
φ8 -0.01 0.1 0.21 0.01 0.04 0.03 0.16 1 0.25 -0.01
φ9 -0.06 0.02 0.12 -0.03 0.02 0.07 0.12 0.25 1 -0.03
φ10 -0.21 0.07 -0.16 -0.1 -0.42 -0.38 -0.04 -0.01 -0.03 1

3.5.5 Modelling network features

The simulation also models network features of the collected auction data. Specifically,

we modelled the agents so that the distribution of the numbers of total and unique user

interactions that each user has with another user matches users in the collected data. This

is done by modifying bidder agent behaviour so that they are more likely to participate

in the auctions of sellers they have interacted with previously.

3.6 Evaluation

We validate the simulation by comparing the resulting synthetic data to the Aug 2012

dataset. To compare the datasets, both are transformed into features previously de-

fined in Section 3.5.4. Three approaches are used to evaluate the similarity of the trans-

formed datasets. First, we compare the value distributions for each feature separately
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in Section 3.6.1. Second, we use a statistical method called multi-response permutation

procedure (MRPP) for comparing multivariate distributions in Section 3.6.2. Third, we

compare the distributions of multiple features at once using a clustering-based method

in Section 3.6.3. We also compare the number of total and unique user interactions in

Section 3.6.4, and report the execution time of the simulation in Section 3.6.5.

It should be noted other tests could be used in Sections 3.6.1 to 3.6.3. For single

feature distribution tests, there are the parametric unpaired Student’s t-test [41], and the

non-parametric Kolmogorov-Smirnov test [42]. For comparing multivariate distributions,

there exists the cross-match test [43]. For the clustering based comparison, different clus-

terer/classifier pairs can be used as noted in [39]. Below, we use k-means with k-nearest

neighbour. The chosen classifier should ‘mimic’ the clustering algorithm to produce re-

liable results [39]. The relative merit of different methods is beyond the scope of this

thesis, and the choice of, for example, MRPP over cross-match is simply because MRPP

has been more commonly used in the literature.

3.6.1 Single feature distribution comparison

Two correlation measures are used to calculate whether the distributions of the feature

values from the synthetic data match the real data. A high correlation would indicate

that the synthetic data is similar, and that the simulation model, is accurate. The two

correlation measures used are Pearson’s correlation coefficient and Spearman’s rank cor-

relation coefficient [44]. Pearson’s correlation is a parametric test, while Spearman’s rank

correlation is a non-parametric test.

For Pearson’s correlation coefficient, a value of +1 or −1 indicates that a linear equa-

tion describes the relationship between the two variables perfectly. For Spearman’s rank

correlation coefficient, +1 or −1 occurs when each of the variables is a perfect monotone

function of the other. For both, a value close to +1 shows that the TradeMe and synthetic

data are similar.
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Table 3.7
Correlation results for all features

Feature Pearson’s correlation Spearman’s rank correlation

95% CI Correlation ρ

Auction Count 0.9468 - 0.9485 0.9476 0.9625
Reputation 0.9379 - 0.9399 0.9389 0.99997
Bid Amount 0.5207 - 0.5329 0.5269 0.9999
Excess Bid Increment 0.8545 - 0.8590 0.8567 0.8497
Bids Per Auction 0.9702 - 0.9711 0.9706 0.9930
First Bid Time 0.9889 - 0.9892 0.9890 0.99998
Bid Time 0.9701 - 0.9710 0.9706 0.9967
Win Proportion 0.9752 - 0.9760 0.9756 0.9515
Bid Amount Proportion 0.9873 - 0.9877 0.9875 0.9987
Bid Proportion 0.9841 - 0.9846 0.9844 0.9981

Evaluation results using individual features

Figure 3.6 shows the distribution of values of the 10 user features for both the synthetic

and TradeMe datasets. To construct the figures, all values from the 30 synthetic datasets

were used, giving 111677 values for each feature. Values are split into 20 equidistant bins

using the maximum and minimum values for that feature. The plots reflect the proportion

of users that have a value that falls into a particular bin. We see that distribution of values

for the 30 synthetic datasets generally match those from the TradeMe dataset.

Table 3.7 shows the correlation between synthetic and TradeMe data for each feature as

measured by Pearson’s correlation coefficient and Spearman’s rank correlation coefficient.

The correlation values for both measures are greater than 0.9 for all features, with the

exception of Bid Amount, with a Pearson’s correlation of 0.53 and Excess Bid Increment

with 0.86. The low similarity for Bid Amounts and Excess Bid Increment is due to the

lack of information on the perceived and actual value of items, making it more difficult

to accurately model bid values. As a whole, the high correlation values indicates that the

value distribution of features from our generated data is similar to TradeMe data.

3.6.2 Multivariate dataset comparison

The multiple response permutation procedure (MRPP) is a non-parametric procedure for

testing the null hypothesis of no difference between groups [45]. Given a labelled dataset

and a distance measure, the outputs of MRPP are an A-value, which gives the effect

size, and a p-value, estimated using Monte-Carlo simulations. The A-value reflects the
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Fig. 3.6. Value distributions of features
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Fig. 3.6. Value distributions of features (cont.)

difference between the observed and the expected (that is, if instance labels were ignored)

average distance between instances. Intuitively, an A-value of 0 occurs when there is no

difference between each group, while a value of 1 occurs when all instances are identical

within each group, and at least two groups do not overlap. For more details on MRPP

refer to [45]. The distance metric used here is the range-normalised euclidean distance,

shown in Equation 3.11,

d[j, k] =
1

M

√√√√ M∑
i=1

(x[i, j]− x[i, k])2

(max(x[i])−min(x[i]))2
(3.11)
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where M is the number of attributes, N is the number of instances, x is a N by M matrix,

i is the attribute index, j and k are two different instance indices. x[i, j] is the value of

the ith attribute of instance j, and x[i] is the ith column of x.

The synthetic data generated by the simulation is compared to the collected data.

MRPP was used to compare each of 20 sets of synthetic data to the collected data. Using

999 permutations, an average p-value of 0.001 indicates there is a statistically significant

difference between the two groups. However, the effect size is very small, as shown by

the A-values in Table 3.8, thus practically, difference in the distributions is negligible.

Two sets of comparisons were performed, using all 10 features described previously, and

using the 4 features used in Section 3.6.3. Thus we are confident in concluding that the

synthetic and collected data are sufficiently similar.

Table 3.8
MRPP A-values for dataset comparison

µ σ

4 features 0.0098 0.0014
10 features 0.0067 0.0009

3.6.3 Clustering based dataset comparison

Lange et al. [39] proposed a method to solve the model order selection problem in cluster

analysis; that is, to find a suitable number of clusters C. They state that a cluster

solution should be robust: that the clusters should be reproducible using other datasets

drawn from the distribution, and not depend on the particular sample [39]. The degree

to which the cluster solution is reproducible indicates whether a given C is appropriate

for a dataset. However, since only one dataset is usually available, the dataset is split

into two, and treated as two samples.

Conversely, if the number of clusters for a dataset is given, the degree of reproducibility

gives an indication of the similarity of the second dataset to the first. We adapt the

method proposed by Lange et al. to evaluate the similarity between the synthetic and

real auction data. This requires two small changes to the original method. First, there

is no need to normalise results according to the number of clusters since the number
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remains unchanged. Second, two different datasets are used (synthetic and real) instead

of partitioning a single dataset into two distinct subsets.

For evaluating the similarity between datasets, the equation for measuring the nor-

malised Hamming distance between two labelling vectors used in [39] can be slightly

modified to

d(γ(X ′), Y ′) =
1

n

n∑
i=1

I{γ(X ′i) = Y ′i } (3.12)

where I{γ(X ′i = Y ′i )} = 1, if γ(X ′i) = Y ′i . The equation then gives the proportion of

instances that are given the same labelling via the classifier trained on X (which in our

case is the TradeMe dataset) and the clustering solution Y ′ for X ′ (the synthetic dataset).

Since the corresponding clusters may be assigned different labels in two different clustering

solutions even if the datasets are the same, agreement is maximised using the Hungarian

method as in [39].

We used the simple k-means algorithm for clustering the TradeMe and synthetic data

into four clusters. Clustering the TradeMe dataset X, gives a set of labels Y , one for each

instance. Together, (X, Y ) is used to construct a closest neighbour classifier γ. Clustering

the synthetic dataset X ′ gives a set of labels Y ′. The classifier γ is then used to classify

instances in X ′, giving the labels γ(X ′). With Y ′ and γ(X ′) we can calculate the accuracy

using Equation 3.12.

Features used

We used four features for evaluating the similarity between the synthetic and TradeMe

data: Proportion of Max Bid, Win Proportion, Bids Per Auction, Bid Proportion. These

four features were chosen because the others:

1. Have almost the same values for all users, e.g. excess bid increment as shown in

Figure 3.6(d), and are less useful for clustering.

2. Are identically distributed regardless of their cluster assignments, e.g. reputation,

and bid amount are not useful for clustering.
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3. Are known not to closely approximate real data (features i and j), as discussed in

Section 3.7.1.

Evaluation results using multiple features

We evaluated our simulator using 30 synthetic datasets, each with roughly 3700 users.

We report the results for evaluations using random initial centroids for simple k-means,

and using manually defined centroids.

Using 50 sets of random initial centroids for evaluating each synthetic dataset, the

average accuracy is 0.745 with a standard deviation of 0.0957. Using the first set of

centroids shown in Table 3.9, the average accuracy is 0.878, an increase of 0.143, with a

standard deviation of 0.0282.

0.5 0.6 0.7 0.8 0.9 1

Inappropriate
centroids

Appropriate
centroids

Random
centroids

Accuracy

Fig. 3.7. Accuracy using different centroids for clustering using four features: Bid
Amount Proportion, Win Proportion, Bids Per Auction, Bid Proportion

Table 3.9
Selected centroid centers

Centroid ID Bid amount proportion Win proportion Bids per auction Bid proportion

Appropriate

centroids

1 0.8 0.0 0.0 0.2
2 0.8 0.0 0.0 0.2
3 1.0 1.0 0.0 0.5
4 1.0 1.0 0.0 1.0

Inappropriate

centroids

1 0.8 0.0 0.0 0.2
2 0.8 0.0 0.0 0.2
3 1.0 0.0 0.0 0.5
4 1.0 1.0 0.0 1.0
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Table 3.10
Accuracy using different centroids

Random centroids Appropriate centroids Inappropraite centroids

Max 0.943 0.935 0.801
Upper Quartile 0.836 0.896 0.723
Median 0.739 0.869 0.665
Lower Quartile 0.660 0.857 0.657
Min 0.530 0.850 0.640

Centroid Selection

The k-means algorithm is sensitive to the centroids chosen during initialisation [46], which

in turn heavily influences the result given by Equation 3.12. In our case, this problem

may be worsened by characteristics of our dataset. First, clusters are not well defined

in the TradeMe data, which means clusters will tend to grow from their initial centroid

position. Secondly, the Win Proportion feature is almost binary, where the majority of

users have a value of zero or one. Given four initial centroids, there are five configurations

the centroids could take for Win Proportion: with zero to five centroids beginning with

a random value of 0. If the configuration of centroids were different for two datasets, the

accuracy value will be very low even though the datasets may be very similar. Therefore,

it is necessary to manually define the initial centroids so that two will have a value of

one, and two with zero. This is similar to the method used by Fang et al. [46] to select

centroids that maximise inter-centroid distance.

We give evidence of this in Table 3.9 and Figure 3.7. Table 3.9 shows two sets of

centroids. The set named “appropriate centroids” have two centroids with the value

of 0, and two centroids with the value of 1 for Win Proportion. For the set named

“inappropriate centroids”, the difference is that the third centroid has value of 0 instead

of 1 as Win Proportion. Figure 3.7 shows that this change reduces median accuracy by

0.203 and mean accuracy by 0.192.
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3.6.4 Network feature comparison

Figures 3.8 and 3.9 compare the distributions of the total and unique user interactions

for users in synthetic data and collected data, for both bidders and sellers respectively.

The frequency values of the y-axis are normalised. Figure 3.8 shows that the number of

interactions by bidders in both the synthetic and collected data are similar. Figure 3.9

shows the number of interactions are generally similar, though the sellers in the synthetic

data interact with slightly more users than expected. The discrepancy at the far right of

both charts is due to the normalisation process, where the minimum frequency of 1, after

normalisation by different constants, results in two different minimum values of 1.08×10−4

and 3.01 × 10−4. All datasets generated using this method for evaluation in Section 6.7

contain approximately 23100 users, with 20000 bidders and 3100 sellers.
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Fig. 3.8. Distribution of number of total and unique sellers encountered by bidders

3.6.5 Execution time

The execution time for simulations containing 20000 agents and over 100 days is mea-

sured and reported below. In all other experiments, one time unit is 5 minutes. Here,

we show the effect of selecting different time units on execution time. Figure 3.10 shows

the average execution time over 20 trials, and 1 standard deviation error bars, for time

units from length 10 minutes to 1 minute, corresponding to resolutions of 0.1 to 1. The
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Fig. 3.9. Distribution of the number of total and unique bidders encountered by sellers

results show increasing resolution (or reducing length of each time unit), increases exe-

cution time proportionally. The line in Figure 3.10 is the linear regression with equation

y = 2014.5x + 175.37. To faithfully represent user reaction times in auctions, which is

of the order of seconds, resolution must be increased to approximately 20 (corresponding

to 3 seconds per time unit). Using linear extrapolation, a resolution of 20 would result in

an average execution time of 11.24 hours. Execution time measurements were done on a

machine with an Intel i7-4700MQ CPU and 8GB RAM.
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Fig. 3.10. Simulation execution time at different time unit resolutions
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3.7 Conclusion

Online auction data was collected from a commercial online auction website. This data

was used to construct an agent-based simulation of online auctions, with the agents based

on users observed in the collected data. To understand the behaviours of users, the dataset

was transformed into a set of 10 features, and clustering was applied to find groups of

users with similar behaviours. The resulting simulation generated synthetic data that

were shown to be similar to the original collected data, in terms of distribution for each

of the 10 features, a clustering based similarity measure, and a multivariate statistical

comparison. Using this simulation, we are able to generate realistic synthetic auction

data.

3.7.1 Limitations

A known limitation of the simulation is that it cannot accurately model bidding times

close to the end of the auction. This is due to our choice of resolution of five minutes,

which is the minimum time an agent can respond to another bid. In the auction data

collected, numerous bids may occur within a single minute. Thus, to accurately model

bidding times near the end of auctions, resolution must be increased by roughly two orders

of magnitude, to the order of seconds. Results in Section 3.6.5 suggest that running the

simulation using a resolution of 3 instead of 300 seconds would increase the computation

time 100 fold.

The choice of the five minute resolution was a calculated trade-off between performance

on available hardware and precision: it allowed us to generate data in a reasonable time

while retaining sufficient simulation accuracy over most of the auction. As a result, bidding

wars close to auction termination which occur over multiple time units in the simulation

may correspond to 30 minutes or more, instead of within minutes as seen in the collected

data. Thus, while the simulation can accurately model user bidding time patterns earlier

in the auction, it cannot do so close to the end of the auction and distribution of values

for features i and j in Section 3.5.4 from the simulator will not closely match those from
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the TradeMe data.



48 Auction simulation



4
Application of simulation

4.1 Introduction

In this chapter, we demonstrate the use of the auction simulation from Chapter 3 for

evaluating fraud detection algorithms. This requires adding agents with fraudulent be-

haviours into the simulation to generate synthetic data that contains both normal and

fraudulent transactions. The synthetic data is then used to evaluate different fraud de-

tection algorithms.

In this chapter, we implement three types of fraudulent agents to generate three syn-

thetic datasets, used to evaluate three different fraud detection algorithms. The first type

of fraud agent is described by Trevathan and Read [2]. The agent exhibits shilling be-

haviour, where its goal is to increase the final selling price of auctions for a collaborating

49
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seller. The second and third fraud agents are variations of the first which attempt to hide

some of their fraudulent characteristics to avoid detection. Synthetic datasets containing

these shilling behaviours are used to test a shill detection algorithm, also described in [2],

and two of its variations.

This chapter is organised as follows. Section 4.2 describes background for shilling

fraud. Sections 4.3 and 4.4 describe the implementation of three fraud agents and fraud

detection algorithms. Section 4.5 and 4.6 compare the detection results between different

fraud behaviours and detection strategies. Section 4.7 concludes the chapter.

4.2 Background

This section provides information that may be helpful in understanding subsequent sec-

tions. Section 4.2.1 describes the generation and quality of synthetic data used in this

chapter. Section 4.2.2 describes the characteristics of shilling fraud.

4.2.1 Generating synthetic data that contains fraud

As noted previously, this chapter builds on the validated agent-based simulation from

Chapter 3. The agent-based simulation is extended here by implementing additional

agents, described in Section 4.3. By adding these agents to the simulation, the resulting

synthetic data will contain fraudulent bids and auctions. Table 4.1 shows the bids and

auction information for three example auctions, containing the type of information that is

generated by the simulation. User A and B in Table 4.1 are examples of these fraudulent

agents.

Though the agents implemented only commit competitive shilling, it demonstrates

the usefulness of the simulation in generating synthetic data that contains fraudulent

behaviour. In Chapter 6, we will see that other types of fraud, including collusive fraud,

can be simulated.
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Table 4.1
Example auctions

(a) Bid sequences for three auctions.

Auction 1 listed by User 8

BidID UserID BidTime BidAmount

1 A 1 1.00
2 1 1750 20.00
3 A 1751 21.00
4 2 2020 27.00
5 1 2054 38.00
6 3 2066 39.00

Auction 2 listed by User 9

BidID UserID BidTime BidAmount

7 5 2100 2.00
8 A 2101 3.00
9 4 2216 5.00
10 A 2217 6.00
11 4 2400 7.00

Auction 3 listed by User 10

BidID UserID BidTime BidAmount

12 6 5700 50.00
13 B 5800 55.00
14 6 6000 60.00
15 5 6220 60.80
16 B 6290 62.00
17 6 6350 67.00
18 7 6516 68.00

(b) Auction attributes for auction 1.

Auction Attribute Value

SellerId 8
ListingId 0
StartTime 40
EndTime 2058
Duration 2016
ItemValuation 40.00
ItemTypeId 1
Starting Price 1.00

4.2.2 Shilling Behaviour

Shilling is defined as any activity where a seller, or an associate, places bids in auctions

held by the seller. Competitive shilling occurs when a user submits bids to a collaborating

seller’s auction to elevate the final auction price, without the intention of winning. The

legitimate bidder is cheated by paying more than they otherwise would when winning

the item. The goal is to increase the price the legitimate winner would otherwise pay, to

increase seller profit [11]. For example, suppose there were only two bidders in an auction:

one legitimate (L), and one fraudulent (F), with bidding proceeding like so: L:$10, F:$11,

L:$12, F:$13; L:$14. If there are no additional bids, L, the legitimate bidder, pays an

additional $4 due to bids by F.

