

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

"THE EFFECT OF COULOMB DAMPING ON SINGLE AND MULTIDEGREE OF FREEDOM STRUCTURES"

Thesis Submitted for the Degree of Doctor of Philosophy

- at the -

School of Engineering University of Auckland New Zealand

- by -

RONALD L. MAYES, B.E. (Civil)(Hons.)

September, 1972

ACKNOWLEDGEMENTS

The work described in this thesis was carried out at the University of Auckland, School of Engineering, under the supervision of Professor N.A. Mowbray, Head of the Department of Civil Engineering. His guidance, encouragement and many helpful suggestions in the preparation of this work are sincerely appreciated.

The patience and understanding shown by the author's wife during the course of this work, are greatly appreciated. Also the encouragement of the author's parents during his academic career are very much appreciated.

Most sincere thanks are due to the Departmental Secretary, Mrs. G. Margetts, for her tireless effort which has enabled the work to be completed on time, and for her care and thoroughness in setting out and typing the text.

Thanks are also due to the author's fellow research students of the S.S.D.C. for their stimulating and interesting discussions during the course of the work.

Finally, the author would like to gratefully acknowledge the financial assistance given him by the University Grants Committee in the form of a Post-Graduate Scholarship.

ABSTRACT

This study compares the effects of viscous and coulomb damping on the dynamic response of single and multidegree of freedom structures.

It was found that coulomb damping was less effective than viscous damping in reducing the steady-state resonant amplitude of all non-linear structures when the steady-state amplitude was greater than two. Also, there is no single, simple relationship relating the amount of viscous damping to coulomb damping for equal resonant steady-state response of non-linear structures.

For the earthquake excitation of the single-degree-of-freedom structure it was found that coulomb damping was less effective than viscous damping in reducing the velocity and displacement spectral response values for short period structures whereas for longer period structures coulomb damping was much more effective than viscous damping. Both forms of damping had a paradoxical effect on the acceleration response of non-linear structures in that an increase in damping generally causes an increase in the acceleration response.

The closed solution of a multidegree of freedom structure with viscous and coulomb damping subjected to a sinusoidal forcing function is derived and used to obtain approximate values of viscous and coulomb damping from small amplitude vibration tests. It is clear from the results obtained that if coulomb damping is present in small amplitude vibrations of a structure then the concept of equivalent viscous damping will result in the structure being overdamped when subjected to an earthquake ground motion.

CONTENTS

Page

ACKNOWLEDGEMENTS		
ABSTRACT		ii
CHAPTER 1	INTRODUCTION	1
CHAPTER 2	DYNAMIC RESPONSE OF SINGLE-DEGREE-OF-FREEDOM OSCILLATORS	
	SUBJECTED TO SINUSOIDAL EXCITATION	9
2.1	Introduction	9
2.2	Skeleton Curves	9
2.3	Hysteresis Loops	17
2.4	Properties of Hysteretic Behaviour	. 17
2.5	Properties of the Ramberg-Osgood Hysteresis Loops	20
2.6	Solution of the Basic Ramberg-Osgood Equation	21
2.7	Steady-State Response by Energy Method	22
2.7.1	Energy Dissipated per Cycle	22
2.7.2	Energy Input Per Cycle	29
2.7.3	Amplitude of Non-Linear Steady-State Response	30
2.7.4	Accuracy of the Energy Method in the Determination of the	
	Resonant Steady-State Amplitude	38
2.8	Steady-State Oscillations by the Method of Slowly Varying	
	Parameters	39
2.8.1	Introduction	39
2.8.2	Equations of the Response Curves	39
2.8.3	Evaluation of $S(x_0)$ and $C(x_0)$ for a Bilinear-Hysteretic	
	Force Deflection Relationship	44
2.8.4	Evaluation of $S(x_0)$ and $C(x_0)$ for a Ramberg-Osgood Force-	
	Deflection Relationship	47
2.9	Frequency Response Curves	52
2.9.1	Verification of the Response Curves	61
2.10	Infinite Response at Resonance	68
CHAPTER 3	RESPONSE OF SINGLE-DEGREE-OF-FREEDOM OSCILLATORS SUBJECTED	
	TO EARTHQUAKE MOTION	73
3.1	Introduction	73
3.2	A Class of Non-Linear Structures	73
3.3	Application of Hysteretic Formulation to the Ramberg-Osgood	
	Structure	79

Page

3.	4 Solution of the Single-Degree-of-Freedom Equation of	
	Motion by the Exact Method	84
3.	5 Computation of Spectra	99
3.	6 The Computer Programs	100
3.	7 Errors in Spectra Calculations	108
3.	8 Accuracy of the Computer Programs RMBH1 and ROSO3	112
3.	9 The Energy Equation of a Non-Linear Structure Subjected	
	to an Earthquake	120
3.	10 Response of Various Non-Linear Structures to Earthquake	
	Excitation	123
3.	11 Presentation and Discussion of Results	124
CHAPTER	4 THEORY OF STRUCTURAL TESTING	155
4.		163
4.		165
4.		167
4.		170
	Damping Only 5 Forced Excitation of Pure Natural Modes, by Synchronized	210
4.	Vibration Excitaters Acting on Only One Mass of a System	
		172
	with Viscous Damping	212
4.	6 Steady-State Amplitude of a Single-Degree-of-Freedom System	173
	with Coulomb Damping that Lags the Velocity of the System	175
4.	7 Forced Excitation with Synchronized Vibration Exciters Acting	
	on Only One Mass of a System with Viscous and Coulomb	178
÷	Damping	1/0
4.	8 Determination of the Stiffness and Viscous Damping Matrix	183
	from Experimentally Determined Modal Properties	105
4.	.9 Finding the Natural Frequencies and Mode Shapes from	191
	known System Properties	191
	10 Determination of Viscous Damping from Experimental Results	194
4.	.11 Determination of Viscous and Coulomb Damping from Experi-	201
	mental Results	201
CHAPTER	5 EXPERIMENTAL AND TEST RESULTS	204
5	1 Introduction	204
5	.2 Solution of the Equation of Motion of an Elastic Multidegree	
	of Freedom Structure	204
5	.3 Nielson's Experimental Test Results	210

5.4	Determination of the Stiffness Matrix From the Experimental	
	Results	217
5.5	Natural Frequencies and Mode Shapes Determined from the	
	Model of the Structure	220
5.6	Determination of the Viscous Damping Matrix	223
5.7	Computer Programs	226
5.8	Determination of the Accuracy of the Computer Programs	
	EMD01 and EMS01	230
5.9	Tests of the Closed Solution of a Structure with Coulomb	
	Damping Subjected to a Sinusoidal Forcing Function	232
5.10	Determination of Approximate Values of Viscous and Coulomb	
	Damping From Small Amplitude Vibration Tests	237
5.11	Response of a Multidegree of Freedom Structure with Viscous	
	and Coulomb Damping Subjected to an Earthquake	241
CHAPTER 6	SUMMARY AND CONCLUSIONS	243
APPENDIX 1		
A.1.1	IBM 1130 Computer System	247
A.1.2	Program RMBH1	247
A.1.3	Program ROSO3	263
A.1.4	Program EMDO1	274
A.1.5	Program EMSO1	286
A.1.6	Program PHLAG	296
A.1.7	Program COUPL	296
A.1.8	Program MODAL	296
A.1.9	Program FOPY	307
A.1.10	Programs SVPAR and SVPRO	307

Page