http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
SULPHURIC ACID, OXYGEN PRESSURE LEACHING OF A BASE-METAL SULPHIDE ORE

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

AT THE SCHOOL OF ENGINEERING UNIVERSITY OF AUCKLAND, NEW ZEALAND

BY

G. J. TEgg

1975
To Grandad and Grandma Tegg
ABSTRACT

The investigation reported in this thesis was the initial phase of an experimental programme initiated in 1969 at Auckland University to study the application of hydrometallurgical techniques to the recovery of base-metals from New Zealand sulphide ores. The principal aim was to design and build a suitable autoclave for conducting pressure leaching experiments and with this to evaluate the sulphuric acid leaching kinetics of a bulk lead-zinc-copper-iron concentrate, under a range of experimental conditions that might have process potential.

The effects of temperature, oxygen partial pressure, initial acid concentration, excess or deficiency of acid, initial particulate surface area, agitation, catalyst additions (cupric and ferric sulphate) and time on the rate of leaching of sphalerite, galena, chalcopyrite and pyrite were investigated.

Galena was found to dissolve with the formation of hydrogen sulphide and lead sulphate. The hydrogen sulphide inhibited the dissolution of both sphalerite and chalcopyrite but not galena. The effect of experimental variables on the rate of oxidation of hydrogen sulphide to sulphur are reported. This reaction was found to take place on the surface of sulphide particles between adsorbed species and the rate determining step was the oxidation of adsorbed ferrous ions by dissolved oxygen. Scanning electron micrographs are presented which show that the lead sulphate forms as a non-coherent crystalline layer on the galena surface. Conversion reaction kinetics were consistent with rate control by liquid phase diffusion in the pores of this layer. The rate of conversion was independent of oxygen partial pressure, initial acid concentration and hydrodynamics but was directly proportional to the initial particulate surface area. A very low temperature dependence was exhibited.

Sphalerite was found to exhibit linear leaching kinetics up to extractions of eighty percent after reaction inhibiting hydrogen sulphide had been removed by oxidation. The rate of linear leaching was directly proportional to oxygen partial pressure and surface area but independent of acid concentration and hydrodynamics. The ultimate sulphide oxidation products were elemental sulphur and sulphate ions with the former usually accounting for over ninety percent of the reacted sulphide sulphur. The dissolution reaction producing sulphur was electrochemical in nature and the cathodic reaction involving the discharge of oxygen was found to be rate controlling. Soluble iron catalysed this reaction and a mechanism is proposed that involves the chemisorption of ferrous ions and dissolved oxygen at the mineral surface. Scanning electron micrographs are presented which show that certain crystal faces are preferentially attacked and that dissolution occurs by a pitting action. They also explain why sphalerite dissolution is severely curtailed at temperatures exceeding the melting point of sulphur. For extractions exceeding eighty percent the dissolution rate decreased rapidly due to a decrease in cathodic area and to the agglomeration of residues.

Chalcopyrite and pyrite dissolved much more slowly than sphalerite and were extensively coated by elemental sulphur because the oxidation of hydrogen sulphide was catalysed on their surfaces.

Some practical implications of the leaching results are discussed.
ACKNOWLEDGEMENTS

I would like to express my grateful thanks to the following:

The Consolidated Silver Mining Co. for providing finance for the design and construction of the autoclave and in particular Mr. D. Alexander, a Director of the company for assistance in the autoclave design.

The Norpac. Mining Co. for providing samples of Tui ore.

The technical staff of the Chemical and Materials department, Tom Gray, Spencer Tankard, Eric Sinclair and Bill Laan.

Don Brow who worked extensively on the equipment and who was both friend and assistant throughout the study.

David Stringer who meticulously prepared the scanning electron micrographs from my negatives.

Tom Wilson of the Geology department and Harry Green of the D.S.I.R. who provided valuable advice on analytical techniques and who allowed me to use their analytical facilities.

Errol Kelly, my supervisor, for his encouragement, advice and above all, his cheerful optimism.