Users engaging in competitive shilling often display a set of behaviours that distinguish

them from normal users [5, 17]. These behaviours allow them to function effectively as

shills. These behaviours are:
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i) Shills only attempt to elevate prices of auctions held by collaborating sellers, since

only those auctions affect the collaborating sellers’ profit.

ii) Shills have a higher bid frequency since they must bid after legitimate bids in order

to stimulate bidding to maximise the final price.

iii) Shills will win a low number of auctions, since winning will mean the seller bought

their own or their collaborator’s item, and they will be forced to pay the auction fee.

iv) Shills tend to bid soon after a legitimate bid to maximise the time legitimate users

have to submit a new bid, to both maximise final price and reduce the chance of

winning.

v) Shills bid the minimum amount possible to not discourage bidding by legitimate

bidders.

vi) Shills tend to have bids early in the auction to reduce the chances of accidentally

winning.

The prevalence of shilling behaviour in commercial auction sites is unknown. Commer-

cial auction sites do not publicly disclose information about identified fraudulent accounts.

Even with complete transaction histories, it is difficult to prove that an account is engag-

ing in shilling. Shilling behaviours, and fraudulent behaviours in general, are not binary,

but are continuous; each account may display different degrees of each type of suspicious

behaviour. The shill agents described in Section 4.3 below represent three possible in-

stances of shilling behaviour: the simple shilling agent in Section 4.3.1, and two agents

that attempt to hide some of their fraudulent characteristics in Sections 4.3.2 and 4.3.3.

Other agent variations are possible. For example, they may attempt to hide different

aspects of their behaviour, such as bidding after two legitimate bids; or incorporating

different legitimate actions, such as intentionally losing in other auctions to hide their

true collaborator.
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4.3 Fraud agents

In this section, we describe three shilling fraud agents and their implementation. The first

is an implementation of the simple shill agent described by Trevathan et al. [12]. The

second and third agent types build on the first, where the agents attempt to hide part of

their fraudulent behaviour, as one would expect to see in real life.

4.3.1 Simple shill agent

The simple shill agent has five directives to maximise its potential as a shill. The directives

are consistent with the shill characteristics listed in Section 4.2.2. Informally, they are:

1) Bid the minimum amount required.

2) Bid quickly after a rival bid.

3) Do not bid too close to the auction’s end.

4) Bid until the target price has been reached.

5) Only bid when the current bidding volume is high.

The behaviour of the shill is tuned by three parameters θ, α, and µ, which govern

the thresholds at which the simple shill agent ceases bidding, and in turn controls the

amount of risk the agent takes while inflating the price of an auction. The agent will

stop bidding if the auction is greater than θ% complete, or if current price > α. The

µ parameter affects when the bidding frequency is considered “high” by controlling how

far into the auction history that bids should be included during counting. Increasing the

value of these parameters tends to increase the final price, but also the risk of accidentally

winning the auction.

In the simulation, each shill bidding agent is paired with a seller agent, and the shill

bidding agent only bids in auctions held by the corresponding seller. Normal agents,

modelling legitimate users, may participate in these fraudulent auctions according to

their behaviour.
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Table 4.1 gives an example auction where a simple shill agent, User A, is working with

User 8. In the first auction where User 8 is the seller, User A bids immediately after a

legitimate bid, with the minimum required bid: $1.00 over the previous bid. Section A.3

in Appendix A shows the pseudocode for the simple shill bidding agent.

4.3.2 Late-start shill agent

The behaviour of the simple shill bidding agent is to bid immediately after the auction

has been submitted by their counterpart. However, in TradeMe, users do not tend to bid

immediately after the auctions begin. 43.0% of auctions in TradeMe have the first bid

occur when there is less than 24 hours before termination, and 78% of auctions have the

first bid occur when there are fewer than 5 days remaining. This can be seen in Figure 4.1,

which shows the distribution of times at which the first bid appears. Even though bidding

immediately after the auction begins may give other users more opportunities to bid,

agents that bid this way are suspicious. Therefore, agent behaviour is changed so that

they do not begin bidding unless there are already one or more bids in an auction, or if

the auction is more than two days from termination. User B in Table 4.1 is an example

of this shill agent, where the agent waits for a legitimate bid to appear before bidding.
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4.3.3 Legitimate-bidding shill agent

To raise the final selling price, the shill agent only needs to bid in auctions held by the

collaborating seller. However, this makes the agent easy to identify since the agent only

bids in auctions held by a single seller, in addition to losing most of the auctions it

participates in. This agent attempts to conceal this by bidding in low priced legitimate

auctions held by other sellers. For every shill auction that the agent participates in, it

also participates in a legitimate auction.

4.3.4 Agent shilling performance

We evaluated the effectiveness of each agent type as shills using two criteria: ability

to raise the final selling price of an auction; and the probability of losing the auction,

as intended, to a legitimate bidder. An effective shill will have high values for both.

Table 4.2 shows the performance of the simple shill agent within the simulation, using the

parameters (θ, α, µ) = (0.95, 0.85, 0.85). On average, the simple shill agent successfully

loses 75.3% of auctions, and raises the final price by 14.1%. The performance of the other

agent types, late-start shill, and legitimate-bidding shill, is similar to that of the simple

shill.

We also report the influence of changing the parameters θ, α and µ on performance.

Results are calculated from 20 synthetic datasets each containing 100 shill bidding agents,

and make up roughly 1% of the bidding agents in the simulation. Figures 4.2 to 4.4 shows

the average performance of 1000 agents as the values of θ, α and µ range over 0.80 to

0.99 at 0.01 intervals. The error bars represent one standard deviation. The θ parameter

has a strong influence on the observed win rate and price increase. As expected, as θ

increases, the effect on the final price increases, at the cost of reducing the probability of

losing the auction. α has a similar effect, though weaker. For µ, there is no obvious effect.

Table 4.3 shows the correlation between the choice of parameters and the price increase,

and the fraction of auctions lost, respectively. The correlation values are consistent with

that observed from Figures 4.2 to 4.4.



56 Application of simulation

The performance of the shill bidding agents in our simulation is significantly different

to that reported in [12], where the agent using similar parameters increased final price by

15% and successfully lost in only 30% of auctions. The difference in performance is most

likely due to the difference in the behaviour of the non-fraud agents in our simulation.

Table 4.2
Shill bidding agent performance.

Simple shill Late-start shill Legitimate-bidding shill

µ σ µ σ µ σ

Likelihood to lose 0.763 0.0373 0.783 0.0353 0.746 0.0364
Price Increase 1.14 0.0260 1.17 0.0267 1.16 0.0397
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Table 4.3
Correlation between parameter value and observed behaviour

θ α µ

Price increase 0.937 0.934 0.565
Likelihood of loss -0.949 -0.864 0.257

4.4 Fraud detection algorithm

In this section we describe the shill score algorithm by Trevathan et al. [2]. We also

describe and explain the two changes that we propose to improve detection performance.

4.4.1 Shill score

Trevathan et al. proposed the shill score algorithm (SSA) [2] to detect competitive shilling

behaviour. SSA uses the bidding history of users to calculate a score which reflects the

likelihood that a user is acting as a shill in a given auction. SSA works by identifying users

that exhibit the six shill behaviours listed in Section 4.3.1. Trevathan defines six ratings,

α through ζ, that each target one shill behaviour. For definitions of the six ratings, refer

to [2].

The six ratings are combined in a weighted average according to Equation 4.1. The
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values of (θ1, ..., θ6) were defined to be (9, 2, 5, 2, 2, 2) by the authors.

Shill Score =
θ1α + θ2β + θ3γ + θ4δ + θ5ε+ θ6ζ

θ1 + θ2 + θ3 + θ4 + θ5 + θ6

(4.1)

Table 4.4 gives the six ratings and the shill score, calculated using the weights above,

for two normal agents and two fraud agents from synthetic data. Normal users tend not to

participate in auctions of only one seller, and hence User 1 and 2 have low α-ratings. User

1, the normal late bidder, has behaviour inconsistent with shills since it bids aggressively

near the end of auctions, giving it a low shill score. User 2, the normal early bidder, has

some similarities to a shill: it made bids early in the auction, as reflected by its ζ-rating,

and made the minimum bids allowed, giving a high ε-rating. Thus User 2 has a higher

shill score. User 3, the simple shill, acts as an obvious shill, including bidding in auctions

by a single seller, bidding early and often. Thus most of the ratings are high, and has

a fairly high shill score. User 4, the delayed-start shill, waits until a legitimate user has

made a bid, and so has lower β and ζ-ratings, and a shill score that is only slightly higher

than User 2.

Table 4.4
Example of shill score ratings using weights in [2]

User Id Agent Type Wins Losses α β γ δ ε ζ Score

1 Normal late bidder 1 3 0.167 0.700 0.000 0.331 0.764 5.89E-04 2.310
2 Normal early bidder 0 1 0.333 0.125 0.000 0.800 0.800 0.800 4.205
3 Simple shill 2 8 0.800 0.690 0.000 0.800 0.800 0.800 6.628
4 Late-start shill 1 5 0.833 0.443 0.000 0.453 0.800 0.631 4.581
5 Legitimate-bidding shill 8 6 0.714 0.600 0.000 0.750 0.800 0.580 4.581

Since the algorithm was designed and tested on small samples of synthetic and com-

mercial auction data that may not represent the range of behaviours by users in TradeMe,

modifications to the algorithm may improve detection results.

4.4.2 Shill score with Bayesian average

Users that have participated in only one auction may receive very high scores from SSA

and be incorrectly labelled as shills. SSA fails to take into account that bidding patterns
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observed from a small number of auctions is not sufficient evidence to classify an agent

as a shill. This increases the number of false-positives. To avoid this problem, we take

into account the amount of evidence that exists for an agent’s score by recalculating SSA

using

x′ =
Cµ+ nx

C + n
,

where µ is the average score from SSA for legitimate users, C is a user-defined constant,

and n is the number of auctions, x is the score from SSA, and x′ is the new score.

The value of C is defined to be the average number of auctions each legitimate user

participates in. In our real dataset, C = 1.8. The effect is that if an agent participates in

very few auctions, the resulting score x′ will be much closer to the group average. If the

number of auctions the agent participates in is large, the resulting score will be similar to

the original x from SSA.

4.4.3 Shill score with alternative weights

The weights for SSA were designed under different assumptions that do not hold here.

For example, shill agents are assumed in SSA to have low accidental win rates, and α

is given a very high weight of 9 out of a total of 22. This assumption is observed to be

untrue in the real dataset and in the synthetic data, as shown in Table 4.2. Therefore,

using a different set of weights to combine the six ratings may produce better detection

performance.

We test whether combining ratings with equal weights will give better performance.

Using equal weights is unlikely to be optimal, but allows us to test whether altering

weights is worth further investigation. Below, we will see that the weights have a large

effect on performance, and in Chapter 5, we use supervised techniques to search for an

optimal set of weights for SSA.
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4.5 Detection accuracy for each agent type

In this section we compare the ability of SSA to detect three different agent fraud types.

For each agent type, we used 20 simulation runs each with 100 fraud agents and 10000

legitimate agents. The detection algorithm used was SSA.

4.5.1 Metric definitions

Some commonly used metrics for measuring classification accuracy are defined below.

True positives (TP) is the number of instances correctly labelled as fraudulent or suspi-

cious. False positives (FP) is the number of instances incorrectly labelled as fraudulent or

suspicious. True negatives (TN) is the number of instances correctly labelled as normal.

False negatives (FN) is the number of instances incorrectly labelled as normal.

TPR =
TP

TP + FN
(4.2)

FPR =
FP

FP + TN
(4.3)

TPR is also known as recall. The receiver operating characteristic (ROC) curve is

a method for illustrating the performance of a binary classifier, and shows the trade-off

between FPR and TPR. They are constructed by varying the discrimination threshold

and plotting the corresponding TPR and FPR values.

4.5.2 Accuracy

We examine the effect of choosing different score thresholds on the detection of three

different shill agent types. Agents are identified as shills if they have a score that is above

a defined threshold. Figure 4.5 shows the trade-off that exists: as we decrease the score

threshold, both the number of shill agents we correctly identify (true positive), and the

number of legitimate agents we incorrectly identify as shills (false positive) increase.

Late-start shills are consistently more difficult to detect, compared to the simple shill
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agent and agents with legitimate bids, as shown in Figure 4.5. At low values of FPR,

the agents with legitimate bids are detected with the lowest accuracy, when there are no

true positives found at all. This can be seen in Figure 4.5(a) and (c). The similarity in

detection accuracy for the simple shill agent and legitimate-bidding shill is likely due to

the agent winning the majority of the legitimate auctions it participates in. Since auctions

that the agent wins do not contribute to the ratings, the agent fails to hide its behaviour.
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Fig. 4.5. ROC curve for detection of shill agents

4.5.3 Recall

We evaluated the ability of SSA to correctly identify the shilling agent in auctions that

are known to contain shill bids. A shilling agent is identified in an auction if the shill
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agent had the highest score among all agents that participated in that auction. Table 4.5

shows that for all three shill agent types, SSA was able to accurately identify the shill

agent 90% of the time.

Table 4.5
Detection performance of SSA for three shill agent types

µ σ

Simple shill 0.904 0.0216
Late-start shill 0.893 0.0428
Legitimate-bidding shill 0.903 0.0240

4.6 Performance comparison of three fraud detection

algorithms

In this section we compare the ability of three fraud detection algorithms to identify

simple shill agents. Once again, we used 20 simulation runs each with 100 simple shill

agents and 10000 normal bidding agents.

4.6.1 Accuracy

Plots in Figure 4.6 are constructed using the same data as plots in Figure 4.5, but it

is presented differently to show the relative accuracy for each shill detection algorithm

variant. Figure 4.6(a) shows that the original SSA has the poorest performance, while

SSA with Bayesian average and with equal weights has similar accuracy. This is also seen

in the other two fraud types, in Figure 4.6(b) and (c). This is consistent with AUC values

shown in Table 4.7.

The poor performance of the original SSA is likely due to the selection of weights. The

SSA algorithm was originally evaluated on a small set of auctions and for a specific item,

and it is possible the authors tuned their algorithm for that specific dataset, which has a

limited range of bidder behaviour. As a result, when SSA is evaluated on the synthetic

data, where there is a greater range of bidder behaviour, the accuracy of SSA is reduced.
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Fig. 4.6. ROC curve for detection of shill agents

Table 4.6
AUC values for detection accuracy against shill agents

Simple shill Late-start Legitimate-bidding

Shill sore 0.895 0.875 0.888
Bayesian averaged 0.945 0.931 0.941
Equal weights 0.901 0.909 0.954
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4.6.2 Recall

There is no significant difference in the ability of the three fraud algorithms to correctly

identify the shill agent in a known shill auction, as shown in Table 4.7.

Table 4.7
Detection performance of three detection methods for simple shill agents

µ σ

SSA 0.904 0.0216
Bayesian average 0.904 0.0212
With equal weights 0.909 0.0310

4.7 Conclusion

We have demonstrated that the simulation is able to generate synthetic data containing

different types of fraud, and be used to evaluate different fraud detection algorithms.

The three types of agents exhibiting variations of competitive shilling behaviour were

implemented, along with three variations of a detection algorithm. Using the simulation,

we can evaluate the accuracy of each of the three detection methods for detecting the

different fraudulent behaviours in the synthetic data. Evaluation results using synthetic

data show that late-start shill agents were the most difficult to detect, and that both SSA

variations performed significantly better than the original SSA algorithm.

In the next chapter, we will use supervised learning methods to improve the SSA

algorithm in a systematic way, and to generate other classification models trained using

synthetic data. We will see that results obtained are significantly better than the ad hoc

modifications to the SSA algorithm presented here.
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Supervised fraud detection

5.1 Introduction

Past research in online auction fraud has focused on detecting specific fraudulent be-

haviours using a range of techniques, including decision trees [20, 24], clustering [47],

regression models [16, 25], model checking [18], and graph mining methods [23]. The gen-

eral approach taken involves identifying the type of behaviour or fraud of interest, then

selecting a set of features that are hypothesised to be able to differentiate between users

with normal and suspicious behaviour. A fraud detection algorithm is then developed us-

ing the selected feature set. The algorithm is evaluated using commercial auction datasets

without knowledge of ground truth, or using synthetic datasets without a guarantee of

its similarity with real data. Both types of datasets have weaknesses that reduce the

65



66 Supervised fraud detection

reliability of any conclusions drawn about method accuracy or effectiveness, as discussed

in Chapter 3.

In this chapter, validated synthetic data is used together with supervised learning

methods to develop models for fraud detection. Classifiers can be constructed using su-

pervised learning methods to detect different types of fraud, given an appropriate training

set. Depending on the types of agents added to the simulation, different types of fraud

can be added to the resulting synthetic data. This in turn determines the types of fraud

that can be detected by the classifier. An appropriate training set for supervised learning

methods is created in three steps: first, define an agent-type that represents the fraud

type of interest; second, generate synthetic data using the defined agent; and third, trans-

form the generated synthetic data, which is a sequence of auctions and bids, into values

for a set of user-defined features. This transformed synthetic dataset is then used as a

training set for the selected supervised learning technique. This approach allows models

for detecting specific types of fraud to be constructed more easily than in previous work,

and with improved accuracy, as shown by the experimental results in Section 5.3. To our

knowledge, no previous work has combined the use of a data generator and supervised

learning methods to develop fraud detection methods.

5.1.1 Contributions

Our contributions in this chapter are as follows:

• We propose an approach for generating classification models for detecting suspi-

cious behaviours in commercial auction data. The approach uses a synthetic data

generator with supervised learning techniques. To demonstrate this approach, we

define two types of fraudulent behaviours, and develop two corresponding classifi-

cation models for detecting those behaviours. We show that these models, created

using synthetic data, can also be applied to commercial online auction datasets to

identify suspicious users. We also use supervised learning techniques to improve the

performance of an existing fraud detection algorithm.
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• We describe and define a set of user features for fraud detection. The set of fea-

tures captures many aspects of bidding behaviour, and may be useful for developing

models for the detection of different types of auction fraud.

• We present experimental results on both synthetic and real datasets. Results on

synthetic datasets show that our supervised approach produces classification models

of greater accuracy than existing algorithms, and that accuracy is further increased

using our proposed feature set. Evaluation results on a real dataset using these same

models show that they are able to identify users that exhibit suspicious behaviour.

