

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

LOCAL SCOUR AT BRIDGE SITES

Thesis submitted for the degree of Doctor of Philosophy

at the

SCHOOL OF ENGINEERING

UNIVERSITY OF AUCKLAND

by

B. W. MELVILLE

June, 1975

ABSTRACT.

The problem of local scouring at a circular cylinder in sandy material under threshold conditions was investigated experimentally. The aim of the study was to obtain a better understanding of the mechanism causing scour. Three fixed-bed scour models were constructed: the initial flat-bed model, an intermediate scour model and the final equilibrium scour hole model.

The experimental results have shown that although scour is initiated by the high local shear stresses which result from flow acceleration about the cylinder, the subsequent development of the scour hole is due to the establishment of a strong downflow ahead of the cylinder. The scour hole grows in the form of a frustrum of an inverted cone at a slope angle equal to the dynamic angle of repose of the bed material. Erosion occurs in the bottom part of the scour hole. Bed particles from the upper part of the hole slide down into the erosion area as the slope angle is increased by erosion of material from below. The equilibrium depth of scour is attained when the downflow becomes incapable of further erosion. For a particular bed material the downflow should be primarily a function of the mean approach flow velocity and cylinder diameter. Hence the study has shown that the equilibrium depth of scour should also be a function of these two parameters.

Additional measurements have shown that the horseshoe vortex, which is initially small, roughly circular in cross-section, and comparatively weak, increases dramatically in size and strength as the scour hole forms. During the development of the scour hole, the horseshoe vortex expands and moves down into the hole, increasing its circulation throughout the scour process, but at a diminishing rate. The shape of the vortex follows that of the scour hole-cylinder combination.

Measurements in the wake have added to existing information concerning the shedding and convection of wake vortices in shear flow. The results obtained are consistent with the occurence of span-wise cells of constant shedding frequency, separated at the discontinuities by longitudinal vortices. The vortices accelerate away from the cylinder at speeds initially less than the free stream but becoming constant and approximately equal to the free stream velocity at about 8 cylinder diameters downstream.

Based upon a survey of existing material, a design recommendation for the estimation of local scour depths at bridge piers is also presented.

ACKNOWLEDGEMENTS.

In the course of this study I have received advice and assistance from many people, and to all these I extend my grateful thanks. In particular, I wish to thank the following:

Professor A.J. Raudkivi and Associate Professor R.A. Callander for their advice and encouragement in their supervision of this study.

Messrs. D. Browne, C. Raymond, and R. Atkinson for their assistance in the laboratory.

Miss K. Melville for her excellent work in typing this thesis.

Miss J. Hamilton and Mrs. A. Klarwill for their invaluable assistance in the preparation of drawings.

Mr. C. Collins for photographic work.

This study was conducted under the sponsorship of the National Roads Board of New Zealand whose support is gratefully acknowledged.

CONTENTS.

(IIII) Dominia			Page
CHAPTER 1	INTRODU	ICTION	1
1.1	Introdu	actory Remarks	1
1.2	Scope c	of the Investigation	1
CHAPTER 2	LITERAI	URE REVIEW	3
2.1	The Des	ign Problem	4
	2.1.1	Introduction	4
	2.1.2	Methods of Scour Estimation	6
	2.1.3	The Effect of Flow Depth	27
	2.1.4	Comparison of Scour Equations	28
	2.1.5	Case Histories of Scour at Bridge Sites	33
	2.1.6	Field Data Needs	51
	2.1.7	Methods of Reducing Scour	53
2.2	Analyti	cal Attempts to Determine Scour Depth	55
	2.2.1	Shen et alia	55
	2.2.2	Carstens	56
	2.2.3	Bonasoundas	57
	2.2.4	Tarapore	58
	2.2.5	Folguera et alia	59
2.3	Measure	ments near the Bed	60
	2.3.1	Introduction	60
	2.3.2	Threshold of Motion	60
	2.3.3	Analysis of Forces	62
	2.3.4	Statistical Character of Instantaneous Hydrodynamic Forces	64
	2.3.5	Measurement of Boundary Shear Stress	65
2.4	Flow Ne	ar the Base of a Pier	67
	2.4.1	The Horseshoe Vortex	67
	2.4.2	Vertical Flow in front of the Pier	67
	2.4.3	Analysis of the Flow about a Circular Cylinder Mounted on a Flat Plate	69
	2.4.4	Experimental Data pertaining to the Flow at the Base of a Cylinder	71
	2.4.5	Flow immediately behind the Cylinder	73
2.5	Flow in	the Wake of a Cylinder in Shear Flow	73
	2.5.1	Vortex Shedding Frequency	73
	2.5.2	Vortex Sheading Frequency from a Bluff Body in Shear Flow	74
	2.5.3	Effect of Scour Hole Formation on the Shedding	70