Joanna Bradshaw who did such an excellent job of typing the thesis.
TABLE OF CONTENTS

ACKNOWLEDGMENTS 1

TABLE OF CONTENTS ii

NOMENCLATURE vii

LIST OF FIGURES ix

LIST OF TABLES xiv

1. INTRODUCTION 1

2. BASIC THEORY 4
 2.1 INTRODUCTION 4
 2.2 THERMODYNAMICS 4
 2.3 KINETICS 8
 2.3.1 Absorption of Oxygen by the Solution 8
 2.3.2 Transport Process 10
 2.3.3 Heterogeneous Chemical Reaction at the Mineral-Solution Interface 11
 2.3.3.1 Mineralogy 11
 2.3.3.2 Surface Films 12
 2.3.4 Surface Area Effects 13
 2.3.5 Temperature Effects 13
 2.3.6 Other Factors 14

3. LITERATURE REVIEW 15
 3.1 GENERAL 15
 3.1.1 Kinetic Studies 15
 3.1.2 Process Oriented Studies 16
 3.1.3 Summary 16
 3.2 KINETIC STUDIES OF SPHALERITE LEACHING 16
 3.3 KINETIC STUDIES OF GALENA LEACHING 23
 3.4 STUDIES OF PYRITE LEACHING 24
 3.5 LEACHING OF CHALCOPYRITE 27
 3.5.1 Kinetic Leaching Studies 27
 3.5.2 Process Oriented Studies 31
 3.6 PROCESS ORIENTED LEACHING STUDIES OF ZINC, LEAD AND LEAD-ZINC CONCENTRATES 33
 3.6.1 Zinc Concentrates 33
 3.6.1.1 Sherritt Gordon Studies 34
 3.6.1.2 Russian Studies 37
 3.6.1.3 Other Studies 37
 3.6.2 Lead Concentrates 37
 3.6.3 Lead-Zinc Concentrates 39
 3.7 ELECTROCHEMICAL THEORIES OF SULPHIDE DISSOLUTION 41
 3.8 SUMMARY AND CONCLUSIONS 44

4. EQUIPMENT DESIGN AND OPERATION 46
 4.1 INTRODUCTION 46
 4.2 GENERAL REQUIREMENTS 46
 4.3 BASIC AUTOCLAVE UNIT 46
 4.3.1 Agitator 47
 4.3.2 Attachments 47
 4.3.3 Assembly 47
4.4 MATERIALS OF CONSTRUCTION
 4.4.1 Autoclave
 4.4.2 Autoclave Internals
 4.4.3 External Piping and Fittings
4.5 HEATING
4.6 TEMPERATURE CONTROL
4.7 AGITATION
4.8 OXYGEN SUPPLY
4.9 ORE CHARGING
4.10 SAMPLE WITHDRAWAL
5. EXPERIMENTAL METHOD
 5.1 LEACHING
 5.1.1 Ore Preparation
 5.1.2 Chemicals
 5.1.3 Equipment Calibrations
 5.1.4 Equipment Operating Procedure
 5.2 ANALYTICAL
 5.2.1 Ore Analysis
 5.2.2 Residue Analysis
 5.2.3 Solution Analysis
 5.3 SCANNING ELECTRON MICROSCOPY
 5.3.1 Sample Preparation
 5.3.2 Sample Mounting
 5.3.3 Operating Procedure
6. EXPERIMENTAL RESULTS
 6.1 ORE
 6.1.1 Sizing
 6.1.2 Analyses
 6.1.3 Mineralogy
 6.2 LEACHING RESULTS
 6.2.1 General
 6.2.2 The Effect of Changing Experimental Conditions on the Rate of Mineral Dissolution
 6.2.3 Experimental Observations
 6.3 SCANNING ELECTRON MICROSCOPY
 6.3.1 Ore Mineralogy and Sizing
 6.3.2 Visual and EDAX Identification of the Leach Products
 6.3.2.1 R1 Treated by Sulphur Removal Followed by Lead Sulphate Removal
 6.3.2.2 R1 Treated by Lead Sulphate Removal
 6.3.2.3 R1 Treated by Sulphur Removal
 6.3.2.4 R1 Untreated
 6.3.3 Nature of the Leach Attack and the Form of the Products
 6.3.3.1 A Sulphur Particle (R16)
 6.3.3.2 Reacted Sphalerite Surface (R2)
 6.3.3.3 Pyrite Surface (R2)
 6.3.3.4 Chalcopyrite Surface (R2)
 6.3.3.5 Reacted Galena Surface (R1)
 6.3.3.6 Reacted Galena Surface (R2)
 6.3.4 High Temperature Residues (R4-130°C)
 6.3.5 Residues from Iron Catalysed Leaching (R20)
 6.3.6 Ore Leached at Room Temperature
 6.3.7 Anglesite Formation
APPENDICES