The remainder of the chapter is organised as follows: Section 5.2 describes the methods

used to improve and develop classifiers for identifying shilling fraud. Section 5.3 presents

the evaluation procedure and results on synthetic data; and Section 5.4 is a case study

applying the classifiers to commercial auction data.

5.2 Improving detection performance using super-

vised learning methods

Supervised learning may provide a method for quickly developing classifiers that are capa-

ble of detecting different types of fraud or suspicious behaviour. However, effectiveness of

the resulting classifier depends on four things: (1) the fidelity of the synthetic data to real

world data, so that the models trained will be useful in commercial data; (2) the ability to

encapsulate the behaviour of interest with an agent; (3) the ability of the set of selected

features, into which the synthetic data is transformed, to capture the differences between

normal and fraudulent users; and (4) the choice of the supervised learning technique.

Both (1) and (2) have been addressed in Section 4.2 in Chapter 4. For (3), a set of

10 features to describe bidder behaviour is defined in Section 5.2.4, which also discusses

their differences to the set of six ratings defined in Section 4.4.1. This set of 10 features,

and the set of 6 ratings, are used to construct two decision trees, as described in Sec-

tion 5.2.3. For (4), there are many different techniques available. For weight selection,
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possibilities other than neural networks include: probit models, a type of regression where

the dependent variable can take 2 values (normal or fraudulent), as seen in [25], or linear

support vector machines (linear SVM) which give weights to each feature. For supervised

learning methods, methods other than decision trees include Naive Bayes, SVM, nearest

neighbour classifiers or various ensemble methods such as bagging and boosting.

The use of neural networks and decision trees may not yield the highest accuracy, but

they have some advantages over other algorithms, described later, and are sufficient for

demonstrating our approach.

This section describes the use of neural networks for weight tuning in Section 5.2.2,

the use of decision trees in Section 5.2.3, and finally the definition of a set of features to

construct an alternative decision tree model in Section 5.2.4.

5.2.1 Shill agent variation - delayed-start shill

Two fraud types are used in this chapter. The first is the simple shill agent, described

in Chapter 4. The second is the delayed-start shill agent which is based on the late-start

shill agent, also from Chapter 4. The third type of agent described in Chapter 4, the

legitimate-bidding shill, is not used here since it is ineffective in hiding its behaviour.

User B in Table 4.1 is working with User 10 as a delayed-start shill: it begins bidding

only after another user, User 6, makes the first bid, then submits a bid after waiting a

variable amount of time, for an amount that may be above the minimum increment of

$1.00.

In the simulation, the wait-time used by the delayed-start shill is drawn from a uniform

distribution of [50-99] time units (which corresponds to 250-495 minutes). Bids exceed the

minimum required 20% of the time, with an amount that is proportional to the difference

between the current price and the value of the item, as shown in Equation 5.1, with

k = 0.1. The value of 20% was chosen because in the Oct 2011 dataset, 19.5% of bids

(204458 out of 244308) have bid increments that are greater than the minimum required.

However, since we do not have information about the value of the items, we use the simple
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Equation 5.1 to generate bid amounts that appear reasonable. For example, if an item

was valued at $100.00, and the current bid was at $20.00, after deciding that it should bid

over the minimum, the bid made would be (($100.00− $20.00) ∗ 0.1 + $21.00) = $29.00.

Bid Amount = (Item V alue− Current Price) ∗ k

+Next Minimum Bid

(5.1)

5.2.2 Using neural networks

The shill score algorithm described in Section 4.4.1, requires a set of weights to combine

six ratings into a single value. In the original algorithm, the weights are selected by

the authors. A neural network can be used to systematically search for a different set of

weights to increase the performance of SSA. Figure 5.1 shows the neural network structure

used: a 1-layer back-propagation neural network with six input nodes, one output node,

and no hidden layer. Each input node receives one of the six ratings defined by SSA. The

value of the output node is given by the linear combination of the six inputs. During

training, as the neural network reduces error by adjusting the set of weights, it is, in

effect, searching for the optimum set of weights for SSA. After training, the weights from

the network are used in the SSA algorithm.
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5.2.3 Using decision trees

Even though the neural network improves SSA by identifying an improved set of weights,

the method by which SSA combines the weights is very simple: it is a linear combination

of the ratings, and may be unable to identify less obvious shilling behaviour. A decision

tree, trained using the same dataset as used in Section 5.2.2, may have better performance,

since it is able to generate a more complex model. Decision trees were chosen over other

methods such as Naive Bayes and nearest neighbour classifiers, since decision trees do not

assume independence of variables (for example φ3 and φ4 in Section 5.2.4 below), and can

produce a model that is easily understandable and explainable, which is important when

justifying why a particular account is deemed suspicious. Also, the C4.5 algorithm used

for generating the decision trees allows pruning to remove redundant branches to mitigate

overfitting. For details regarding the training and testing sets used, and the parameters

used for training the decision tree, refer to Sections 5.3.1 and 5.3.3 respectively.

5.2.4 Using user features as attributes

In addition to the 6 ratings, another feature set was used for training a decision tree. This

feature set is slightly modified from the one described in Section 3.5.4, where features φ8 to

φ9 are replaced with φ14 to φ15. Those features were originally chosen to capture as many

aspects of the user’s behaviour as possible, and may capture other fraudulent behaviours,

not just those related to shilling, unlike the six ratings. φ9 (net reputation) was replaced

because we have no information about reputation of shills from previous work. In addition,

reputation scores can be easily manipulated [9], making it an unreliable feature for fraud

detection. φ8 (auction count) was replaced because auction count is not well modelled

by shilling agents. They tend to participate in far more auctions than other users. This

can be solved by increasing the simulation length and reducing the frequency of auction

participation by the shill agents, however, this would increase the simulation execution

time. If φ8 is used, all agents will be detected very easily.

As mentioned previously, the 10 features were selected from a larger set that included
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features related to user reputation, time intervals between bids, and features that represent

feature value variances over multiple auctions, some of which have been used in previous

work [16, 13, 11]. The features were selected based on the results from correlation analysis

and principle component analysis (PCA) to discover which attributes were redundant, or

whose values were similar across all users. Using a subset of the features inproves the

performance of the resulting models, as shown by the accuracy measures in Appendix C.

The use of a more comprehensive set of features produces a model that can identify

shills using a different, broader, set of characteristics, and may improve performance by

capturing additional shill behaviours overlooked by the six ratings.

5.3 Synthetic data evaluation: methods and results

This section describes the evaluation methods and results of each model described in

Section 5.2. Each model is tested on two types of fraudulent agents: the simple shill, and

the delayed-start shill, and the accuracy of each model is measured and compared.

5.3.1 Dataset setup

Evaluation was performed using two sets of synthetic data, each containing normal users

and only one type of fraudulent agent. In each synthetic dataset, the ratio between normal

and fraudulent users is roughly 180:1. The severe class imbalance reduces the performance

of the resulting neural networks and decision trees. In all experiments, random under-

sampling was used to adjust the class balance to 1:1, giving a labelled dataset with 40,000

examples. The effect of class balance on model accuracy is given in Section 5.3.5.

Sections 5.3.2 and 5.3.3 describe the parameters and procedure used for evaluating

SSA and the decision tree models respectively. Section 5.3.4 reports the detection results

of each method.
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5.3.2 SSA using optimised weights

10-fold cross validation was used to train neural networks that would provide the optimised

weights for SSA. The dataset was partitioned into two sets in a 9:1 ratio: the smaller set

was used as a testing set to evaluate the performance of the neural network, and the larger

set was further partitioned into a training and validation set in a 7:1 ratio. The validation

set was used to identify over-fitting and to set a stopping threshold during training. Each

of the 10 folds produces a neural network and a corresponding set of weights. This was

repeated 10 times, producing 100 neural networks. The weights from the neural network

with the highest F-measure according to the testing set were normalised to 1 and replaced

those in the original SSA. Table 5.1 shows the weights of the two neural networks that

had the best performance for detecting simple and delayed-start shills in the testing set.

Performance of the optimised SSA was evaluated using another synthetic dataset with

40,000 instances, which was not previously used for training or testing. Since both SSA

and optimised SSA produces a score for each user instead of a class label, a threshold is

used to classify all users who fall below the threshold as legitimate, and all users above it

as fraudulent. For example, for the detection of simple shills, if we set the threshold at the

99.7th percentile of scores for legitimate users, optimised SSA will find 95.5% of fraudulent

users, and 1−99.7% = 0.3% of legitimate users will be incorrectly identified as fraudulent,

as shown in Table 5.5. The precise threshold that minimises the costs of misclassification

depends on several factors: the expected class imbalance, the misclassification cost for

normal and fraudulent users, and the trade-off between TPR and FPR for the algorithm.

In this case, assuming a class imbalance of 12:1, equal misclassification costs, and the ROC

curve for SSA optimised, the optimal threshold should be set at the 96.4th percentile.

The same evaluation procedure was used for the datasets containing simple shill agents

and the dataset containing delayed-start shill agents.
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Table 5.1
Normalised sets of weights used for weighted average in SSA

Weight Source
Weights

α β γ δ ε ζ

Original SSA 0.4091 0.0909 0.2273 0.0909 0.0909 0.0909
Data with simple shills 0.1615 0.0014 -0.1043 0.5237 0.0451 0.3725
Data with delayed-start shill 0.6591 0.0700 0.1077 0.0515 -0.2213 0.3331

5.3.3 Decision trees

10-fold cross validation was used to construct and evaluate decision trees. The datasets

used were the same as in Section 5.3.2: 40,000 labelled instances each with 6 attributes.

The C4.5 algorithm in WEKA was used to construct the decision trees. The parameters

were: use subtree-raising, with a minimum leaf size of 50, and use pruning. Other param-

eters were left as defaults. Decision trees trained using these parameters had on average:

26.8 nodes and 13.9 leaves for the simple shill dataset; and 67.6 nodes, and 34.3 leaves for

the delayed-start shill dataset. Figure 5.2 shows the first four levels of one of the trained

decision trees trained on the latter. Table 5.3 shows the features that were part of the

decision trees produced.

To construct the decision trees with 10 features, the same procedure was repeated

using a dataset where each instance had 10 attributes. The decision trees trained had on

average: 44.4 nodes and 21.7 leaves for the simple shill dataset; and 63.2 nodes, and 32.1

leaves for the delayed-start shill dataset. Figure 5.3 shows the first four levels of one of the

trained decision trees trained on the latter. Table 5.4 shows the features that were part of

the decision trees produced. It indicates that φ1 (average bid amount), φ15 (average final

bid value), and φ16 (final bid amount proportion), are not important for the identification

of shills. On the other hand, φ4 (bid proportion) seems to be an important feature, given

its position close to the root in the decision tree.

For convenience, in the results we refer to each of the models trained using datasets

Table 5.2
Time for model construction and instance classification (ms)

SSA with optimised weights DT-r DT-f

Training 5916 (2114) 351 (87) 927 (56)
Testing 1.76 (0.43) 7.86 (0.42) 10.94 (0.79)
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containing 6 ratings for attributes or 10 features for attributes as DT-r and DT-f respec-

tively.
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Fig. 5.2. Decision tree with ratings (DT-r) for delayed-start shills, shown to a depth of
four

Table 5.3
Features used in DT-r

α β γ δ ε ζ

Simple shill X X – X – X
Delayed-start shill X – X X X X

Table 5.4
Features used in DT-f

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ14 φ15 φ10

Simple shill – X X X X X – X – –
Delayed-start shill – X X X X X X X – –

5.3.4 Detection performance

This subsection reports the detection performance of the models on synthetic data. First

the metrics used to measure performance are defined, then the detection accuracy of each

algorithm at detecting simple shills and delayed-start shills is reported.
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Fig. 5.3. Decision tree with features for delayed-start shills (DT-f) shown to a depth of
four

Metric definitions

Some commonly used metrics for measuring classification accuracy are defined below.

Precision =
TP

TP + FP
(5.2)

F −measure =
2× TPR× FPR
TPR + FPR

(5.3)

The area under the ROC curve (AUC) is a summary statistic of ROC where the value

of 1 is optimal, and a random classifier gives a value of 0.5. The other measures used here

have been defined in Section 4.5.1 in Chapter 4.

Simple shill

Figure 5.4 shows, for the simple shill agent, the ROC curve of each algorithm. For all

values of FPR, SSA (optimised), DT-r and DT-f have higher TPR than original SSA.

DT-r and DT-f have very similar TPR for all FPR, performing only slightly better than

SSA using optimised weights. Table 5.5 shows the average values, where applicable, for

five measures of performance for each algorithm. Values in brackets are the standard
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deviations. For SSA, the values shown are calculated when using a FPR threshold of

0.003. The values are consistent with the performance of the algorithm seen in Figure 5.4.

The results from Figure 5.4 and Table 5.5 show that the performance of the models

were quite similar, especially between SSA (optimised), DT-r, and DT-f, where they have

close to perfect classification accuracy. For example, the AUC for the 3 models are 0.986,

0.997 and 0.998 respectively. This reflects the ease with which the simple shill can be

detected due to its obvious shilling behaviour.

ROC curves can be constructed using a decision tree by varying the class labels for

the leaves. Usually, the class for a leaf node is the majority class. For binary classification

as we are doing here, all instances in a node is normal if more than 50% of instances are

normal. Increasing or decreasing this threshold for all leaves allows an ROC curve to be

constructed from a single decision tree.

Delayed-start shill

Figure 5.5 shows, for the delayed-start shill agent, the ROC curve of each algorithm. As

was the case in Section 5.3.4, the two decision tree models and SSA (optimised) dominate

the two models using SSA. The difference in performance between DT-f and DT-r is

the greatest at low values of FPR of about 0.01, where DT-f detects 93.2% of frauds,

while DT-r detects 73.0%. Optimised SSA also dominates the original SSA, but performs

significantly worse than both decision trees.

Once again, values for the various measures in Table 5.6 reflect the relative performance

of each algorithm seen in Figure 5.5, where DT-f slightly outperforms DT-r, which in turn

significantly outperforms both SSA (optimised) and SSA (original).

Evaluation results also indicate that the delayed-start shill is more difficult to detect

than the simple shill. This can be seen in the ROC curves, where for every FPR, each

model has a lower TPR for the delayed-start shill than the simple shill. That is, fewer

delayed-start shill agents are detected given the same false positive rate. This trend is

seen across all models for all performance metrics used.
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Fig. 5.4. ROC for detecting simple shill agents
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Fig. 5.5. ROC for detecting delayed-start shill agents

Table 5.5
Mean detection accuracy of simple shills

Model TPR (SD) FPR (SD) AUC (SD) Precision (SD) F-measure (SD)

SSA original 0.790 0.003 0.940 0.955 0.881
SSA optimised 0.955 0.003 0.986 0.997 0.975
DT-r 0.996 (1.72E-04) 0.019 (1.17E-04) 0.997 ( 3.78E-05) 0.981 (1.11E-04) 0.988 (8.18E-05)
DT-f 0.998 (4.64E-05) 0.001 (4.67E-05) 0.998 (5.67E-05) 0.999 (4.68E-05) 0.998 (4.02E-05)
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Table 5.6
Mean detection accuracy of delayed-start shills

Model TPR (SD) FPR (SD) AUC (SD) Precision (SD) F-measure (SD)

SSA original 0.714 0.196 0.824 0.785 0.748
SSA optimised 0.847 0.196 0.879 0.812 0.830
DT-r 0.963 (9.75E-04) 0.054 (5.45E-04) 0.988 (1.47E-04) 0.947 (1.47E-04) 0.955 (5.58E-04)
DT-f 0.967 (1.37E-04) 0.023 (1.58E-04) 0.992 (0.81E-04) 0.977 (1.55E-04) 0.972 (9.39E-05)

Algorithm run time

Table 5.2 shows the mean time required, in ms, and standard deviation for training and

testing one instance of each classifier. Values were obtained over 30 trials. The size of

the dataset was 36000 for training, and 4000 for testing. As expected, training the neural

network took the most time. Training DT-f took longer than DT-r due to the additional

attributes. The testing time for optimised SSA is the lowest due to its simplicity.

5.3.5 Effect of class imbalance on model accuracy

Figures 5.6 and 5.7 show the effects of changing the ratios of normal and fraudulent

instances in the training dataset from 1 to 33. In general, increasing the proportion of

normal instances reduces the FPR, and increases the TPR, since the resulting decision

tree favours the majority class. The change in TPR and FPR is small as the class ratio

increases, as seen in Figure 5.6, since the simple shill is easy to detect [48]. The increase

in TPR for DT-f is likely due to the increase in training set size outweighing the effects

of the class imbalance. For the delayed-start shill, the class imbalance has a greater effect

on DT-r than DT-f, which reduced TPR by 10.8% and 3.7% respectively as the ratio

increased to 33.

5.4 Applying models to commercial data

The two decision tree models DT-r and DT-f were applied to a commercial auction dataset

containing 113411 users. This section reports the results obtained, and compares the

groups of users labelled as normal or fraudulent by each model.
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5.4.1 Analysis of classification results

DT-r and DT-f classify 7.8% and 6.0% of instances as fraudulent respectively, as shown

in Table 5.7. The degree of overlap between the set of users identified as fraudulent by

each model is shown in Table 5.8. The results show they have a relatively low overlap:

15.5% for the decision tree using ratings, and 20.0% for the decision tree using features,

compared with the overlap for synthetic data of 97.2% and 97.6% respectively.

The low degree of overlap may be due to the existence of other groups of suspicious

users in the commercial data which display different subsets of shilling characteristics.

Since the two models detect shill agents using different features, each model would se-

lectively identify the additional groups resulting in low overlap. Another explanation for

the low overlap is that the synthetic data from the simulation is different to the collected

data. However, the results from MRPP in the following section show that this is unlikely.

5.4.2 Comparing group similarities

MRPP is used to compare the normal and fraudulent groups of users that were found by

each of the two models in the synthetic and commercial datasets. MRPP was described

in Section 3.6.2 in Chapter 3. The distance matrix used by MRPP was calculated in two

ways: using ratings, and using features. The MRPP values are shown in Table 5.9. For

example, the A-value of 0.0035 is obtained by comparing two groups of users identified

as normal (in the synthetic and commercial data) by DT-f, with the distances between

instances measured using the 6-ratings attributes of those instances. The p-value was

0.001 for all tests, showing that it is unlikely that the A-values obtained occured by

chance. The average A-values are very close to zero for both models, using both methods

of distance calculation.

