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ABSTRACT

One of the most important process operations in the pulp and paper
industry is the transport of pulp in pipe 1ines. Because pipe friction
losses are much higher than with water under comparable conditions,
accurate design correlations for each pulp are important to the industry.
The purpose of this investigation was to design and build a flow rig
suitable for investigating a wide range of pulp conditions, to obtain pipe
friction loss data for New Zealand pulps, and to produce design correlations
and procedures for the industry.

This thesis is therefore concerned primarily with describing the
experimental equipment and procedures, presenting pipe friction loss data
for a variety of New Zealand pulps, including a design correlation for them,
and developing design methods for computing friction losses. It includes,
in addition, data on drag reduction observed at high velocities of flow,
and a discussion of flow mechanisms in each regime of flow.

The equipment was designed to produce friction loss data from three
pipe diameters simultaneously for each consistency of pulp. Flow rate was
controlled without throttling the flow. Pipe friction loss data are
presented for five Kraft pulps and one neutral sulphite semi-chemical
pulp. Data were obtained from 1, 2, 3 and 4 in. diameter PVC pipes for a
wide range of consistencies and flow rates up to 0.8 ft3®/sec. Standard
Lampen mill evaluations on hand sheets made from the pulps are presented,
as well as data on the characteristics of the fibres.

The Kraft pulps exhibited the characteristic maxima and minima but the
semi-chemical pulp did not exhibit these turning points.

For Kraft pulps head losses before the respective maxima were increased
by refining the pulp and using rough pipe; and decreased by adding short-
fibre Tawa and by drying and reslushing the pulp. In comparison with maxima
for the unbeaten Kraft pulp, the maxima of the head loss curves for all Kraft
pulps were shifted to lower velocities by the above-mentioned operations.
This would reduce the friction loss in many practical cases. In particular,
rough pipe Towers the magnitude of friction loss in this regime, and can
therefore yield a considerable economic advantage.




A single design correlation for Kraft pulps is presented for the
regime of flow before the maxima in the head loss curves. The Timits
of the correlation are given. Friction losses of New Zealand pulps were
found to be Tower than those previously reported in the literature.

Two methods of design are presented for the regimes at velocities

- above the maxima in the head Toss curves. A procedure is suggested for
pulp and paper mills to obtain their own limits for the design correlation
and to verify the correlation proposed in this investigation for their own
pulps.

A design correlation for the Tawa NSSC pulp is also presented.

Mechanisms of flow are discussed for Kraft pulps and a semi-chemical
pulp. Visual observations in an artificially roughened pipe for the regime
of flow before the maxima of the head loss curves have confirmed fibre-wall
contact in this regime. Data obtained at the first sign of permanent plug
disruption have been correlated with data at the onset of drag reduction.
Fully developed turbulence was found to occur at the maximum level of drag
reduction. Some velocity profiles are reported for the transition regime
using a modified annular-purge probe.

In addition the disruptive shear stress of fibre networks has been
correlated by three different methods.

Data for the onset of drag reduction are presented and compared with
data previously obtained from large diameter pipes from other investigations.
This correlation is used as a method for designing piping systems at high
flow rates.
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NOTATIONS

The fibre length-to-diameter ratio A.
Annulus thickness at distance y from the pipe wall.

Oven-dry or moisture-free consistency; a constant in
equations [2.17], [2.38].

The weight concentration of fibres.

The upper critical fibre concentration for unimpeded
rotation.

The sedimentation weight concentration.

The minimum concentration below which continuous networks
could not exist.

Constant defined in equation [2.16].

Diameter of pipe.

Drag ratio defined in equation [2.36].

Empirical constant.

Empirical constants in equation [2.33].

Fanning friction factor.

Modified friction factor defined by equation [2.24].
Function defined by equation [2.22].

Shear modulus of visco-elastic networks.
Empirical constant in equations [2.3], [2.7].

Friction head Toss per unit length.

Friction head.
Empirical constant; von Kdrmdn constant for Newtonian fluids.

Consistency index for a power law fluid; empirical constant
in equation [6.11].

Empirical constant in equation [6.12].
Empirical constant in equation [6.13].
Empirical constant in equation [2.3].
Empirical constant in equation [2.4].

Length.
Fibre length.
Dimensionless flow number defined by equation [2.26].

Power law fluid constant in equat1on [2.9]; exponent
defined in equation [5.1].

Flow behaviour index in a power law fluid.

Longitudinal pressure gradient in pipe.
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Volumetric flow rate.
Pipe radius.

Newtonian Reynoldsnumber; water Reynolds number for
pulp flow.

Annulus Reynolds number.

Pseudo-Reynolds number in equation [2.31].
Generalised Reynolds number defined by equation [2.15].

Radial distance from pipe axis.
Dimensionless shear parameter.

Time; yield shear stress after Head (45).
Temperature.

Annulus thickness.

Local mean velocity.

Mean velocity in a pipe.

Mean velocity of the pulp plug.

STip velocity at the wall.
Local mean velocity at distance y from pipe wall.
Effective slip velocity at the wall.

Dimensionless velocity defined in equation [2.40].
Distance from the pipe wall.

Dimensionless distance defined in equation [2.41].
Constants in equation [2.28]; Hydrodynamic specific volume.
Constants in equation [2.28].

Constants in equation [2.28]; Kinematic viscosity.
Thickness of the laminar sublayer.

Shear stress at a distance r from pipe axis.
Disruptive yield stress of a fibre network.
Empirical constant in equation [2.4].

Ultimate shear stress of fibre networks.

Shear stress at pipe wall.

Shear yield stress of a material.

Empirica] constant in equation [2.5].

Newtonian fluid density; density of pulp suspension in
equation [2.26].

Hydrodynamic specific surface.



Newtonian fluid viscosity.

Slope viscosity in equation [2.12].

Friction factor used in this investigation and defined
by equation [3.1].

The effective slip coefficient.
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