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NOTATION
a lateral spacing of vortex trail
al moment lever arm
A projected area of body on plane normal to body movement
Ac calibration coefficient
AL linearizer constant
Bc calibration ccnstant
BL linearizer constant

B, i=1,7 constant

c damping coefficient of cylinder

Ce damping factor

c, damping coefficient of near wake

c radial distance from cylinder centre to external vortex
CD drag force coefficient

Cp 1ift coefficient perpendicular to free stream

CFO 1ift coefficient perpendicular to free stream for a = 0
CL 1lift force coefficient

CS skin friction drag coefficient

CT transverse force coefficient

CFy(f) cospectral function

d half length of near wake

D diameter of cylinder

exp exponential function

E elastic modulus



Ew work

fd driving frequency

fn fundamental natural frequency

fon fundamental natural frequency in vacuua
fr frequency ratio

fé frequency of vortex shedding

fﬁc wake coupling constant

f&c dimensionless wake coupling constant

E resultant force

F 11:2,u buffetting forces

FDy transverse component of instantaneous drag force
FMVS maximum force due to vortex shedding
FR total force acting on pier

FVS vortex shedding force

Fw wake force

Px force component in streamwise direction
Fy force component in transverse direction
F(z) complex potential function

Fl velocity component of wake force

F, displacement .component- of wake force

Pa velocity component of drag force

Fu displacement component of drag force

g acceleration due to gravity = 32.2 fps2



cross spectral function

modulus of cross épectral function
longitudinal spacing of vortex street, width of near wake
v=1 imaginary quantity

current

moment of inertia

moment of inertia of near wake
mechanical spring constant

a constant

angular spring constant of near wake
virtual mass coefficient

a constant

linearizer constant

a factor relating velocity ratio and circulation
point along length of a structure
length of structure

modified length of structure

mass of structure

mass of structure per unit length
linearizer exponent

number of piles in road

bluffness ratio

moment of body at point x on its length
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n an integer

n linearizer exponent constant
N number of rows of piles

P pressure

Pg in phase force coefficient

P force

Pi i=1,2 constant

q resultant velocity

e quadrature force coefficient
Q quadrature force

pr(f) quadspectral function

R constant

Re Reynolds Number

Rf resistance of film

Rw resistance of film at fluid temperature
8 constant

S Strouhal number

S# Roshkeo's wake Strouhal number

Si i=1,2 material stresses

t time

Ty time for vortex to travel from point 1 to point i
tg period of vortex shedding

T torque



velocity in streamwise direction
free stream line velocity
upstream velocity

velocity in transverse direction
critical flow spead

reduced velocity

resultant velocity

output voltage froin anemomecer

output voltage from linearizer

speed of vortex

complex velocity

streamwise or horizontal coordinate axis
transverse or vertical coordinate axis
amplitude of oscillation

half amplitude of oscillation

half amplitude of oscillation due to static loading
complex numbder

reduced amplitude (Y/D)

reduced half amplitude (YO/D)

section modulus

wake angle
effective wake angle

volue of effective wake angle at mid amplitude



%Mo

1

maximum value of wake angle

maximum value of angle of approach of relative velocity

angle of approach of relative velocity

maximum wake angle with respect to centre of gravity of wake

velocity ratio

circulation

fluid dynamic logarithmic decrement
logarithmic damping decrement of structure
phase angles

deflection of structure

percentage of flow energy in vortex

phase angle

phase angle between force and displacement
vortex strength

roots of characteristic equations

dynamic viscosity

kinematic viscosity

3,1416

density of fluid

phase angle

stream function

vorticity function

fundamental angular frequency of structure

angular frequency of wake or vortex shedding