The A-values indicate that there is no practical difference between the groups of users

in the synthetic and commercial datasets, despite p < 0.05. This is because although

the p-value shows that the differences are statistically significant, the magnitude of this

difference is so small that, in practice, the groups of users can be treated as if they were
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identical.

This result indicates two things. First, since the normal users between the synthetic

and commercial data are similar, the simulation modelling normal users and the resulting

synthetic data are valid. Second, the models found the groups of users they were trained

to find, given the set of attributes used in the training data.

Table 5.7
Proportion of instances in each class

DT-r DT-f

Legitimate 0.9220 0.9395
Fraudulent 0.0780 0.0605

Table 5.8
Model agreement over instance classifications

DT-f

Legitimate Fraudulent

DT-r
Legitimate 0.8721 0.0655
Fraudulent 0.0503 0.0121

Table 5.9
Mean MRPP A-values

Model Using distances calculated with ratings Using distances calculated with features

Normal Fraud Normal Fraud

DT-r
Mean 0.0069 0.0494 0.0041 0.0284

SD 0.0012 0.0035 0.0006 0.0012

DT-f
Mean 0.0035 0.0257 0.0079 0.0270

SD 0.0007 0.0018 0.0010 0.0014

5.4.3 Comparing other features

The descriptive statistics for other features of the groups classified as fraudulent are com-

pared to those classified as legitimate. Difference in these values would indicate whether

the groups identified as fraudulent actually exhibit characteristics of shills. The four fea-

tures are: auctions per seller, bids per auction, number of other bidders, and number of

auctions, the mean, standard deviation and median which are shown in Table 5.10. Auc-

tions per seller is the number of auction participations divided by the number of unique

sellers those auctions belong to. Bids per auction is described in Section 5.2.4. Number
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of other bidders is the average number of unique bidders in auctions the user participated

in. Number of auctions is the number of bids the user submits on average in an auction.

The results show that the mean and median values were higher for all four features for

users classified by either decision tree as fraudulent. This indicates that at least some users

in each of the groups identified by both DT-r and DT-f exhibit shilling characteristics.

Table 5.10
Mean, standard deviation and median

(a) Auctions per seller

Group µ σ Median

Identified by neither as fraud 0.811 0.733 1.00
Identified by DT-r as fraud 1.375 0.831 1.00
Identified by DT-f as fraud 1.488 1.718 1.00
Identified by both as fraud 1.697 2.546 1.167

(b) Bids per auction

Group µ σ Median

Identified by neither as fraud 2.791 2.126 2.00
Identified by DT-r as fraud 2.643 1.494 2.48
Identified by DT-f as fraud 3.459 1.736 3.00
Identified by both as fraud 3.012 1.377 2.75

(c) Number of other bidders

Group µ σ Median

Identified by neither as fraud 2.878 1.673 2.67
Identified by DT-r as fraud 2.920 1.350 2.78
Identified by DT-f as fraud 3.466 0.804 3.25
Identified by both as fraud 3.418 1.110 3.25

(d) Number of auctions

Group µ σ Median

Identified by neither as fraud 3.403 5.907 2.00
Identified by DT-r as fraud 7.617 10.018 4.00
Identified by DT-f as fraud 6.534 10.874 4.00
Identified by both as fraud 8.418 10.640 5.00

5.5 Conclusion

Development and evaluation of fraud detection methods have been difficult in the past

for several reasons: (1) the variety of possible fraudulent behaviours, (2) changes in

fraudulent behaviours to avoid detection, and (3) the difficulties with using synthetic

and commercial datasets. Our proposed approach mitigates these problems by allowing
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classification models to be created for arbitrary types of fraud by defining a corresponding

fraud agent and generating a set of synthetic data. This approach has advantages over

previous work using real data, since in synthetic data, ground truth is known, and multiple

datasets can be generated for different types of fraud. In addition, the feature set proposed

allows the created models to work across multiple fraud types, and not just shilling fraud.

Using our approach, an existing shill detection algorithm was improved, and two new

decision tree classifiers were created. Evaluation results over synthetic and commercial

data validates our approach. Results over synthetic data show that both decision tree

models perform significantly better than the original and optimised SSA algorithms in

identifying two types of shilling behaviours: simple and delayed-start shilling. DT-f,

which used our proposed feature set, performed significantly better than DT-r over low

values of FPR. Results over a commercial dataset show the decision tree models, which

were trained on synthetic data only, can identify users exhibiting characteristics consistent

with shilling.
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6
Unsupervised fraud detection

6.1 Introduction

There are two weaknesses in the approach proposed in Chapter 5 common to other su-

pervised approaches. First, the dataset used for training determines the type of fraud

that can be identified using the resulting model. The model will be less accurate when

attempting to identify other types of fraud, or variations of the same type of fraud. In

addition, strategies to commit fraud change over time as users who employ them are found

and removed. To maintain model accuracy, it is then necessary to retrain models using

updated labelled datasets. Second, our previous approach is not very good at detect-

ing collaborative frauds since it does not make use of the available network information.

While some previous methods, such as [19], make use of features derived from modelling

85
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the auction network as a graph, each user is still considered individually when deter-

mining whether they are fraudulent. The only exception is the 2-Level Fraud Spotting

algorithm (2LFS) by Chau et al. [13], described in Chapter 2, which we compare against

in Section 6.7.

In this chapter, we propose a novel approach which avoids the weaknesses listed above.

Our approach consists of an anomaly detection phase and a belief propagation phase.

Firstly, by using an anomaly detection method, our approach identifies all users who

behave sufficiently differently from the majority of potentially fraudulent users, and can

detect users with different fraud strategies, including previously unknown strategies, with

the assumption that the majority of users are legitimate/normal. Secondly, groups of

suspicious users can be found during the belief propagation phase. This is based on

the assumption that users who interact with other suspicious users are also likely to be

suspicious. Thirdly, we use validated synthetic data as previously done in Chapter 5 to

avoid the problems associated with unknown ground truth in real data, and the problem of

limited generalisability when using synthetic data. However, we also evaluate our method

using real data in Chapter 7 to ensure that our approach does in fact identify anomalous

groups of users in the real world.

6.1.1 Contributions

Our contributions in this chapter are as follows:

• We propose a novel approach for detecting collaborative fraud in online auctions.

The approach, which we name SPAN, for Score Propagation over an Auction Net-

work, contains two phases. In Phase 1, the anomaly scoring phase, the anomaly

score of each user is calculated using a set of features describing that user. Specific

to our approach is that outlier detection is performed, not in the whole feature space,

but in carefully selected two-dimensional subspaces; this has several advantages, as

described in Section 6.4. In Phase 2, the score propagation phase, the anomaly score

for each user from Phase 1 are revised depending on their interactions with other



6.2 Background 87

users. This additional phase improves the overall accuracy of SPAN and allows

groups of collaborating fraudulent users to be identified.

• We implement three types of collusive frauds described in previous literature. Com-

bined with the auction simulation, we create multiple sets of synthetic data con-

taining each fraud type, which is used to evaluate our proposed algorithm.

Section 6.2 gives background information important for understanding the chapter.

Sections 6.3 to 6.5 describe the two phases of our proposed approach, and its time com-

plexity. Section 6.6 defines the fraud types contained in the generated synthetic data used

in evaluation. Section 6.7 presents evaluation results for SPAN and 2LFS under different

conditions. Section 6.8 concludes the chapter.

6.2 Background

In this section, we give background information. Section 6.2.1 describes Oddball, an

approach for finding unusual nodes in graphs. The idea of using feature pairs is used in

Phase 1 of SPAN. Section 6.2.2 describes LOF, a density based outlier detection algorithm

also used in Phase 1 of SPAN. Section 6.2.3 describes Markov random fields which is used

to model the users and interactions in the online auction network.

6.2.1 Oddball

Oddball [49] is an algorithm for identifying anomalies in weighted graphs. The authors

investigate the patterns present in 1-step neighbourhoods of nodes, which they call the

egonet, and select four pairs of features whose values follow a power law relationship across

different nodes: that is, A ∝ Bk for features A and B. If a node has an egonet that does

not follow the power law relationship followed by the other nodes, then that node is likely

to be an anomaly. The anomaly score of an instance is based on the distance of the node

from the power law fitting the data.

For each anomaly identified using each of the four feature pairs, the anomalies will
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correspond to particular graph structures. They are: CliqueStars, where anomalies are

more clique-like or star-like than non-anomalous nodes; HeavyVicinity, where anomalies

have unusually high, or low, total edge weight compared to the number of edges; and

DominantPair, where anomalies have a single dominant heavy edge in the egonet.

Phase 1 of our algorithm is based on the same idea that values of specific pairs of

features will have relationships that are followed by the majority of nodes; which in our

case, are users in an online auction. By carefully selecting the multiple of feature pairs,

anomalies identified in these 2-dimensional feature subspaces can similarly be associated

with specific structures in the graph network, which in turn correspond to specific bidding

and selling behaviours. It should be noted that Oddball fits a power-law model to the

data to identify outliers. However, Phase 1 of SPAN uses LOF, which we describe in

Section 6.2.2 to identify outliers. Though any anomaly detection method that generates

outlier scores can be used in place of LOF.

6.2.2 Local outlier factor

Local outlier factor (LOF) by Breunig et al. [50], is a density-based anomaly detection

technique. As with other density-based techniques, LOF operates on unlabelled data.

LOF has advantages over other density and distance-based anomaly detection techniques

when there are regions of varying densities. The anomaly score of a given instance, called

LOF, is the ratio of the average density of the k-closest neighbours and the local density

of the instance itself. An instance will have a high anomaly score if the local density of the

instance is significantly lower than the local average density. The parameter k is named

MinPts. In [50], the authors propose calculating the LOF between two bounds: the lower

bound MinPtsLB, and the upper bound MaxPtsLB, and taking the minimum value to

avoid unwanted fluctuations at specific values of MinPts. Chandola et al. surveys other

outlier detection methods, and describes proposed variations to the LOF algorithm [51].
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6.2.3 Markov random field and belief propagation

Here, we give only a brief description of Markov random fields (MRF). For more details,

refer to [1] which gives a comprehensive explanation of MRFs and belief propagation.

MRFs are a type of graphical model for solving inference problems given noisy ob-

served data. MRFs have been used in computer vision problems, including noise-removal,

inferring missing high-resolution details or other high-level features. An MRF consists of

an undirected graph, containing nodes which can be in any number of states. For every

hidden node about which we want to infer some quantity (xi), there may be a fixed,

possibly noisy, observation providing information about that node (yi). In MRFs, the as-

sumption is that there is some statistical dependency between xi and yi, represented using

a local evidence matrix (φ), and between a hidden node (xi) and each of its neighbours

(xj), represented using a compatibility matrix (ψ). Figure 6.1, taken from [1], shows an

example of a square lattice MRF, where the empty circles represent hidden nodes, each

of which are connected to an observed node, represented by filled circles.

Fig. 6.1. Markov random field of a lattice [1]

For a particular set of states assigned to the hidden nodes in the MRF, the likelihood

of that particular set of states occurring can be calculated using φ, ψ and the values of the

observed nodes. To find the set of states with the maximum likelihood of occurring, one

can calculate the likelihood of every combination of states, which increase exponentially

with the number of nodes. Belief propagation can be used to efficiently find the set of

states with the maximum likelihood, and takes time proportional to the number of nodes.

Belief propagation is an iterative message passing algorithm, where the messages sent are

opinions about what another node’s state (belief) should be. The message mij going from
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node i to j is the product over all messages from neighbours of i, except for j:

mij(x)←
∑
xi

φi(xi)ψij(xi, xj)
∏

k∈N(i\j)

mki(xi) (6.1)

Each node then updates its belief according to the messages sent to it by its neighbours.

The belief at a node i is the product of the evidence at that node φi(xi), and all messages

from neighbours of i:

bi(xi) = kφi(xi)
∏

j∈N(i)

mji(xi) (6.2)

where xi and mji(xi) are vectors with a length equal to the number of possible states, k

is the normalisation constant, and N(i) denotes the set of the nodes neighbouring i.

6.3 SPAN algorithm

SPAN (anomaly Score Propagation over an Auction Network) is divided into two phases,

described in Sections 6.4 and 6.5 respectively. Phase 1 calculates an anomaly score for

each user, and Phase 2 uses belief propagation over the MRF to use network features to

improve the anomaly score accuracy. Section 6.5.1 discusses the theoretical complexity

for each step of SPAN, and its overall complexity.

6.4 Phase 1: Calculating anomaly scores

Calculating the anomaly scores involves three steps. First, select an appropriate set of

feature pairs; second, calculate LOF scores for each feature pair; and third, combine the

set of LOFs for each user into one value.

Calculating LOFs over multiple feature pairs then combining them provides several

advantages over using all features at once. Firstly, in higher dimensions, instances are

spread in a larger volume, become less dense, and boundaries become more difficult to

discern [52], making it more difficult to detect anomalies. Secondly, due to the variability

of normal behaviours, normal instances may be misinterpreted as anomalies. By using
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manually selected feature pairs, any outliers identified are more likely to be significant,

and can be more easily understood and explained. The quality of anomaly scores found

using feature pairs and all features is compared in Section D.1 in Appendix D. Third,

the computational complexity of nearest neighbour-based techniques, including LOF, do

not scale well if the number of attributes is high [52]. By calculating LOF over only two

dimensions, our approach scales well as the dataset size increases (see Section 6.5.1). A

potential disadvantage of using feature pairs is that some anomalies may only be found

from higher dimensions. However, we feel that the additional complexity of selecting and

justifying feature triplets (or more) outweighs the benefits.

Section 6.4.1 describes how features are derived in the auction network, and modelled

as a graph. Sections 6.4.2 and 6.4.3 explain the feature pairs chosen.

These features are combined into pairs, and an LOF calculated for each feature pair,

for each instance. The choice of features and pairs are described and explained in Sec-

tions 6.4.2 and 6.4.3. The set of LOFs for each user can be combined in many ways,

including using different types of means, or by taking into account the variance of each

LOF score before averaging. In this work, we chose to simply use the maximum LOF

value as the final anomaly score. Though this increases the number of normal users that

will be identified as anomalous, Phase 2 of SPAN can remove these false positives.

6.4.1 Graphs and features

As mentioned previously, the interactions between users in the auction network can be

represented using a graph. Each node of the graph represents a user. Depending on the

definition of an edge, different weighted graphs can be created. Here we describe the

edge definitions and node attributes used to create features in Sections 6.4.2 and 6.4.3.

The notation used below has been used in describing the auction model in Section 3.3 of

Chapter 3.

Edge definitions: Let the directed graph constructed using each edge definition be D,

where D = (V,A), where V is the set of vertices, and A is the set of directed edges. Given
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x ∈ V, y ∈ V , where u ∈ V → u ∈ U , let W ({x, y}) be the weight of directed edge {x, y}.

There is a directed edge from x to y if W ({x, y}) > 0.

• Participation: W ({x, y}) = |{a|a ∈ Px ∧ a ∈ Sy}|, where Px is the set of auctions

x has submitted one or more bids to, and Sy is the set of auctions listed by y.

There is a directed edge from x to y if x has bid in an auction listed by y. The

weight of the edge corresponds to the number of auctions x has bid on that were

listed by y.

• Win: W ({x, y}) = |{a|a ∈ Wx ∧ a ∈ Sy}|, where Wx is the set of auctions won by

x.

There is a directed edge from node x to y if x has won in an auction listed by y.

The weight of the edge corresponds to the number of auctions won by x, which were

listed by y.

• Loss: W ({x, y}) = |{a|a ∈ Lx ∧ a ∈ Sy}|, where Lx is the set of auctions lost by x.

There is a directed edge from node x to y if x has lost in an auction listed by y.

The weight of the edge corresponds to the number of auctions lost by x, which were

listed by y.

• (DT ): The transpose of a directed graph D.

• Seen: W ({x, y}) = W ({y, x}) = |{a|a ∈ Px ∧ a ∈ Sy}|

There is a directed edge from node x to y, and from y to x, if x has bid in an auction

listed by y, or vice versa. This is simply the Participation graph with undirected

edges. If the graph is bipartite, bidders will have exactly the same number of edges

and edge weights. Thus comparing node attributes in this graph to the Participation

graph is effective in identifying users who are behaving as both sellers and bidders.

• Connected seller: W ({x, y}) = W ({y, x}) = |{z|z ∈ U ∧ a ∈ Pz ∧ b ∈ Pz ∧ a ∈

Sx ∧ b ∈ Py}|

There is a directed edge from x to y and from y to x if another user z has participated
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in at least one auction listed by users x and y respectively. The weight of the edge

corresponds to the number of users z for which this is true.

Node Attributes: Each node has a value for each of the following node attributes. We

also give the value for each node attribute for the seller u0 in Figure 6.2.

• Edge count: number of edges leaving this node. Here edge count(u0) = 4.

• Weight count: sum of the weights of edges leaving this node. Here weight count(u0) =

5.

• Egonet edge count: sum of all node degrees within the 1-step neighbourhood sub-

graph of the node. If the graph is bipartite, this value equals edge count. Here

egonet edge count(u0) = 6.

• Egonet weight count: sum of all edge weights within the 1-step neighbourhood

subgraph of the node. If the graph is bipartite, this value equals weight count. Here

egonet weight count(u0) = 8.

• First eigenvalue: first eigenvalue of the 1-step neighbourhood subgraph of the node,

for undirected graphs only (Seen). The value depends on the edge weight dis-

tributions of the subgraph. If Figure 6.2 is treated as an undirected graph, first

eigenvalue(u0) = 3.837.

• Repeat count: same as edge count −weight count. Represents the number of inter-

actions with previously known users. Here repeat count(u0) = 1.

6.4.2 Bidder features selected

Table 6.1 lists the feature pairs selected for bidders. Each feature consists of the graph

edge definition used, and a node attribute. Each feature pair in Table 6.1 is explained

below:
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Table 6.1
Feature pairs for bidders

Feature 1 Feature 2

Graph edge Node attribute Graph edge Node attribute

1 Participation Weight count Seen Egonet edge count
2 Win Edge count Seen Repeat count
3 Loss Weight count Seen Egonet edge count
4 Loss Edge count Seen First eigenvalue

1. The number of auctions per unique seller each user participates in. Identifies users

who participate in the same set of sellers’ auctions. In bipartite graphs, Seen and

Egonet edge count in Feature 2 corresponds to Particpation and Weight count, but

are used here in order to identify users who do not form bipartite cores: who act as

both bidders and sellers. This feature pair will identify users who interact with the

same sellers more frequently than normal.

2. The number of auctions won per repeated seller. The number of auctions won, and

the number of participations in auctions from previously known sellers. Identifies

users who tend to win more auctions from the same sellers compared to normal

users, such as those committing reputation fraud.

