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ABSTMCT

One of the most important process operations in the pulp and paper
industry is the transport of pulp in pipe lines. Because pipe friction
losses are much higher than with water under comparable conditions,
accurate design coffelations for each puip are important to the industry.
The purpose of this investigation was to design and build a flow rig
suitable for investigating a wide range of pulp conditions, to obtain pipe
friction loss data for New Zealand pulps, and to produce design correlations
and procedures for the industry.

This thesis is therefore concerned primarily with describing the
experimental equipment and procedures, presenting pipe friction loss data
for a variety of New Zealand pulps, including a design correlation for them,
and developing design methods for computing friction losses. It includes,
in addition, data on drag reduction observed at high velocities of flow,
and a discussion of flow mechanisms in each regime of flow.

The equipment was designed to produce friction 'loss data from three
pipe diameters simultaneously for each consistency of pulp. Flow rate was
controlled without throtiling the flow. pipe friction loss data are
presented for five Kraft pulps and one neutral sulphite semi-chemical
pulp. Data were obtained from !,2,3 and 4 in. diameter pVC pipes for a
wide range of consistencies and flow rates up to 0.g ft3lsec. Standard
Lampen mill evaluations on hand sheets made from the pu'lps are presented,
as well as data on the characteristics of the fibres.

The Kraft pulps exhibited the characteristic maxima and minima but the
semi-chemical pu]p did not exhibit these turning points.

For Kraft pulps head losses before the respective maxima were increased
by refining the pulp and using rough pipe; and decreased by adding short-
fibre Tawa and by drying and reslushing the pulp. In comparison with maxima
for the unbeaten Kraft Pulp, the maxima of the head'loss curves for all Kraft
pulps were shifted to lower velocities by the above-mentioned operations.
This would reduce the friction'loss in many practical cases. In particular,
rough pipe lowers the magnitude of friction loss in this regime, and can
therefore yield a considerabre economic advantage.



A single design comelation for Kraft pulps is presented for the
regime of flow before the maxima in the head loss curves. The limits
of the coffelation are given. Friction losses of New Zealand pulps were
found to be lower than those previously reported in the literature.

Two methods of desi gn are presented

above the maxima in the head loss curves.
pulp and paper mills to obtain their own

and to verify the comelation proposed in
pul ps .

A design correlation for the Tawa NSSC pulp is also presented.

Mechanisms of flow are discussed for Kraft pulps and a semi-chemical
pulp. Visual observations in an artificially roughened pipe for the regime
of flow before the maxima of the head loss curves have confirmed fibre-wall
contact in this reg'ime. Data obtained at the first sign of permanent plug
disruption have been correlated with data at the onset of drag reduction.
Fully deve'loped turbulence was found to occur at the maximum level of drag
reduction. Some velocity profiles are reported for the transition regime
using a modified annular-purge probe.

In addition the disruptive shear stress of fibre networks has been
correlated by three different methods.

Data for the onset of drag reduction are presented and compared with
data previously obtained from large diameter pipes from other investigations.
This correlation is used as a method for designing piping systems at high
flow rates.

for the regimes at velocities
A procedure is suggested for

limits for the design correlation
this investigation for their own
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Fanning friction factor.
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a Volumetric flow rate.
R Pipe radius.
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Re' Pseudo-Reynolds number in equation [2.31].
R[ Genera]ised Reynolds number defined by equation [2.15].

r Radial distance from pipe axis.
S Dimensionless shear parameter.

s Time; yield shear stress after Head (45).
T Temperature.

t Annulus thickness.
u Local mean velocity.
V Mean velocity in a pipe.

Vp Mean velocity of the pulp plug.

Vp Slip velocity at the wal'l .
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vs Effectf ve slip ve'locity at the wall.

v+ Dimensionless velocity defined in equation t2.401.
y Distance from the pipe wa1l.
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B Constants in equation [2.281.
y Constants in equation [2.28]; Kinematic viscosity.
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