A1 ADDITIONAL THEORY
 A1.1 AN EQUATION RELATING α AND t ASSUMING A DIRECT RATE DEPENDENCE ON SURFACE AREA
 (FOR A SPHERICAL PARTICLE)

A2 EQUIPMENT CALIBRATIONS
 A2.1 THE OXYGEN RESERVOIR

A3 AUTOCLAVE OPERATING PROCEDURE
 A3.1 START-UP
 A3.2 LIQUID SAMPLING
 A3.3 SHUT-DOWN

A4 ANALYTICAL METHODS AND PROCEDURE
 A4.1 ORE ANALYSIS
 A4.1.1 Sample Preparation
 A4.1.2 Sample Decomposition
 A4.1.3 Iron, Copper and Lead Determinations Using A.A.S.
 A4.1.4 Zinc Determinations Using A.A.S.
 A4.1.5 Standard Solution Requirements for A.A.S. Determinations
 A4.1.6 Preparation of Standard Solutions
 A4.1.7 Total Sulphur Determination
 A4.1.8 Silica Determination
 A4.2 RESIDUE ANALYSIS
 A4.2.1 Sample Preparation
 A4.2.2 Elemental Sulphur Determination
 A4.2.3 Lead Sulfate Determination
 A4.2.4 Zinc, Iron, Copper and Lead Determinations Using A.A.S.
 A4.2.5 Total Sulphur Determination
 A4.2.6 Silica Determination
 A4.2.7 X-ray Diffraction
 A4.3 LEACH SOLUTION ANALYSIS
 A4.3.1 Iron Determinations Using A.A.S
 A4.3.2 Zinc Determinations Using A.A.S
 A4.3.3 Copper Determinations Using A.A.S
 A4.3.4 Preparation of Standard Solutions
 A4.3.5 Sulfate Determination
 A4.4 GENERAL
 A4.5 LIST OF CHEMICALS USED

A5 CALCULATIONS
 A5.1 DETERMINATION OF AUTOCLAVE OPERATING PRESSURE
 A5.2 CORRECTION OF RAW METAL EXTRATIONS FOR SAMPLING VOLUME
 A5.3 CALCULATION OF EXTRACTION (α) VALUES FOR SPHALERITE AND CHALCOPYRITE
 A5.4 CALCULATION OF PYRITE EXTRATIONS
 A5.5 CALCULATION OF LEAD CONVERSIONS
 A5.6 CALCULATION OF THE FRACTION THEORETICAL SULPHUR YIELD
 A5.7 CALCULATION OF THE FRACTION THEORETICAL SULPHATE YIELD
 A5.8 CALCULATION OF THE INITIAL ACID/ORE MOL RATIO (MR)
 A5.9 SAMPLE CALCULATION (EXPERIMENT 18)

A6 ADDITIONAL RESULTS

A7 ERRORS
A8 THERMODYNAMICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8.1 FREE ENERGY DATA</td>
<td>180</td>
</tr>
<tr>
<td>A8.2 EQUILIBRIUM CONSTANTS</td>
<td>180</td>
</tr>
<tr>
<td>A8.3 THERMODYNAMIC CALCULATIONS FOR EXPERIMENT 11</td>
<td>181</td>
</tr>
<tr>
<td>A8.3.1 Galena</td>
<td>181</td>
</tr>
<tr>
<td>A8.3.2 Sphalerite</td>
<td>182</td>
</tr>
<tr>
<td>A8.3.3 Chalcopyrite</td>
<td>183</td>
</tr>
<tr>
<td>A8.3.4 Partial Pressure of Hydrogen Sulphide at t_A</td>
<td>183</td>
</tr>
</tbody>
</table>

REFERENCES

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>184</td>
</tr>
</tbody>
</table>
NOMENCLATURE

A
Particulate surface area/unit mass

Preexponential factor in the Arrhenius equation

A_0, A_1
Initial particulate surface area/unit mass

a
Activity

C
Concentration, catalyst

D
Diffusivity

D_p
Particle diameter

E
Error defined by equation (A15)

E_a
Activation energy

e
Electron

F
Faraday constant

G
Gibbs free energy

H
Enthalpy

K
Equilibrium constant

k
Constant

k_l
Rate constant

k_p
Linear rate constant

Parabolic rate constant

L
Autoclave liner, a kinetic parameter

M, Me
Metal

M
Mineralogy of the ore, a kinetic parameter

M_i
Weight of metal M charged in the sample introducer

M_i'
Weight of metal M introduced to the leachant

M_{out}
Total weight of metal M present at the completion of leaching (solution + residue)

M_t
Weight of metal M extracted after time t, calculated from the sample analyses

M_t'
Weight of metal M extracted after time t, calculated from the final leach solution analysis

M_t''
Weight of metal M extracted after seven hours calculated from the residue and ore analyses

MR
Mol ratio of acid/ore based on the supposed requirement of one mol of acid for each mol of Zn, Pb, Fe and Cu in the ore.