			page
	2.5.4	Three-dimensionality in the Wake of Bluff Bodies	78
	2.5.5	Additional Wake Measurements	78
2.6	Anemon	etry	81
	2.6.1		81
	2.6.2	Errors in Operation	81
	2.6.3	Probe Contamination	82
	2.6.4	Methods of Overcoming Probe Contamination	82
2.7	Hydrog	en-Bubble Method	83
	2.7.1	Introduction	83
	2.7.2	Basis of Technique	84
	2.7.3	Quantitative Measurements	84
ä	2.7.4	Advantages and Disadvantages of the Hydrogen- Bubble Technique	85
CHAPTER 3	PRELIM	INATY INVESTIGATION	86
3.1	Choice	of Bed Material and Flow	87
	3.1.1	The Laboratory Equipment	87
	3.1.2	Bed Material	87
	3.1.3	Flow	88
3.2	Establ:	ishment of Scour Holes	89
	3.2.1		89
	3.2.2	The Establishment of Fixed-Bed Models	89
	3.2.3	Observations during the Scour Process	90
	3.2.4	Geometry of the Scour Holes	93
3.3	Prelimi	nary Experimental Data	95
	3.3.1	Scour Depth versus Time	95
	3.3.2	Approach Flow Velocity	97
	3.3.3	Flow Depths	101
	3.3.4	Distribution of Particle Sizes in the Scour Hole	101
3.4	Measure	ment of Turbulence Spectra	103
	3.4.1	Anemometry	103
	3.4.2	Magnetic Tape Recording .	104
	3.4.3	Bandpass Filters	104
	3.4.4	Analytical Justification of the Method Used for the Calculation of Spectral Density Functions	100
	3.4.5	PDP12 Digital Computer	106
	3.4.6	Digital Analysis	109
	3.4.7	Variation of RMS Velocity with Time	110
	3.4.8	Spectra of Turbulence for the Approach Flow	114
3.5	The Hyd	rogen-Bubble Generator	114
	3.5.1	Design of a High-Voltage Pulse Generator	114
	3.5.2	Light Source	117
	3.5.3	Photographs of the Approach Flow	119
CHAPTER 4	MEASURE	MENTS AT THE BED	120
4.1	Mean Ve	locity Magnitudes and Directions at the bed	121
<u>.</u>	4.1.1	Experimental Technique	121
	4.1.2	Presentation and Discussion of Experimental	101
1 4 2	murber 1 -	nga Maaguyamanta at the Dr ²	121
4.2	1 a l	Experimental Weeksiewe	125
	4.2.2	Experimental Results and Discussion	125
4 3	Shear C	trase Measurements at the Bod	128
4.5	4.3.1	Experimental Technisme	130
	4.3.2	Experimental Results and Discussion	130
		A A A A A A A A A A A A A A A A A A A	109

÷

٩

×

			page		
	4.4	Summary of Experimental Results	. 143		
CHAPTER	5	THE HORSESHOE VORTEX			
	5.1	Mean Velocity Measurements			
		5.1.1 Experimental Technique	145		
		5.1.2 Experimental Results	146		
	5.2	Flow Visualisation	161		
		5.2.1 Experimental Technique	161		
		5.2.2 Visualisation Results	161		
CHAPTER	6	WAKE MEASUREMENTS	164		
	6.1	Mean Velocity Measurements	165		
		6.1.1 Experimental Technique	165		
		6.1.2 Experimental Results	165		
	6.2	Turbulence Measurements	166		
		6.2.1 Experimental Technique	166		
		6.2.2 Experimental Results	169		
	6.3	Temporal Cross-Correlation Measurements	170		
		6.3.1 Experimental Technique	170		
		6.3.2 Experimental Results	171		
	6.4	Spatial Cross-Correlation Measurements	187		
		6.4.1 Experimental Technique	187		
		6.4.2 Experimental Results	187		
	6.5	General Discussion of Results	190		
CHAPTER	7	GENERAL DISCUSSION AND CONCLUSIONS	191		
	7.1	Design Recommendations	191		
	7.2	Experimental Conclusions	192		
÷.		7.2.1 Initialization of Scouring	192		
		7.2.2 The formation of the Scour Hole	192		
		7.2.3 The Development of the Scour Hole	193		
		7.2.4 The Horseshoe Vortex	. 194		
		7.2.5 The Flow in the Wake	194		
		7.2.6 The Region of Horseshoe Vortex - Wake Vortex Interaction	195		

BIBLIOGRAPHY		
APPENDIX		208
TABLE	Al	209
TABLE	A2	218