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ABSTRACT.

The problem of local scouring at a circular cylinder in sandy
material under threshold conditions was investigated experimentally.

The aim of the study was to obtain a better understanding of the
mechanism causing scour. Three fixed-bed scour models were constructed:
the initial flat-bed model, an intermediate scour model and the final
equilibrium scour hole model.

The experimental results have shown that although scour is
initiated by the high local shear stresses which result from flow
acceleration about the cylinder, the subsequent development of the scour
hole is due to the establishment of a strong downflow ahead of the
cylinder. The scour hole grows in the form of a frustrum of an
inverted cone at a slope angle equal to the dynamic angle of repose of
the bed material. Erosion occurs in the bottom part of the scour hole.
Bed particles from the upper part of the hole slide down into the
erosion area as the slope angle is increased by erosion of material from
below. The equilibrium depth of scour is attained when the downflcw
becomes incapable of further erosion. For a particular bed material
the downflow should be primarily a function of the mean approach flow
velocity and cylinder diameter. Hence the study has shown that the
equilibrium depth of scour should also be a function of these two
parameters.

Additional measurements have shown that the horseshoe vortex,
which is initially small, roughly circular in cross-section, and
compar&tively weak, increases dramatically in size and strength as
the scour hole forms. During the development of the scour hole, the
horseshoe vortex expands and moves down into the hole, increasing its
circulation throughout the scour process, but at a diminishing rate.

The shape of the vortex follows that of the scour hole-cylinder
combination.

Measurements in the wake have added to existing information
concerning the shedding and convection of wake vortices in shear flow.
The results obtained are consistent with the occurence of span-wise cells
of constant shedding frequency, separated at the discontinuities by
longitudinal vortices. The vortices accelerate away from the cylinder
at speeds initially less than the free stream but becoming constant and
approximately equal to the free stream velocity at about 8 cylinder
diameters downstream.

Based upon a survey of existing material, a design recommendation

for the estimation of local scour depths at bridge piers is also presented.
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