M$
$
Molecular weight

m
Mass

N
Number of molecules

n
An integer

P
Reaction product

Pressure

P_b
Barometric pressure
\(p \)
\(p \)
\(P_{H_2O} \)
\(P_{H_2S} \)
\(P_{O_2} \)
\(R \)
\(r \)
\(r_0 \)
\(S_{OX} \)
\(T \)
\(t \)
\(V \)
\(V' \)
\(V_f \)
\(V_i \)
\(V_o \)
\(v \)
\(W \)
\(W' \)
\(W_R \)
\(W_X \)
\(W_Y \)
\(W_Z \)
\(W_M \)
\(x \)
\(a \)
\(a_t \)
\(y_t \)
\(\rho \)
\(\delta \)
\(\Delta \)
\(\epsilon \)
\(\theta \)
\(\omega \)
\(\phi \)
gauge pressure
Partial pressure
Partial pressure of water
Partial pressure of hydrogen sulphide
Partial pressure of oxygen
Universal gas constant
Reactant species
Particle radius
Initial particle radius
Surface oxidation, a kinetic parameter
Temperature
Time
Volume
Effective initial volume of leachant
Potential barrier
Initial reaction velocity
Initial particulate volume
Initial decrease in the volume of gas in the sample line
Weight of ore charged to the sample introducer
Weight of ore introduced to the leachant
Total weight of residue
Weight of residue suspended in the solution at the completion of leaching
Weight of residue adhering to the baffles at the completion of leaching
Weight of residue remaining in the sample introducer
Weight percent of metal M in the ore or residue
Thickness of a product layer on a mineral substrate
Electron affinity of an adatom
Fraction extracted after time \(t \)
Density
Thickness of the hydrodynamic boundary layer, defined by equation (18)
Difference
E.m. f.
Fraction of surface covered, defined by equation (53)
Agitator rotation velocity
Work function
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontispiece</td>
<td>A scanning electron micrograph of leach residue showing a cubic galena particle coated in a layer of lead sulphate crystals and an extensively attacked sphalerite crystal. Fines are principally lead sulphate. x 3200 mag.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E_h-pH diagram of the S-HgO system for standard conditions (after Peters [8]).</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>E_h-pH diagram of Zn-S-HgO system for standard and 10^{-3} mol l$^{-1}$ conditions (after Peters [8]).</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>E_h-pH diagram of the Cu-Fe-S-H$_2$O system. Conditions: 0.1 mol l$^{-1}$ Fe and S species; 0.01 mol l$^{-1}$ Cu species (after Peters [8]).</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Oxygen solubility in water as a function of temperature (after Pawlek [16]).</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>The ratio of oxygen solubility in various aqueous solutions to the oxygen solubility in water as a function of solution concentration (after Pawlek [16]).</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>A schematic model of the leaching process.</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Graphs of zinc extraction versus weight percent iron in the concentrate after leaching at 90°C and 1 MPa oxygen partial pressure (after Exner et al. [70]).</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>The effect of temperature on the conversion of lead sulphide to lead sulphate at 1 MPa oxygen partial pressure (after Exner et al. [76]).</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>The effect of temperature on the conversion of lead sulphide at 0.14 MPa oxygen partial pressure, with and without acid additions (after Vizsoyi et al. [77]).</td>
<td>39</td>
</tr>
<tr>
<td>10</td>
<td>Electrochemical model of the oxidation of copper activated sphalerite (after Hisamatsu and Masuko [73]).</td>
<td>42</td>
</tr>
<tr>
<td>11</td>
<td>Schematic representation of anionic chemisorption on an n-type semiconductor. (a) Before chemisorption. (b) After chemisorption.</td>
<td>43</td>
</tr>
<tr>
<td>12</td>
<td>Working drawings of the autoclave</td>
<td>48, 49</td>
</tr>
<tr>
<td>13</td>
<td>A general view of the autoclave cabinet showing the control panel, oxygen reservoir, temperature and pressure recorders and the sampling window.</td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>A view of the autoclave lid showing the agitator drive and bearings, upper gland cooling jacket, tube couplings, safety valve and pressure gauge diaphragm.</td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>A general view of the autoclave showing the lid and agitator unit, the teflon internals agitator shaft, impeller, sample tube, thermocouple well, blank baffle and the autoclave body with wrap-round insulated elements.</td>
<td>51</td>
</tr>
<tr>
<td>16</td>
<td>Two views of the self-sucking impeller agitating and aerating one litre of water in a three litre pyrex liner.</td>
<td>53</td>
</tr>
<tr>
<td>(a)</td>
<td>in operation</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>almost stationary</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Sample introducer.</td>
<td>52</td>
</tr>
<tr>
<td>18</td>
<td>A schematic diagram of the autoclave and services.</td>
<td>54</td>
</tr>
<tr>
<td>19</td>
<td>An eight position sample mounting for the scanning electron microscope.</td>
<td>65</td>
</tr>
<tr>
<td>20</td>
<td>X-ray powder diffraction scan of nominal 49 µm ore showing peaks of quartz, galena, sphalerite, chalcopyrite and pyrite.</td>
<td>69</td>
</tr>
</tbody>
</table>
The effect of temperature on the dissolution of sphalerite, chalcopyrite and pyrite with other leaching parameters standard. \((\text{pO}_2 = 0.138 \text{ MPa}, \text{MR} = 1.1, \text{[acid]}_i = 0.8 \text{ mol l}^{-1}, \rho_p = 115 \text{ g l}^{-1}, \omega = 1000 \text{ rpm}, d_p = 49 \text{ pm})\).