3. The number of auctions lost per seller. Identifies users who lose repeatedly in

auctions from the same sellers, such as those committing competitive shilling.

4. The number of auctions lost to first eigenvalue of the 1-step neighbourhood. Identi-

fies users who repeatedly interact with the same set of sellers, even if they attempt

to mask this by interacting with other users, due to the difference in the distribution

of edge weight compared to normal users.

6.4.3 Seller features selected

Table 6.2 lists the feature pairs selected for bidders. Each feature pair in Table 6.1 is

explained below:

1. The number of times a seller has a bidder in common with other sellers. Identifies

sellers who have bidders who bid in auctions by the same set of sellers repeatedly.
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Table 6.2
Feature pairs for sellers

Feature 1 Feature 2

Graph edge Node attribute Graph edge Node attribute

1 Connected seller Edge count Connected seller Weight count
2 LossT Repeat count Seen Repeat count
3 ParticipationT Edge count Seen Egonet weight count
4 ParticipationT Weight count Seen First eigenvalue

2. Compares the number of bidders who lost to this user’s auction, to the total number

of bidders seen. Identifies users who have bidders losing to them repeatedly.

3. Compares the number of bidders seen, and the number of unique bidders. Users who

are in bipartite graphs, Seen and Egonet weight count corresponds to ParticipateT

and Weight count, but are used here to identify users who act as both bidders and

sellers.

4. Compares the number of bidders seen to the first eigenvalue of the 1-step neighbour-

hood. Identifies users who repeatedly interact with the same set of bidders which

produces several edges with heavy weights.

6.5 Phase 2: Propagating anomaly scores

The auction network is modelled using an MRF. Each user is represented by a hidden

node in the graph, and each user (hidden node) is connected to a corresponding observed

node representing what is observed about the user. The graph formed by the hidden

nodes is the graph constructed using the Seen edge definition described in the previous

section. Each node i, can have two states: fraudulent (if ) or normal (in). The beliefs at

each node sum to 1: if + in = 1. The fraudulent state subsumes the additional accomplice

state used in [13]. Using only two states allows SPAN to be more general, as discussed in

Section 6.7.1.

The anomaly scores found for each user in the first phase becomes the observed state

of the node in the graph. Since the anomaly scores can be any positive value, they are



96 Unsupervised fraud detection

first normalised to between 0 and 1 using Equation 6.3.

of = max

{
0, 1− 1

a× (anomaly score− b)

}
(6.3)

The normalised value of is the fraudulent belief of the observed node, and the normal

belief of the observed node is on = 1 − of . The observed states for each node comprise

the Observation Matrix input to Algorithm 1. The matrices underlying the inputs Local

evidence function (φ) and Compatibility function (ψ) are shown in Tables 6.3 and 6.4.

Algorithm 1 follows the message propagation and belief update rules in Equations 6.1

and 6.2. However, to take into account the strength of the interaction between users, we

modify the belief update rule by adding an extra term, which gives additional weight to

messages from users who are connected with a high edge weight, as shown in Equation 6.4.

W ({j, i}) is the weight of the edge between j and i.

bi(xi) = kφi(xi)
∏

j∈N(i)

mji(xi)
W ({j,i}) (6.4)

After the algorithm converges, the nodes are ranked according to their belief for the

fraudulent state. A threshold is then used to divide the set of users into fraudulent and

normal. Choosing an appropriate threshold depends on two factors: the relative misclas-

sification cost for normal and fraudulent users, and the ratio of normal and fraudulent

users in the data. Without knowledge of these factors, it is difficult to select an appro-

priate threshold. Previous work to estimate the prevalence of fraud ([9, 15]) estimates

that around 0.2% of auctions are fraudulent, based on user feedback. However, this is

likely an underestimation since frauds such as shilling may not be recognised by legitimate

bidders when they occur. In any case, the value of 0.2% does not directly translate to the

fraction of users that are fraudulent. Without more knowledge, we suggest a conservative

threshold and classify the most suspicious 1% of users as fraudulent.
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Table 6.3
Local evidence matrix (φ): entry (p, q) gives the probability that the node is in state q given the
observed state p.

Observed state Node belief

Fraud Normal

Fraud 1− l l
Normal l 1− l

Table 6.4
Compatibility matrix (ψ): entry (p, q) gives the probability that the node is in state q given the
neighbour state p.

Neighbour state Node belief

Fraud Normal

Fraud 1− j j
Normal k 1− k

Algorithm 1 Pseudocode for belief propagation

Input: Number of States: S = 2, Number of Nodes: N , Observation Matrix: O[N ][S],
Local evidence function: ψ, Compatibility function: φ
Output: Belief Matrix: B[N ][S]

1: B = newMatrix[N ][S] . Matrix containing beliefs for hidden nodes
2: M = newMatrix[N ][S] . Matrix containing messages for neighbours
3: for i ∈ 1..N do
4: B[i] = ψ(O(k)) . Initialise node beliefs with observations
5: end for
6: while not converged do
7: for i ∈ {1..N} do
8: for k ∈ neighbours(i) do
9: M [i] = multiply(m, ψ(B(k)) . Gather propagated message from neighbour

10: end for
11: end for
12: for i ∈ {1..N} do
13: for k ∈ neighbours (i) do
14: mk = newArray[S] . Array storing new message
15: mk = ψ(M [k]) . Retrieve the message from the neighbour
16: mk = divide(mk, ψ(M [i])) . Remove the contribution by this node
17: wk = edge weight(i,k)
18: mk = mk

w . Effect of edge weight connecting the two nodes
19: m = multiply(m, mk)
20: end for
21: m = multiply(m, φ(O[i])) . Effect of node observation
22: m = normalise(m) . Normalise beliefs to sum to 1
23: B[i] = m . Update belief matrix
24: end for
25: end while



98 Unsupervised fraud detection

Parameter selection

Here we suggest values for parameters required for SPAN. The parameter b in Equation 6.3

determines how strongly changes in LOF changes fraudulent belief for the corresponding

observed node (of ). A value of b = 0.4 is suggested. At this value, when anomalyscore =

3.5, of = 0.5. The parameter l reflects uncertainty of the observed beliefs. We set l = 0.2,

a default suggested by [13].

The values j and k reflect the likelihood a user in either state will interact with another

user. A range of values for j and k were tested, and the pair with the highest difference

in average fraudulent belief between the fraudulent instances and normal instances was

chosen. The optimum values found are: j = 0.12, k = 0.36. Intuitively, these values

seem reasonable: a fraudulent user is likely to interact mostly with other fraudulent

users, while a normal user does not differentiate between normal and fraudulent users

when participating in auctions; thus j < k. The same procedure was used to find the

optimum value of εp = 0.12 for 2LFS, which we evaluate SPAN against in Section 6.7. The

parameter εo (equivalent to parameter l in SPAN) was set at a default of 0.2. The synthetic

dataset used for tuning is separate from that used later in Section 6.7 for evaluation.

6.5.1 Theoretical time complexity

Here we describe the theoretical complexity for each step of SPAN. Let w be the number

of bids in the auction network, n be the number of nodes in the graph, e be the number

of edges in the graph, and m = e/n be the average number of edges per node.

Complexity of each step in Phase 1

The graph construction step has time complexity O(w), where all bids must be looked

at once to construct each graph. The node attribute calculation step has time complexity

O(e) for all features, except for the first eigenvalue feature which is found in O(nm2)

using the power iteration approximation method. This can be simplified to O( e
2

n
), then

approximated to O(e), assuming that e and n grows proportionally to each other. For
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the LOF calculation step, the time complexity is O(n) using the grid method for low

dimensional data [50]. Since w > e > n, the time complexity for Phase 1 is O(w).

Complexity of each step in Phase 2 The initialisation step has time complexity

O(n), where the anomaly score for each node is normalised and data structures are allo-

cated. The time complexity of belief propagation is O(e) per iteration, where the number

of messages passed is proportional to the number of edges. In the average case, the num-

ber of iterations during the belief propagation step can be treated as a constant, which

gives the belief propagation step a time complexity of O(e). Thus the time complexity

for Phase 2 is O(e), and the overall complexity of SPAN is O(w).

6.6 Fraudulent behaviours

Additional agents are inserted into the simulation to generate synthetic data containing

fraudulent users and transactions. The three types of collaborative frauds implemented

are described below. Figures 6.3, 6.4 and 6.5 show the interactions between users com-

mitting each type of fraud. In these figures, an arrow from node A to B shows that user

A made a bid on an auction held by user B. Arrows which have a free end represent

interactions with legitimate users which are not shown.

6.6.1 Reputation fraud

As stated previously, reputation fraud is committed by two groups of users: one group

which wants their reputation to be increased, and another who provides the positive

feedback and comments. As shown in Figure 6.3, the users generally form a bipartite

core. To mask their suspicious behaviour, the bidders also participate in normal auctions,

while the sellers simply conduct legitimate auctions with the benefit of the fraudulently

obtained positive reputation scores. This strategy is the one investigated in [9] and [14].

A variation of this has been identified in real data in [13].

In the simulation, reputation fraud is modelled as 50 sellers and 400 bidders who at-
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tempt to inflate the sellers’ reputation. Each seller attempts to inflate their reputation

by between 30 and 100 points over the duration of the simulation, where each fraudulent

auction increases reputation by one. Each bidder has an equal chance of being chosen

to win a particular auction. In the simulation, a single agent is responsible for coordi-

nating the behaviour of the 50 sellers and 400 bidders to commit reputation fraud. The

pseudocode for the controlling agent is shown in Section A.4 in Appendix A.

Collusive star

In collusive shilling fraud, multiple users work to bid on auctions by a single seller. The

fraudulent bidders are scheduled so that a random subset bids on a particular auction.

In addition, the bidders will participate in normal auctions to mask their suspicious

behaviour, while normal users participate in auctions held by the seller. Since all the

fraudulent bidders only collaborate with one seller, the fraudulent group forms a star.

In the simulation, collusive stars are modelled as 1 seller working with 6 bidders, who

submit between 20 to 50 fraudulent auctions on average over the simulation duration. In

each fraudulent auction, a random set of 3 bidders are selected to shill in the auction. In

each dataset, there are a total of 50 groups working independently. The pseudocode for

the controlling agent is shown in Section A.5 in Appendix A.

Collusive clique

This is a variation of collusive shilling fraud. Here, multiple users act as both bidders and

sellers, and bid on auctions listed by other users in the group. Once again, the users mask

their behaviour by participating in legitimate auctions, while normal users participate in

fraudulent auctions held by the sellers. As the number of interactions between fraudulent

users increases, the group forms a clique.

In the simulation, collusive cliques are modelled as groups of between 10 and 20 users.

Each user in the clique submits six fraudulent auctions which are bid on by 3 users

randomly selected from within the same clique, excluding the user itself. In each synthetic

dataset, there are 30 groups working independently. The pseudocode for the controlling
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agent is shown in Section A.6 in Appendix A.

6.7 Evaluation results

In this section, we present evaluation results for SPAN. Evaluation results are split into

5 parts, and each part reports the accuracy of SPAN under different conditions.

• Section 6.7.1 reports results under normal conditions. SPAN is evaluated using

synthetic datasets containing three types of fraud. We also report the accuracy of

2LFS, and the accuracy of Phase 1 of SPAN. It is expected that the performance

of 2LFS will be lower than SPAN. However, 2LFS is the only previous work that

is comparable to ours. We also report results obtained by searching for k-core and

clique graph structures to identify groups of users with close trading relationships.

• Section 6.7.2 shows the average change in beliefs between iterations during belief

propagation in Phase 2 of SPAN, to show that beliefs converge within a reasonable

number of iterations.

• Section 6.7.3 shows the effect of the weight exponent in Equation 6.4 on accuracy.

• Section 6.7.4 shows the change in accuracy observed when the network structure,

which Phase 2 of SPAN relies on, is altered. Specifically, we report accuracy changes

when we remove connections between fraudulent users, so that the collusive groups

appear less connected; and when we remove connections between fraudulent and

normal users, so that fraudulent groups become more isolated.

• Section 6.7.5 shows the change in accuracy when we reduce the quality of the

anomaly scores that are given to Phase 2 as input. Specifically, we randomly replace

different proportions of values of the observed states (normalised anomaly scores) of

fraudulent users using the observed states of normal users, and measure the effect

this has on detection accuracy. Similarly, we replace observed states of normal users

using the states of fraudulent users as well.
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To generate the results for 2LFS, the inputs used were: the auction graph, the optimised

propagation and observation matrices, and the same set of observed states that are input

to Phase 2 of SPAN. All evaluations were done on an Intel Core i5 machine with 8GB

RAM running Windows 7. All of the results reported in each section, and for each fraud

type, are average values from 20 datasets.

6.7.1 Performance

In addition to comparing SPAN and 2LFS, we also report results for Phase 1 of SPAN

alone, and results for traditional graph algorithms. Results for Phase 1 only shows the

effect Phase 2 has on accuracy. Results for traditional graph algorithms serves as the

baseline against which SPAN and 2LFS are compared.

Three sets of data were used, each of which contains one of the three fraud types

described in Section 3.5.5. Since the output of the SPAN algorithm is a ranked list of

scores, a higher true positive rate (TPR) can be obtained at a cost of a higher false

positive rate (FPR). Thus we report a range of TPR/FPR value pairs, ROC curves and

the AUC. Tables 6.5 to 6.7 show, for each algorithm, the area under ROC (AUC), and

the true positive rate (TPR) when the false positive rate (FPR) is 0.005, 0.01 and 0.05,

while Figures 6.6 to 6.8 show the ROCs.

The ROCs show that SPAN has much higher detection accuracy than 2LFS, especially

over low values of FPR. For collusive cliques, 2LFS has slightly better detection accuracy

when FPR is greater than 0.05, though at lower values, it performs worse than SPAN, with

and without the propagation phase. The results also show the value of the second phase

of SPAN, where accuracy is increased for all fraud types over all FPRs. Wilcoxon’s signed

rank test was used to ensure that the difference in performance from SPAN and 2LFS was

significant. Using a threshold of 0.01, each instance with the correct classification is given

a value of 1, otherwise 0. Using the alternative hypothesis that SPAN has more correctly

classified instances, the p-values were all less than 0.05 for each of 20 datasets for each of

the three fraud types, indicating that the accuracy improvement of SPAN over 2LFS is
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statistically significant.

Comparison with traditional graph algorithms

The search for connected groups of users in Phase 2 of SPAN has some similarities with

classical graph mining algorithms for finding maximal cliques and k-cores. To show that

SPAN outperforms these algorithms, we attempt to detect groups of fraudulent users

using their k-core and clique memberships. Briefly, a k-core of a graph G is the maximal

connected subgraph of G in which every vertex has degree of at least k [53]. A clique

is a set of vertices where every pair of vertices is connected by an edge. For each node,

we can find the value j, which is the highest k-core the node is a member of. All nodes

can be ranked using j. Given a threshold, we can treat nodes with j above the threshold

as anomalous, and calculate the proportion of legitimate and fraudulent users that are

found. Using every value of j as the threshold, we obtain a set of (TPR, FPR) pairs.

These pairs are used to construct the ROC curves in Figures 6.6 to 6.8, and calculate the

AUC. To obtain the values in Tables 6.5 to 6.7 for FPR values of 0.005, 0.01 and 0.05, we

simply use linear interpolation to find the corresponding TPR.

Similarly, we can find the largest clique each node belongs to, and apply the same series

of steps as for k-core. The results show that for Reputation Fraud and Collusive Cliques,

using cliques performs no better than a random-classifier. However, for collusive stars it

achieves almost perfect accuracy, since legitimate users almost never form cliques. That

is a limitation of the fraud agent programming, and it is possible to modify the agents so

that cliques do not form. In fact, if edges between fraudulent users were removed as for

experiments in Section 6.7.4, accuracy using clique detection would fall to zero.

Discussion

2LFS performs better than Phase 1 of SPAN when detecting reputation fraud, but worse

for collusive stars and collusive cliques; i.e. 2LFS actually produced a set of beliefs that

were less accurate than those given as input. There are several reasons for the poor

performance of 2LFS. First, 2LFS assumes that normal users do not form bipartite cores
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and do not behave as both bidders and sellers. However, this is false in the Aug 2012

dataset (described in Chapter 3) used in the case study in Chapter 7, where 90.01%

of users either bid or submit auctions, but not both. Given the states and structure

of the compatibility matrix chosen by 2LFS which tends to identify bipartite cores as

suspicious, this results in a high number of false positives. Second, 2LFS is tailored to a

specific fraud type: reputation fraud where the sellers are very unlikely to interact with

normal users except when they commit non-delivery fraud. As a result, for the collusive

star and collusive clique fraudulent behaviours, the accuracy of 2LFS is lower than Phase

1 of SPAN.

Using k-cores and cliques to identify users with unusually close trading relationships

yields limited success. For all three fraud types, using k-cores gives significantly lower

accuracy. Searching for cliques yields near perfect accuracy for Collusive Clique frauds

only. The difficulty with using this approach is that one must have prior knowledge of

the graph structures that the fraudulent agents will form, this is difficult especially in real

settings where users adapt their behaviour to avoid detection.

Table 6.5
Detection accuracy for reputation fraud

Method FPR=0.005 FPR=0.01 FPR=0.05 AUC StdDev

TPR StdDev TPR StdDev TPR StdDev

SPAN 0.985 1.91E-03 0.989 5.40E-04 1.000 0 1.000 8.58E-07
2LFS 0.071 1.42E-03 0.133 2.59E-02 0.761 0.292 0.959 8.14E-04
Phase 1 only 0.016 5.76E-04 0.091 1.68E-02 0.357 0.308 0.844 0.153
k-core 0.544 0.067 0.582 0.059 0.753 0.051 0.954 9.84E-03

Table 6.6
Detection accuracy for collusive stars

Method FPR=0.005 FPR=0.01 FPR=0.05 AUC StdDev

TPR StdDev TPR StdDev TPR StdDev

SPAN 0.223 5.74E-03 0.476 0.650 0.977 5.00E-03 0.985 3.54E-04
2LFS 0.141 1.35E-04 0.144 1.55E-04 0.314 0.141 0.756 0.014
Phase 1 only 0.152 3.01E-03 0.204 2.48E-02 0.809 0.305 0.924 0.050
k-core 0.043 0.012 0.086 0.024 0.197 0.010 0.783 7.18E-03
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Table 6.7
Detection accuracy for collusive cliques

Method FPR=0.005 FPR=0.01 FPR=0.05 AUC StdDev

TPR StdDev TPR StdDev TPR StdDev

SPAN 0.910 0.492 0.944 0.204 0.983 1.25E-02 0.992 3.00E-03
2LFS 0.036 2.99E-02 0.312 0.544 0.982 7.39E-03 0.980 1.36E-03
Phase 1 only 0.586 0.717 0.758 0.715 0.950 0.456 0.971 0.125
k-core 0.685 0.067 0.755 0.054 0.949 0.028 0.980 0.013

6.7.2 Convergence

Results show, empirically, that the node beliefs during belief propagation in Phase 2

of SPAN converges in 30 to 80 iterations. Convergence is generally reached within 30-

40 iterations for reputation fraud and collusive stars, and within 80-90 iterations for

collusive cliques. Figure 6.9 shows the average change in belief between each iteration of

belief propagation, averaged over 20 datasets.

6.7.3 Weight exponent

The effect of the weight exponent W{(j, i)} in Equation 6.4 on accuracy is reported here.

We compare the accuracy of the SPAN algorithm with and without the W term during

Phase 2. The accuracy results for all three fraud types are shown in Table 6.8. The

results show that accuracy is similar with and without the W term for reputation fraud

and collusive cliques. However, for collusive stars, omitting W greatly reduces accuracy.

The ROC curve in Figure 6.10 shows that accuracy is reduced to similar to that of 2LFS.

This result is reasonable if we consider the graph structure of each fraud type. For

both reputation fraud and collusive cliques, there are multiple edges that connect the

agents in the group together. The number of edges connecting the users allows the groups

to be identified even without the weight term. However, for collusive stars, each node is

only connected to another in the group by one edge, save the node at the star’s centre.

Thus, the weight term in Equation 6.4 is required for collusive stars to be detected, since

it takes into account the strength of the edge connecting the group.
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Table 6.8
Detection accuracy of SPAN with and without weight exponent W

Method FPR=0.005 FPR=0.01 FPR=0.05 AUC StdDev

TPR StdDev TPR StdDev TPR StdDev

Reputation fraud
SPAN 0.985 1.90E-03 0.989 5.70E-04 1.000 0 1.000 8.58E-07
No weight 0.989 6.40E-04 0.993 3.21E-04 1.000 0 1.000 1.14E-07

Collusive star
SPAN 0.223 0.283 0.476 0.650 0.977 5.00E-03 0.985 3.54E-04
No weight 0.101 2.90E-02 0.115 0.029 0.230 0.119 0.663 0.361

Collusive clique
SPAN 0.910 0.492 0.944 0.204 0.983 0.013 0.992 0.003
No weight 0.898 0.458 0.934 0.181 0.977 0.045 0.984 0.044

6.7.4 Edge removal

In this section, we evaluate the behaviour of the SPAN algorithm when different propor-

tions of fraud-fraud edges and fraud-normal edges are randomly removed. For example, if

20% of fraud-fraud edges were to be removed, then each edge connecting two fraudulent

users will have 20% chance of being removed. Below, we show how the number of detected

fraudulent users changes for the SPAN and 2LFS algorithms as the proportion of removed

edges changes from 0% to 100%. For all figures shown, the TPR values correspond to an

FPR value of 0.01.

Fraud-Fraud edge removal

As edges between fraudulent users are removed, they become more difficult to identify as

a group since the degree of their collaboration is reduced. As the proportion of all fraud-

fraud edges are removed, the accuracy of SPAN is expected to decrease. The accuracy of

SPAN, shown in Figure 6.12(a) decreases as expected for the fraud types collusive star

and collusive clique, and levels off when all edges are removed. This level of remaining

accuracy is likely due to the influence the observed nodes have on the final beliefs of the

hidden nodes for the fraudulent users.

However, for reputation fraud, the accuracy reduces to around 0.01 when roughly

30% of edges are removed, then increases again. We suspect the extreme changes in

accuracy may be due to the fraudulent accounts connected as a single bipartite core

(Figure 6.11(a)). When sufficient fraud-fraud edges are removed, the belief of the fraud

nodes decreases since most interactions are now with normal users (Figure 6.11(b)), which
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in turn affects all other nodes in the bipartite core, causing all beliefs in the network to

change. As even more edges are removed, fraudulent users become isloated and no longer

affect each others’ beliefs (Figure 6.11(c)), at which point the observed nodes have greater

influence over the final belief of the fraudulent users, causing the accuracy to increase.

The change in accuracy for 2LFS is generally as predicted. The consistent accuracy

for collusive star is due to all ROCs having the same TPR when FPR = 0.01 when

different proportions of fraud-fraud edges are removed. This is explained in more detail

in Appendix E.

Fraud-Normal edge removal

As edges between normal and fraudulent users are removed, the collaborative frauds

become more isolated. Accuracy is expected to increase as the proportion of fraud-

normal edges are removed. Figure 6.13(a) shows that the accuracy changes as expected

for all three fraud types for SPAN. There are much more significant increases in accuracy

for collusive star since accuracy is lower to begin with, so that there is more room for

improvement when fraud-normal edges are removed.

The unpredictability in the accuracy for 2LFS is likely due to the various assumptions

about bipartite cores and user networks being met or violated when different proportions

of edges are removed. The relatively consistent accuracy for reputation fraud is explained

in Appendix E.

6.7.5 Randomized states for observed nodes

This section evaluates the effect on final accuracy when we add noise to the states of

observed nodes (normalised anomaly scores from Phase 1) used as input to Phase 2 of

SPAN. This is done by reassigning the states of a proportion of the observed nodes. If

we were to change 20% of the states for fraudulent users, each observed node would have

a 20% probability of having their states replaced with that of a normal user’s state. The

normal user is chosen at random, with replacement. In Section 6.7.5, we report the effect
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on detection accuracy as the proportion of states changed increases from 0% to 100% for

the observed nodes of fraudulent users. In Section 6.7.5, we report the results for the

reverse by changing the observed states for normal users. In Figures 6.14 and 6.15, the

TPR values correspond to an FPR value of 0.01.

Randomised states of observed nodes for fraudulent users

As we increase the proportion of observed nodes’ states that are reassigned for fraudulent

users, detection accuracy is expected to decrease. Figure 6.14 shows that the accuracy for

all three fraud types changes as expected. The accuracy for detecting collusive stars and

collusive cliques changes gradually, while accuracy for reputation fraud decreases much

more abruptly. Once again, this is due to the single bipartite core formed by the fraudulent

users, so that the beliefs of all users in the core heavily influence each other. It should

be noted that when less than 15% of states are changed, there is very little change in

the accuracy for SPAN. This value is higher for collusive stars and collusive cliques. The

relative resilience of 2LFS for reputation fraud is due to the ability of 2LFS to specifically

identify bipartite cores due to the propagation matrix selected, despite inaccurate initial

beliefs for fraudulent nodes, as noted previously in [13]. The change in accuracy for the

other two fraud types for 2LFS is as expected. The constant accuracy for collusive star

is explained in Section E.

Randomised states of observed nodes for normal users

As we increase the proportion of observed nodes’ states that are reassigned for normal

users, detection accuracy is expected to decrease. Figure 6.15 shows that the direction

of change is again as expected. Once again, the change in accuracy when detecting

reputation fraud is different from collusive star and collusive clique due to the size of the

bipartite core. Unlike results in Section 6.7.5, accuracy begins falling immediately when

score states are changed. This is particularly marked for collusive star. This is likely due

to the lower quality of scores generated by SPAN in Phase 1 for collusive star, compared

to the other two fraud types (compare Figures 6.6 to 6.8). The reason behind 2LFS’s
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resilience for Reputation Fraud is the same as before: due to the ability of 2LFS to focus

on bipartite cores. The change in accuracy for the other two fraud types for 2LFS is as

expected. Once again, the constant accuracy for collusive star is explained in Section E.

6.8 Conclusion

Existing fraud detecting approaches have several limitations that make them less effective

when used in a real world setting. First, each method is designed for one type of fraud,

and will gradually lose accuracy as fraud behaviour changes over time. They will also be

ineffective for detecting other types of fraud. Second, the majority of existing methods do

not make use of the user interaction graph to detect collaborative frauds. Third, datasets

used in previous work are limited: no previous work has validated their synthetic data

before use, and ground truth cannot be known for real data.

We propose a method called SPAN for identifying groups of users that commit fraud

collaboratively. SPAN is able to accurately identify groups of fraudulent users committing

a range of collaborative frauds. The advantage of SPAN over previous methods is due

to two factors. Firstly, the use of an anomaly detection approach to label all users who

behave differently from the majority as suspicious. This allows different types of unusual

behaviours to be detected without the need to define them explicitly. Secondly, SPAN

assumes that fraudulent users are more likely to interact with each other than with normal

users, without assuming patterns in those interactions. SPAN’s weaker assumptions are

less likely to be violated, which allows SPAN to perform well under a wider range of

conditions than previous methods such as 2LFS.

For evaluation, we generated multiple sets of validated synthetic data which contain

three different types of fraud. The extensive evaluations performed show that SPAN is

able to perform well across a range of fraud types, and that both phases of SPAN are

valuable in accurately identifying groups of fraudulent users. We have also evaluated

SPAN’s behaviour under different conditions, and found that the behaviour of SPAN is

generally consistent with intuition.
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Fig. 6.5. Collusive Clique
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Fig. 6.6. Average ROCs for SPAN, 2LFS and without score propagation for reputation
fraud
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Fig. 6.13. TPR of 2LFS with different proportions of edges between fraud and normal
nodes removed
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Fig. 6.14. TPR with different proportions of fraud nodes’ observed states changed
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7
Case study: TradeMe

7.1 Introduction

SPAN is applied to the Aug 2012 dataset. Since the dataset is unlabelled, we will present

results for the numbers of potentially fraudulent users identified by SPAN and 2LFS, the

characteristics of those users, and present some examples of users identified as fraudulent.

The results indicate that the behaviour of SPAN is reasonable when applied to real data,

and when compared to 2LFS. The parameters for SPAN and 2LFS are the same as those

described in Section 6.5.

115
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7.2 Results

Section 7.2.1 describes the number of fraudulent users found by SPAN and 2LFS. Sec-

tions 7.2.2 and 7.2.3 compare the characteristics of the fraudulent and normal groups.

Sections 7.2.4 gives some examples of some potentially fraudulent groups found.

To understand the types of users found by each algorithm, we also describe the char-

acteristics of the group as a whole, and give several examples of the users identified as

suspicious.

7.2.1 Number of users found as fraudulent

Each phase of SPAN and 2LFS produces values between 0 and 1 for each user. We define

any user with a score above 0.5 as an outlier or as potentially fraudulent. Using this

definition, we can divide the set of users into groups: as legitimate users and outliers

in Phase 1, and as legitimate and fraudulent users in Phase 2 and 2LFS. A threshold

is used instead of selecting a fraction of users with the highest scores, as done in the

synthetic data evaluation in Section 6.7 in Chapter 6, due to the difficulty in selecting an

appropriate threshold without information about the frequency of suspicious users in the

data.

Phase 1 SPAN identifies 2702 users as outliers, and Phase 2 identifies 1432 users as

potentially fraudulent, as seen in Figure 7.1. Of the 2702 outliers identified in Phase

1, 2263 were classified by Phase 2 as normal, and the remaining 439 as fraudulent. An

additional 993 non-outliers were classified as potentially fraudulent in Phase 2, totalling

1432 users (1.26%) which are potentially fraudulent.

The anomalies identified in Phase 1 that were classified as normal in Phase 2 may

be due to the removal of false positives as discussed in Section 6.4. The additional users

identified as fraudulent in Phase 2 are due to the use of network information. That is,

Phase 2 identifies groups of users who may, individually, have low anomaly scores, but

are identified because of their interaction with other suspicious users. The vast majority

of users (109716 or 96.7%) were identified as neither outliers nor fraudulent by SPAN.
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This is shown in Figure 7.1(a). This compares to 2LFS, where 7182 users (6.33%) were

identified as fraudulent, which includes all but 19 of the users identified as outliers, in

addition to 4503 other users (Figure 7.1(b)).

The degree of overlap in the users classified as potentially fraudulent by SPAN and

2LFS is shown in Figure 7.2. 679 users were classified as fraudulent by both SPAN

and 2LFS, which corresponds to 47.4% of users identified by SPAN, and 9.45% of users

identified by 2LFS.

2263 439

109716

993

Outlier Fraud

(a) SPAN

19 2679

106210

4503

Outlier Fraud

(b) Phase 1 + 2LFS

Fig. 7.1. The number of users labelled as outliers in Phase 1, and classified as fraudulent
by SPAN and 2LFS

7.2.2 Descriptive statistics of user groups

The set of users can be divided into four groups: those identified by both SPAN and 2LFS

as potentially fraudulent (Both); those identified as fraudulent by SPAN only (SPAN

only); those identified as fraudulent by 2LFS only (2LFS only); and those identified

753 679

105476

6503

SPAN 2LFS

Fig. 7.2. The number of users classified as fraudulent by SPAN and 2LFS
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by neither SPAN nor 2LFS as fraudulent (Normal). We report the average values for

user-features and graph-features for each of these groups, in addition to the outlier/non-

outlier groups found by Phase 1 SPAN to illustrate characteristics of the users identified

as fraudulent by SPAN and 2LFS. Tables 7.2 to 7.9 reports these average values, as well

as the percentage difference of each group compared to the Normal group.

As seen in Table 7.2, there are some differences in the average values for each user-

feature between outlier/non-outlier groups. For SPAN, the fraudulent users identified

have very similar average values compared to the normal users, where no percentage

difference is greater than 10%. This result is expected since SPAN identifies fraudulent

users based on the interaction between users, instead of individual behaviour. However,

for 2LFS, there is a significant difference in the values of both φ2 and φ5. It should be

noted that users that behave solely as sellers are not included in this table, as they do

not have values for these user features.

The average graph feature values for users identified as outliers are significantly differ-

ent to non-outliers, as shown in Tables 7.5 and 7.8, with 7 features having a percentage

difference of 100 or greater. This is expected, since the outliers are identified based on

graph feature pairs. However, for SPAN, the magnitude of these differences decreased

after Phase 2, while for 2LFS, they increased, as shown in Tables 7.6 and 7.9. This is due

to SPAN and 2LFS focussing on different types of users. We describe and examine the

types of users identified by each algorithm in the next subsection.

Each phase of SPAN and 2LFS produces values between 0 and 1 for each user. We

define any user with a score above 0.5 as an outlier or as potentially fraudulent. Using

this definition, we can divide the set of users into groups: as normal users and outliers in

Phase 1, and as normal and fraudulent users in Phase 2 and 2LFS.

From Phase 1 of SPAN, 2544 users had an anomaly score of above 0.5. The remaining

104263 users had a score equal or below 0.5. After Phase 2, 1348 users (1.26%) had a

final score above 0.5, as shown in Figure 7.1(a). This compares to the 6771 users (6.34%)

identified as fraudulent by 2LFS, as shown in Figure 7.1(b). The figures also show that

some of the users identified as anomalous had their final scores lowered during Phase 2
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to be labelled as normal, while most of the outliers were classified as fraudulent by 2LFS.

Even though we lack data on the rates of user fraud in the dataset, a fraud rate of 1.26%

seems reasonable, while the rate of 6.34% is higher than expected, potentially a result

of false positives. Appendix F gives some examples of potential false positives found by

2LFS compared to SPAN.

Table 7.1
Degree of overlap in users identified by SPAN and 2LFS.

SPAN 2LFS Both

All 1892 6771 639
Egonet edge count > 1 1161 6059 516

Table 7.2
Average value of user features for bidders identified as outliers

User feature Normal Outlier % diff

φ1 7.535 7.358 -2.35
φ2 1.629 2.360 44.83
φ3 0.515 0.399 -22.58
φ4 1.156 1.225 6.01
φ5 0.467 0.517 10.75
φ6 0.781 0.709 -9.17
φ7 0.486 0.424 -12.86
φ8 1859.454 1881.955 1.21
φ9 7.606 7.418 -2.48
φ10 0.866 0.811 -6.31

Table 7.3
Average value of user features for normal and potentially fraudulent bidders

User Feature Classifications by SPAN Classifications by 2LFS

Normal Fraud % change Normal Fraud % change

φ1 7.53 7.73 2.7 7.53 7.50 -0.5
φ2 1.64 1.75 6.8 1.60 2.50 56.3
φ3 0.51 0.52 1.7 0.51 0.50 -3.1
φ4 1.16 1.15 -1.0 1.15 1.23 6.4
φ5 0.47 0.46 -1.1 0.46 0.52 12.5
φ6 0.78 0.80 2.7 0.78 0.74 -5.2
φ7 0.48 0.51 4.5 0.49 0.46 -5.0
φ8 1859.72 1870.81 0.6 1867.07 1718.39 -8.0
φ9 7.60 7.78 2.4 7.61 7.52 -1.1
φ10 0.86 0.88 2.0 0.87 0.85 -2.4

7.2.3 Types of users found

SPAN and 2LFS identify different types of users as fraudulent. SPAN identifies users

with a range of auction participation frequencies while 2LFS tends to identify users that
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Table 7.4
Average value of user features for normal bidders and bidders identified as potentially fraudulent by
SPAN and 2LFS

User feature Normal SPAN only 2LFS only Both

Fraud % change Fraud % change Fraud % change

φ1 7.53 7.78 3.4 7.50 -0.4 7.51 -0.2
φ2 1.60 1.63 1.7 2.52 57.3 2.28 42.7
φ3 0.51 0.52 0.6 0.49 -3.7 0.54 5.7
φ4 1.15 1.14 -0.9 1.23 6.8 1.16 0.4
φ5 0.46 0.46 -0.9 0.53 13.3 0.47 1.3
φ6 0.78 0.81 3.5 0.74 -5.4 0.77 -1.9
φ7 0.49 0.51 4.2 0.46 -5.6 0.51 4.4
φ8 1866.96 1875.23 0.4 1708.96 -8.5 1852.14 -0.8
φ9 7.60 7.84 3.1 7.52 -1.1 7.54 -0.9
φ10 0.87 0.89 2.4 0.84 -2.5 0.86 -0.4

Table 7.5
Average value of graph features for bidders identified as outliers

Graph edge Node attribute Normal Outlier % diff

Loss Edge count 1.10 2.12 92.93
Loss Weight count 1.30 3.53 171.34
Participation Weight count 2.95 6.39 116.70
Seen Egonet edge count 6.91 13.80 99.77
Seen First eigenvalue 2.02 6.54 223.49
Seen Repeat count 0.81 2.78 244.46
Win Edge count 1.37 2.05 49.55

Table 7.6
Average value of graph features for bidders identified as potentially fraudulent

Graph edge Node attribute Classifications by SPAN Classifications by 2LFS

Normal Fraud % diff Normal Fraud % diff

Loss Weight count 1.34 1.94 45.4 1.17 4.90 320.0
Loss Edge count 1.12 1.19 6.6 1.03 2.97 189.1
Participate Weight count 3.00 4.40 46.9 2.66 10.13 281.0
Seen Egonet edge count 7.04 7.32 4.0 5.36 40.22 649.8
Seen Repeat count 0.82 2.58 214.6 0.48 8.08 1578.4
Seen First eigenvalue 2.03 3.30 62.2 1.78 7.55 325.3
Win Edge count 1.39 1.48 6.9 1.28 3.55 177.5

Table 7.7
Average value of graph features for normal bidders and bidders identified as potentially fraudulent by
SPAN and 2LFS

Graph edge Node attribute Normal SPAN only 2LFS only Both

Fraud % change Fraud % change Fraud % change

Loss Weight count 1.16 1.25 6.6 4.90 292.9 4.88 291.4
Loss Edge count 1.03 0.97 -6.0 3.03 212.3 2.14 120.6
Participate Weight count 2.65 2.91 8.8 10.09 246.7 10.69 267.2
Seen Egonet edge count 5.38 4.49 -19.7 41.70 828.3 19.26 328.9
Seen Repeat count 0.48 0.89 46.7 7.97 792.9 9.68 984.6
Seen First eigenvalue 1.77 2.05 13.8 7.48 264.2 8.55 316.2
Win Edge count 1.28 1.18 -8.5 3.60 205.4 2.76 133.6
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Table 7.8
Average value of graph features for sellers identified as outliers

Graph edge Node attribute Normal Outlier % diff

Connected seller Edge count 42.75 37.97 -11.18
Connected seller Weight count 47.07 46.65 -0.89
LossT Repeat count 0.72 1.66 131.49
ParticipateT Edge count 7.73 8.58 10.94
ParticipateT Weight count 9.71 11.63 19.67
Seen Egonet weight 24.22 80.88 234.00
Seen First eigenvalue 3.30 7.11 115.34
Seen Repeat count 2.46 3.84 56.17

Table 7.9
Average value of graph features for sellers identified as potentially fraudulent

Graph edge Node attribute Classifications by SPAN Classifications by 2LFS

Normal Fraud % diff Normal Fraud % diff

Connected Seller Weight count 47.56 27.94 -41.3 22.88 158.05 590.8
Connected Seller Edge count 43.03 22.16 -48.5 22.57 133.98 493.6
Seen Repeat count 2.46 5.09 106.6 0.76 10.69 1315.5
Seen First eigenvalue 3.35 4.40 31.5 2.43 7.73 218.0
ParticipateT Edge count 7.87 4.58 -41.7 3.69 26.58 620.9
ParticipateT Weight count 9.85 8.63 -12.4 4.12 36.00 774.2
LossT Repeat count 0.75 1.55 107.5 0.07 3.98 5910.8
Seen Egonet weight count 25.35 25.87 2.1 11.81 87.60 641.9

participate in a high number of auctions. This is seen in Figure 7.5, which shows the cu-

mulative distribution of edge counts of the identified fraudulent users. The figure shows

that, for example, 28.9% of users identified by 2LFS as potentially fraudulent have 3 edges

or fewer, while 77.8% of users identified by SPAN have 3 edges or fewer, as shown in Fig-

ure 7.5(a). In addition, most of the potentially fraudulent users identified by both SPAN

and 2LFS tend to have a high number of transactions as well, as shown in Figure 7.5(b),

and the users identified by SPAN only have a similar edge count distribution to normal

users.

We also observe that users identified as fraudulent by SPAN tend to be more closely

Table 7.10
Average value of graph features for sellers identified as potentially fraudulent by SPAN and 2LFS

Graph edge Node attribute Normal SPAN only 2LFS only Both

Average % change Average % change Average % change

Connected Seller Weight count 22.97 12.47 -84.2 172.54 1283.5 33.96 172.3
Connected Seller Edge count 22.66 12.32 -83.9 146.60 1089.8 25.99 111.0
Seen Repeat count 0.75 1.49 49.7 11.18 651.7 6.49 336.4
Seen First eigenvalue 2.43 2.68 9.3 8.04 200.3 5.08 89.6
ParticipateT Edge count 3.70 2.03 -82.3 29.03 1329.5 5.58 174.7
ParticipateT Weight count 4.13 2.65 -56.0 38.92 1370.1 10.95 313.7
LossT Repeat count 0.07 0.07 1.6 4.20 6136.1 2.12 3051.8
Seen Egonet weight count 11.82 10.16 -16.4 94.10 826.6 31.98 214.9
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connected to each other compared to those found by 2LFS. This can be seen in Figure 7.7

where potential frauds found by SPAN have a higher proportion of interactions with other

potential frauds compared to 2LFS. For example, for 56.8% of frauds identified by SPAN,

75% of interactions are with other potentially fraudulent users, compared to 30.9% for

2LFS.

The behaviour of SPAN may be more desirable than 2LFS, since SPAN is more likely

to identify colluding groups of users that have a wide range of auction participation

frequencies, instead of focussing on high-activity users as 2LFS does.

7.2.4 Potentially fraudulent groups found

Out of the 993 potentially fraudulent users identified, 410 had a two-node egonet. The

majority of the remaining users with 2 or more neighbours had star egonets, with 511

stars and 14 with 1 or more edges between neighbours. Figure 7.3 gives an example of a

star egonet, while Figure 7.4 gives an example of a non-star egonet.

Figure 7.10 shows the egonets of 3 suspected frauds. Figure 7.10(a) was identified as

fraudulent by SPAN but not 2LFS, (b) was identified by 2LFS but not SPAN, while (c)

was identified by both SPAN and 2LFS as fraudulent. Due to the nature of the dataset,

the egonets of most users are stars, where the neighbours of a user are unlikely to have

interacted with each other. Thus, the users identified by both SPAN and 2LFS tend to be

star-like. However, on average, the fraudulent users identified by SPAN and 2LFS tend

to be less star-like than normal users. This is shown in Table 7.11 and in Figure 7.10.

This indicates that SPAN is able to identify anomalous groups of users that form tighter

networks than the vast majority of users.

7.2.5 Convergence

Node beliefs stabilise within around 20 iterations in Phase 2. The number of iterations

for convergence is in the same order as that observed for synthetic data in Section 6.7.2.
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Fig. 7.3. Example of a star egonet of suspected fraud 3213612

Fig. 7.4. Example of a non-star egonet of suspected fraud 2770442
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Fig. 7.5. Cumulative distributions of edge counts for suspected users

Table 7.11
Average number of connections between neighbours, normalised by node edge degree

Normal Span Span only Both 2LFS only 2LFS

Average 0.0034 0.0255 0.0085 0.0611 0.0487 0.0499



124 Case study: TradeMe

100 101 102

0

0.2

0.4

0.6

0.8

1

Edge count

N
or

m
al

is
ed

fr
eq

u
en

cy

All SPAN
All 2LFS

(a) Cumulative distribution of weight counts

100 101 102

0

0.2

0.4

0.6

0.8

1

Weight count

N
or

m
al

is
ed

fr
eq

u
en

cy

Both
SPAN only
2LFS only
Normal

(b) Cumulative distribution of weight counts

Fig. 7.6. Cumulative distributions of weight counts for suspected users
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Fig. 7.9. Cumulative fraction of nodes with edges between neighbours as edge count
increases

7.3 Conclusion

We applied SPAN to a real online auction dataset. The results show that SPAN behaves

reasonably with real data. SPAN identified 1.26% of users as potentially fraudulent, which

is within expectations, and the users identified have characteristics that are consistent with

fraud. SPAN also compares favourably against 2LFS.
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(a) Egonet of 1073135 (b) Egonet of 266810

(c) Egonet of 18281

Fig. 7.10. Example egonets of suspected frauds identified by (a) SPAN only, (b) 2LFS
only and (c) both SPAN and 2LFS. Coloured nodes denote potentially fraudulent users.



8
Conclusion and future work

Past research in reducing fraud in online auctions has typically focussed on three fraud

types: shilling, reputation fraud and non-delivery fraud. Developing effective methods to

predict or detect instances of fraud has been difficult for several reasons, including: lack of

fraud cases, lack of appropriate datasets, evolving fraudulent and normal behaviour, and

heterogeneity in normal behaviour. Our research focussed on addressing some of these

challenges. This chapter presents a summary of our research, its contribution, limitations

and possible future work.
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8.1 Summary

To solve the problem of a lack of datasets, we designed and implemented an agent based

model (ABM) in Chapter 3. The simulation is based on real auction data, and is capable

of generating realistic synthetic data. An ABM is used because it naturally describes a

system of entities, including online auctions, it is flexibile, and it can capture emergent

behaviour that is otherwise difficult to model. The implementation of the model, and

validation of the synthetic data is given in Chapter 3. We also propose a set of features

to describe general bidding behaviour of users. Transforming the set of auctions and bids

into these features allows user behaviour to be understood more easily, and simplifies

synthetic data validation.

In Chapter 4, the simulation is extended with additional agents with fraudulent be-

haviour. The simulation is able to generate synthetic data containing different types of

fraud, and is used to evaluate three fraud detection algorithms.

We then propose, in Chapter 5 the use of the simulation together with supervised

machine learning techniques to create models for detecting arbitrary types of fraud. We

demonstrate this with two types of fraud agents, and use the resulting synthetic data

to train multiple decision trees. Results show that this method outperforms another

manually crafted fraud detection algorithm.

In Chapter 6, we proposed an unsupervised anomaly detection method, SPAN, which

avoids some additional challenges of the previous approach, specifically the need for re-

training of models when the behaviour of normal or fraudulent users changes. SPAN also

improved on the previous approach by making use of network-level features to identify

groups of fraudulent users and to increase accuracy. SPAN is applied to a real dataset in

Chapter 7.

8.2 Contributions

The contributions of this thesis are:
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1. We surveyed literature related to online auction fraud, and discuss and compare

them in terms of the three main stages in developing fraud detection techniques:

definition of the fraud of interest, feature set selection, and model construction. The

challenges encountered by previous methods is also discussed.

2. We designed and implemented an agent-based simulation of online auctions for gen-

erating synthetic auction data. Agents in the simulation are modelled on real online

auction data by transforming the original data into a set of 10 features to describe

user behaviour, and applying clustering to identify patterns in user behaviour. The

synthetic data is objectively compared against real auction data using statistical

and clustering methods, and the results show that the synthetic data is similar to

real auction data.

3. The simulation is demonstrated as a tool for evaluating fraud detection algorithms.

Using the generated synthetic data and three shilling fraud agents, the accuracy of

three different fraud detection algorithms was evaluated and compared.

4. We presented a framework for creating classifiers using supervised machine learn-

ing methods and synthetic data. The method allows classifiers for arbitrary fraud

types to be constructed, provided that they are defined as agents in the simula-

tion. Evaluations performed using synthetic data containing three different types

of fraud show that the models trained this way are more accurate than previously

proposed methods, and evaluations using real data show they identify users who

appear suspicious. We also proposed a set of 10 features that characterise general

bidding behaviour and which produce classifiers with higher accuracy.

5. We proposed an unsupervised fraud detection algorithm based on anomaly detection

in graphs. The method identifies groups of closely collaborating users who exhibit

unusual characteristics. Network information was used to improve accuracy by

calculating an initial anomaly score value using LOF, then revising that score using

belief propagation so that neighbours in the network tend to have similar scores.
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The method was evaluated using synthetic data under a range of conditions and

compares favourably to other related methods. A case-study using real data shows

the method identified a reasonable number of users as suspicious, who appear to be

different from the majority of users.

8.3 Limitations

The first limitation is the dataset collected from TradeMe is limited: it is incomplete

and contains only information that is publicly accessible. If additional information about

users is available, such as log-in frequency, log-in times, web page access information, or

associated IP-addresses, a greater set of features can be built, and different approaches

can be used to detect fraud. For example, identifying multiple accounts that are likely

controlled by the same person by comparing their page visit orders and duration to detect

suspicious behaviour.

The second limitation is that for each of the approaches we proposed for fraud de-

tection, supervised or unsupervised, there is a trade-off between false positives and true

positives: additional true positives come at the cost of additional false positives. The

optimal trade-off depends on the relative cost and frequency of false positives and true

positives. In addition, in a real setting, cases may be manually examined before users are

declared fraudulent or normal. Since these costs are unknown, our work does not take

these factors into account, and simply reports performance over the entire range using

the ROC curves.

8.4 Future work

Below, we list possible future work based on three chapters:

Chapter 3: Auction simulation

• As noted previously, currently the simulation does not model user behaviour well
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near the end of auctions, since the length of the simulation time unit is constrained

by computational time. One possible solution would be to reduce the length of time

units for users participating in auctions that are close to ending, e.g. the last 2%

of a 7-day auction, or 3.36 hours. This would increase computational cost slightly

due to additional overhead and agent execution frequency, but may increase model

accuracy significantly.

Chapter 5: Supervised fraud detection

• Our proposed feature set for describing general bidder behaviour has been shown

to produce models of higher accuracy. However, this claim should be tested using

additional agent types.

• Other methods of selecting relevant features are available. In our work, the features

used are selected based on previous work and domain knowledge. Instead, another

strategy may be to select a large number of features, then apply feature selection or

dimensionality reduction techniques to discard irrelevant features. This may reduce

the need for domain knowledge for selecting a small set of relevant features.

• Two supervised learning methods were used. Other methods such as Naive Bayes,

k-nearest neighbour algorithms, or support vector machines may achieve higher

accuracy.

Chapter 6: Unsupervised fraud detection

• One of the difficulties when applying SPAN is parameter selection. While the pa-

rameters may be tuned by creating an additional partition, the parameter space

is large since Phase 1 and 2 of SPAN is coupled, so that search must be over pa-

rameters of both phases at once. This requires large amounts of additional time

and data. In addition, this tuning can only be done with labelled data, which is

unavailable in a real application setting.
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• Related to this is the definition of possible states for users. In SPAN, nodes had two

states: fraudulent and normal. While the fraudulent state includes accomplices who

work with fraudulent users without directly committing fraud, it may be valuable to

extend SPAN to identify accomplices explicitly by redefining the φ and ψ matrices.

The difficulty is selecting appropriate matrix values.

• There are many methods of calculating anomaly scores in Phase 1. The method

currently used, LOF, performs adequately, but has some known weaknesses. For ex-

ample, if density changes gradually across the input space, LOF will assign anoma-

lies low anomaly scores. It may be worthwhile to investigate alternative measures,

or to augment LOF, which is a relative density measure, with an absolute density

measure such as simple k-means.

• Currently SPAN is an offline algorithm. However it is possible to extend SPAN to

be an online algorithm to make it more useful in a real setting. To do so, Phase 1

can be extended to incrementally update scores in the online setting according to

user actions (e.g., auction participations, auction wins, and so on). For Phase 2,

additional users and interactions correspond to new nodes and edges in the MRF

model. The beliefs of the existing nodes are simply retained, and the belief propaga-

tion algorithm simply iterates using the new observed node values and propagation

values until convergence.
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A
Pseudocode

A.1 Simulation execution

Algorithm 2 shows the pseudocode for the agent-based simulation. Agents represent-

ing bidders and sellers are instantiated in lines 2-7. The agents and the auction house

communicate via buffers P and Q, instantiated in lines 9-10. Execution then alternates

between the auction house and the agents in lines 12-20. All auctions and bids submitted

by agents are stored in S, instantiated in line 11.
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Algorithm 2 Pseudocode for simulation execution

Input: array of agent types: T , array of agent counts: N , simulation length: L
Output: Synthetic data: S

1: U = newList . List containing agent instances
2: for i ∈ [1..T.length] do . For each agent type, instantiate the number wanted
3: for n ∈ [1..N [i]] do
4: ui,n = instantiateAgentType(T [i])
5: U = U .add(ui,n)
6: end for
7: end for
8: H = instantiateAuctionHouse()
9: P = newList . List of messages generated by the agents

10: Q = newList . List of messages generated by the auctioneer
11: S = newList . All messages from agents; synthetic data
12: for i ∈ [1..L] do
13: Q = H.run(i, P )
14: P = newList
15: for all u ∈ U do
16: Pu = a.run(i, Q(u))
17: P = P .add(Pu)
18: end for
19: S = S.add(P )
20: end for

A.2 Normal agent

Pseudocode in Algorithms 3 and 4 show the basic behaviours for the normal agents imple-

mented in the simulation. The variables defined in Algorithm 3 for each agent persist over

the duration of the simulation. There are two types of normal agents in the simulation,

based on what is observed in the collected data: early bidders, and snipers, who have

different bidding strategies. Early bidders tend to begin bidding in auctions early, while

snipers wait until just before auction termination before beginning to bid. The difference

in these bidding behaviours are encapsulated in the function participationTime(), which

generates the time an agent should begin bidding for an auction, or revisit it for possible

rebidding. Lines 1-13 are for handling different message types sent from the auctioneer

agent. Each time the agent decides to participate in an auction, it also decides on the

next time it will participate in another new auction (lines 3-6). Participation does not

immediately take place; instead the agent decides on a time unit in the future at which
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to consider submitting a bid. Lines 14-22 show that at each time unit, the agent will

also monitor the auctions it is participating in, and submit a bid if conditions are met. It

is worth noting that the methods privateValuation(), nextAuctionTime(), participation-

Time(), shouldBid(), and amountToBid() use pseudorandom numbers to add variability

to agent behaviours.

Algorithm 3 Pseudocode for agent instantiation

1: v = privateValuation()
2: L = newList . List of auctions to check on
3: n = nextAuctionTime()

Algorithm 4 Pseudocode for the execution of a normal bidder agent over 1 time unit

Input: current time unit: time, messages for agent u: Mu

Output: messages for auctioneer: Nu
. Process messages sent by the auctioneer

1: for all m ∈Mu do . Each message has an associated type and auction
2: if m.type == New then . Message type is about a new auction
3: if time > n then
4: f = participationTime()
5: L = L.add(f,m.auction) . Assign a future time f to bid in auction
6: n = nextAuctionTime() . Assign a time for the next auction participation
7: end if
8: else if type == Price change then . Message type for a new auction bid
9: continue

10: else if type == Expiring then . Message about an auction close to expiring
11: continue
12: end if
13: end for

. Actions performed during every time unit
14: for all {l | l ∈ L ∧ l.f ≤ time} do . Set of auctions to be checked now
15: L = L.remove(l) . Remove auction once it has been checked
16: if shouldBid(t, l.auction, v) then
17: amount = amountToBid(l.auction, v) . Based on price and private valuation
18: bid = newBid(l.auction, amount) . Instantiate a new bid
19: Nu = Nu.add(bid) . Add the bid to the set of messages for the auctioneer
20: f ′ = participationTime()
21: L = L.add(f ′, l.auction) . Assign a future time for rebidding in auction
22: end if
23: end for
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A.3 Shill agent

The pseudocode shown in Algorithms 5 and 6 are for the simple shill agent. The variables

defined in Algorithm 5 for each agent persist over the duration of the simulation. Algo-

rithm 6 shows that the actions of the shill is divided into two parts, similar to normal

agents, as shown in Figure 3.2. Lines 1-7 are for processing messages from the auctioneer

agent, where new fraudulent auctions submitted by the selling agent is recorded. Then,

in lines 8-13, the agent will iterate through each current shill auction, and submit a bid

to the auctioneer if all directives are satisfied.

The pseudocode for the late-start shill agent is similar. An additional condition is

added at line 9, testing whether sufficient time has elapsed since the start of the auction.

For the legitimate-bidding agent, an additional test is added between lines 5 and 6 to

identify messages of type Expiring, and bid in those auctions which are legitimate and

have a low price.

Algorithm 5 Pseudocode for shill bidding agent instantiation

Input: parameters: α, β, γ

1: v = privateValuation()
2: L = newList . List of auctions to check on
3: n = nextAuctionTime()
4: S = newList . List of fraudulent auctions

A.4 Collaborative reputation fraud agents

The reputation fraud agent controls a set of bidding and selling agents. Both agent

types have the behaviours of normal agents, similar to that shown in Algorithm 4, the

only difference being that the agent can submit bids and auctions in their name for the

purpose of reputation inflation. Algorithm 7 instantiates the lists of selling (RS) and

bidding (RB) agents, and stores the average target for reputation inflation for each agent

(T [i]). Algorithm 8 shows the execution of the agent, where it submits auctions in the

name of the selling agents it controls (lines 9-14). The function exp(1/µ) returns a value

drawn from the exponential distribution with mean µ. The agent also processes messages
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Algorithm 6 Pseudocode for the execution of a simple shill bidding agent over 1 time
unit
Input: current time unit: time, messages for agent u: Mu

Output: messages for auctioneer: Nu
. Process messages received

1: for all {m | m ∈Mu ∧m.type ==New ∧ m.auction ∈ S} do
2: S = S.add(m.auction)
3: end for
. Actions performed during every time unit

4: for all auction ∈ S do . Check on all shill auctions
5: if isTerminated(auction) then
6: S = S.remove(auction)
7: continue
8: end if
9: if (directive3(θ, auction, time) & directive4(α, auction) &

10: directive5(µ, auction, time)) then
11: amount = nextMinimumBid(auction) . Minimum allowed bid per directive 1
12: bid = newBid(auction, amount)
13: Nu = Nu.add(bid)
14: end if
15: end for

from the auctioneer notifying it when the same auctions are about to expire, and submits

bids using the bidders it controls (lines 1-8).

Algorithm 7 Pseudocode for collaborate reputation fraud agent instantiation

1: RS = newArray[50] . Agents wanting reputation inflation
2: T = newArray[50] . Stores the inflation target
3: N = newArray[50] . Stores the next time to submit a fraudulent auction
4: S = newList . List of fraudulent auctions
5: for i ∈ [1..50] do
6: RS[i] = instantiateAgentType(TRepSeller)
7: T [i] = U(30, 100) . Inflation target drawn from a uniform dist.
8: N [i] = exp(1/T [i]) . Draw from exponential dist. with mean T [i]
9: end for

10: RB = newArray[400]
11: for i ∈ [1..400] do
12: RB[i] = instantiateAgentType(TRepBidder)
13: end for
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Algorithm 8 Pseudocode for the execution of a collaborate reputation fraud agent over
1 time unit
Input: current time unit: time, messages for agent u: Mu

Output: messages for auctioneer: Nu
1: for all {m | m ∈Mu ∧m.type == Expiring ∧ m.auction ∈ S} do
2: rdmBidder = random(RB, 1) . Randomly select a bidder

. Submit a bid in the name of rdmBidder
3: Nu = Nu.add(newBid(rdmBidder, m.auction, nextMinimumBid(m.auction)))
4: S = S.remove(m.auction)
5: end for
6: for i ∈ [1..50] do
7: if N [i] ≤ time then

. Submit an auction in the name of RS[i]
8: fraudAuction = newAuction(RS[i])
9: Nu = Nu.add(fraudAuction)

10: S = S.add(fraudAuction)
. Generate the next time for this agent to submit an auction

11: N[i] = exp(1/T [i]) . Draw the next auction time from the exponential dist.
12: end if
13: end for

Algorithm 9 Pseudocode for collusive star shilling fraud agent instantiation

1: RS = instantiateAgentType(TCollusiveShillSeller)
2: n = exp(1/40) . Draw from exponential dist. with mean 40
3: Q = newList . Stores the set of shills allocated to each auction
4: RB = newArray[6]
5: for i ∈ 1..6 do
6: RB[i] = instantiateAgentType(TCollusiveShillBidder)
7: end for

A.5 Pseudocode for collusive star shilling fraud agent

The collusive star composed of one seller and six bidders is controlled by one agent. The

variables needed for the agent are shown in Algorithm 9, where Q is a list storing tuples

of auctions and a set of bidders that has been allocated to shill in that auction. Once

again, RS and RB contain agents that also exhibit normal behaviour. In lines 9-12, the

agent submits auctions in SB’s name. Once the auction is acknowledged by the auctioneer

agent and the message notifying the start of the auction is received, the three random

bidders are allocated to the auction (lines 4-5). During each time unit, the agent checks

each auction in Q and submits a bid if the directives are satisfied.
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Algorithm 10 Pseudocode for the execution of a collusive star shilling fraud shill agent
over 1 time unit
Input: current time unit: time, messages for agent u: Mu

Output: messages for auctioneer: Nu
1: for all {m | m ∈Mu ∧m.type ==New ∧ isShillAuction(m.auction)} do
2: randomBidders = random(RB, 3)

. Store the auction and the 3 bidders allocated to it
3: Q = Q.add(m.auction, randomBidders)
4: end for
5: if n ≤ time then
6: fraudAuction = newAuction(RS)
7: Nu = Nu.add(fraudAuction)
8: nextAuction = exp(1/T [i])
9: end if

10: for all q ∈ Q do
11: if isTerminated(q.auction) then
12: Q = Q.remove(q)
13: continue
14: end if
15: if (directive3(θ, q.auction, time) & directive4(α, q.auction) &
16: directive5(µ, q.auction, time)) then
17: amount = nextMinimumBid(q.auction)
18: bid = newBid(getNext(bidders, 1), q.auction, amount)
19: Nu = Nu.add(bid)
20: end if
21: end for

A.6 Pseudocode for collusive clique shilling fraud agent

The collusive clique is similar to the collusive star. The main differences are that all

agents in the clique submit auctions in which the others in the clique act as shills. On

average, each agent submits six auctions in the clique. Once again, the agents act as

normal bidders in addition to being coordinated by the controller agent. Pseudocode is

shown in Algorithms 11 and 12.
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Algorithm 11 Pseudocode for collusive clique shilling fraud agent instantiation

Input: collusive group size: g

1: N = exp(1/40) . Draw from exponential dist. with mean 40
2: Q = newList . Stores the set of shills allocated to each auction
3: R = newArray[g]
4: for i ∈ [1..50] do
5: RS[i] = instantiateAgentType(TCollusiveShillBidder)
6: N [i] = exp(1/6) . Draw from exponential dist. with mean 6
7: end for

Algorithm 12 Pseudocode for the execution of a collusive clique shilling fraud shill agent
over 1 time unit
Input: current time unit: time, messages for agent u: Mu

Output: messages for auctioneer: Nu
1: for all {m | m ∈Mu ∧m.type ==New ∧ isShillAuction(m.auction)} do
2: randomBidders = random(RB, 3)
3: Q = Q.add(m.auction, randomBidders)
4: end for
5: for i ∈ 1..6 do
6: if N [i] ≤ time then
7: fraudAuction = newAuction(RS[i])
8: Nu = Nu.add(fraudAuction)
9: nextAuction = exp(1/N [i])

10: end if
11: end for
12: for all q ∈ Q do
13: if isTerminated(q.auction) then
14: Q = Q.remove(q)
15: continue
16: end if
17: if (directive3(θ, q.auction, time) & directive4(α, q.auction) &
18: directive5(µ, q.auction, time)) then
19: amount = nextMinimumBid(q.auction)
20: bid = newBid(getNext(q.bidders, 1), q.auction, amount)
21: Nu = Nu.add(bid)
22: end if
23: end for



B
Alternative features

Listed below are the other potential features that were investigated. The additional 13

features are defined for the user q ∈ U , where |Pq| > 0.

Definition 11 φ1SD is related to φ1. It gives the standard deviation of the set of bid

values that user q made in all auctions.

N1 =

{
1

|Pq||Ba,q|
∑
b∈Ba,q

b, where a ∈ Pq
}

(B.1)

φ1SD = σ(N1) (B.2)

Definition 12 φ2SD is related to φ2. It gives the standard deviation of the set of bid

increments made by user q in all auctions. The definitions of minV al and prevV al are

143
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the same as in Definition 2.

N2 =

 1

|Pq||∆V a,q|
∑

∆va,qc ∈∆V a,q

∆va,qc −minV al(prevV al(∆va,qc )) , where a ∈ Pq
} (B.3)

φ2SD = σ(N2) (B.4)

Definition 13 φ4SD is related to φ4. It gives the standard deviation of the bid counts of

user q per auction.

N4 =

{
1

|Pq|
|Ba,q|, where a ∈ Pq

}
(B.5)

φ4SD = σ(N4) (B.6)

Definition 14 φ5SD is related to φ5. It gives the standard deviation of the bid times as

a fraction of auction time elapsed by user q. The definition of timeFrac is the same as

in Definition 5.

N5 =

{
1

|Pq||T a,q|
∑
s∈T a,q

timeFrac(s), where a ∈ Pq
}

(B.7)

φ5SD = σ(N5) (B.8)

Definition 15 φ6SD is related to φ6. It gives the standard deviation of all bid values as

a proportion of the maximum (final) bid by user q.

N6 =

{
1

|Pq||Va,q|
∑
r∈Va,q

r

va|Ba|
, where a ∈ Pq

}
(B.9)

φ6SD = σ(N6) (B.10)



145

Definition 16 φ7SD is related to φ7. It gives the standard deviation of the proportion of

bids made by user q in each auction.

N7 =

{
|Ba,q|
|Pq||Ba|

, where a ∈ Pq
}

(B.11)

φ7SD = σ(N7) (B.12)

Definition 17 φ10SD is related to φ10. It gives the standard deviation of times of first

bids made by user q.

N10 =

{
ba,q1

|Pq|
, where a ∈ Pq

}
(B.13)

φ10SD = σ(N10) (B.14)

Definition 18 φ12, or self bid interval, gives the average difference in time between bids

made by user q in the same auction. If user q makes fewer than two bids in a given auction

a (this is, if |Ba,q| < 2), the auction is ignored. If all auctions in Pq are ignored in this

way, then user q has no value for φ12.

φ12 = ln

 1

|Pq|
∑
a∈Pq

1

|Ba,q| − 1

|Ba,q |∑
c=2

ta,qc − t
a,q
c−1

 , where |Ba,q| > 1 (B.15)

Definition 19 φ12SD is related to φ12. It gives the standard deviation of time differences

between bids made by user q. As in Definition 18, if |Ba,q| < 2, the auction a is ignored.

N12 =

 1

|Pq|(|Ba,q| − 1)

|Ba,q |∑
c=2

ta,qc − t
a,q
c−1, where a ∈ Pq

 (B.16)

φ12SD = σ(N12) (B.17)
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Definition 20 φ13, or any bid interval, gives the difference in time between bids made

by user q and any preceding bid. If there are fewer than two bids in a given auction a

(that is, if |Ba| < 2), the auction is ignored. If all auctions in Pq are ignored in this way,

then user q has no value for φ13.

φ13 = ln

 1

|Pq|
∑
a∈Pq

1

|Ba,q| − 1

|Ba,q |∑
c=2

tac − tac−1

 , where |Ba| > 1 (B.18)

Definition 21 φ13SD is related to φ13. It gives the standard deviation of the time differ-

ences between bids made by user q and the preceding bid. As in Definition 20, if |Ba| < 2,

then the auction is ignored.

N13 =

 1

|Pq|(|Ba,q| − 1)

|Ba,q |∑
c=2

tac − tac−1, where a ∈ Pq
 (B.19)

φ13SD = σ(N13) (B.20)

Definition 22 φ14 is the average number of minutes before the end of the auction that

the user made a bid.

φ14 = ln

(
1 +

1

|Pq|
∑
a∈Pq

1

|T a,q|
∑
s∈T a,q

(ma
ET − s)

)
(B.21)

For example, if the auction ends at time 2500, and the user made bids at times {1800,

2100}, then φ1008 = ln(550).

Definition 23 φ14SD is related to φ14. It gives the standard deviation of bid times, as

the number of minutes before the end of the auction, that user q made.

N14 =

{
1

|Pq||T a,q|
∑
s∈T a,q

(ma
ET − s), where a ∈ Pq

}
(B.22)
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φ14SD = σ(N14) (B.23)

For example, if the auction ends at time 2500, and the user made bids at times {1800,

2100}, then φ8 = ln(5500).

Definition 24 φ15 is the value of the last bid by the user in each auction, averaged over

all auctions.

φ15 = ln

(
1 +

1

|Pq|
∑
a∈Pq

va,q|Ba,q |

)
(B.24)

For example, if the last bids in two auctions were {$60, $40}, then φ15 = 50.

Definition 25 φ15SD is related to φ15. It gives the standard deviation of the value of the

last bid by user q in each auction.

N15 =

{
1

|Pq|
va,q|Ba,q |, where a ∈ Pq

}
(B.25)

φ15SD = σ(N15) (B.26)

Definition 26 φ16, or final bid amount proportion, gives the average final bid amount

as a proportion of maximum: amount of the last bid by the user as a proportion of the

amount of the final bid, averaged over all auctions the user participated in.

φ16 =
1

|Pq|
∑
a∈Pq

va,q|Ba,q |
va|Ba|

(B.27)

For example, if the user made bids {$60, $40} in 2 auctions with the highest bids as {$80,

$40} respectively, then φ16 = 0.875.

Definition 27 φ16SD is related to φ10. It gives the standard deviation of final bid

amounts, as a proportion of the maximum bid in the auction, by user q in each auc-

tion.

N16 =

{
1

|Pq|
va,q|Ba,q |
va|Ba|

, where a ∈ Pq
}

(B.28)
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φ16SD = σ(N16) (B.29)

B.1 Correlation between user features

The pairwise feature Pearson correlation shows that several of the features related to bid

amounts are strongly correlated to each other, such as between φ6 and φ16, and between

φ1 and φ15. Similarly for features related to bid times: φ10 and φ14. However, surprisingly,

φ3 and φ4, which are average bid amount and average bid increment, shows only a weak

correlation.
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C
Model performance when including

alternative features

Table C.1 and C.2 compares the performance results of decision tree models trained using

all features listed in Appendix B and Section 5.2.4, and DT (Features). Performance of

DT (Features) is better for all accuracy measures.

Table C.1
Detection performance of simple shills

Model TPR FPR AUC Precision F-measure

DT (features) 0.998 (4.64E-05) 0.001 (4.67E-05) 0.998 (5.67E-05) 0.999 (4.68E-05) 0.998 (4.02E-05)
DT (All Features) 0.980 (0.010) 0.040 (7.44E-03) 0.971 (4.65E-03) 0.961 (7.52E-03) 0.971 (8.89E-03)
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Table C.2
Detection performance of delayed-start shills

Model TPR FPR AUC Precision F-measure

DT (Features) 0.967 (1.37E-04) 0.023 (1.58E-04) 0.992 (0.81E-04) 0.977 (1.55E-04) 0.972 (9.39E-05)
DT (All Features) 0.927 (0.013) 0.084 (9.67E-03) 0.951 (5.2E-03) 0.917 (8.3E-03) 0.922 (5.7E-03)



D
Behaviour of SPAN

D.1 Quality of anomaly scores

For all three fraud types, LOFs calculated using feature pairs produces scores that more

accurately identify fraudulent users (by giving them higher scores) than using all features

simultaneously. To compare the quality of the anomaly scores, we rank users according

to their anomaly score, then partition the users into fraudulent and normal groups over a

range of thresholds. For each threshold, a pair of TPR and FPR values can be calculated.

These have been plotted in Figure D.1 for each fraud type. Figure D.1 shows that for

most FPR values, anomaly scores calculated using feature pairs give a higher TPR value,

indicating that using feature pairs produces more accurate anomaly scores.
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(b) Collusive star
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(c) Collusive clique

Fig. D.1. Average ROCs for anomaly scores calculated using feature pairs, and using all
features at once



E
Effect of removing fraud-fraud edges

for collusive star for 2LFS

Figure E.1 shows the effect of removing fraud-fraud edges on ROC for collusive star for

2LFS. The values in the legend for each line correspond to the fraction of fraud-fraud

edges that were removed from the graph. There is virtually no difference in the TPR for

the different ROC curves when FPR is low, which results in the horizontal line seen in

Figure 6.12(b), where TPR remains the same when different proportions of fraud-fraud

lines are removed. This is also the reason for the horizontal lines seen in Figures 6.14(b)

and 6.15(b).
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Fig. E.1. Shift in ROC for collusive star fraud for 2LFS as fraud-fraud edges are removed
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Fig. E.2. Value distributions of two collected datasets
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Fig. E.2. Value distributions of two collected datasets (cont.)



F
False positive examples

Figure F.1 shows some examples of possible false positives found by 2LFS. In Figure F.1(a),

2LFS classifies 378087 as fraudulent with all of its neighbours classified as normal. In Fig-

ure F.1(b), both 2LFS and SPAN identify a group of nodes as non-normal. However, 2LFS

identifies a large number of additional nodes as fraudulent compared to SPAN. This is

likely due to 2LFS’s incorrect assumptions about bipartite cores, as discussed earlier.
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(a) Egonet of 70557

(b) 2-step neighbourhood of 64817

Fig. F.1. Example of user classifications by 2LFS and SPAN. Uncoloured nodes are
normal; light green nodes are accomplices found by 2LFS; dark green nodes are frauds
found by 2LFS; blue nodes are frauds found by SPAN; red nodes are frauds found by both
2LFS and SPAN.
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