The effect of oxygen partial pressure on the dissolution of sphalerite and chalcopyrite with other leaching parameters standard. \((T = 110^\circ\text{C}, \text{[acid]}_i = 0.8 \text{ mol l}^{-1}, \rho_p = 115 \text{ g l}^{-1}, \omega = 1000 \text{ rpm}, \text{MR} = 1.1, d_p = 49 \text{ pm})\).

The effect of oxygen partial pressure on the dissolution of pyrite with other leaching parameters standard. \((T = 110^\circ\text{C}, \text{[acid]}_i = 0.8 \text{ mol l}^{-1}, \rho_p = 115 \text{ g l}^{-1}, \omega = 1000 \text{ rpm}, \text{MR} = 1.1, d_p = 49 \text{ pm})\).

The effect of oxygen partial pressure on the dissolution of sphalerite, chalcopyrite and pyrite with other leaching parameters standard except for particle size. \((T = 110^\circ\text{C}, \text{[acid]}_i = 0.8 \text{ mol l}^{-1}, \rho_p = 115 \text{ g l}^{-1}, \omega = 1000 \text{ rpm}, d_p = 49 \text{ pm})\).

The effect of acid/ore mol ratio (and pulp density) on the dissolution of sphalerite, chalcopyrite and pyrite with other leaching conditions standard. \((T = 110^\circ\text{C}, \text{[acid]}_i = 0.8 \text{ mol l}^{-1}, \text{pO}_2 = 0.138 \text{ MPa}, \omega = 1000 \text{ rpm}, d_p = 49 \text{ pm})\).

The effect of acid/ore mol ratio (and pulp density) on the dissolution of sphalerite, chalcopyrite and pyrite. \((T = 110^\circ\text{C}, \text{pO}_2 = 0.138 \text{ MPa}, \text{[acid]}_i = 0.2 \text{ mol l}^{-1}, \omega = 1000 \text{ rpm}, \text{MR} = 1.1, d_p = 49 \text{ pm})\).

The effect of initial particle size (surface area) on the dissolution of sphalerite, chalcopyrite and pyrite with all other leaching parameters standard. \((T = 110^\circ\text{C}, \text{pO}_2 = 0.138 \text{ MPa}, \text{[acid]}_i = 0.8 \text{ mol l}^{-1}, \rho_p = 115 \text{ g l}^{-1}, \text{MR} = 1.1, \omega = 1000 \text{ rpm})\).

The effect of initial acid concentration on the dissolution of sphalerite, chalcopyrite and pyrite. \((T = 110^\circ\text{C}, \text{pO}_2 = 0.138 \text{ MPa}, \omega = 1000 \text{ rpm}, \text{MR} = 1.1, d_p = 49 \text{ pm})\).

The effect of cupric sulphate and ferric sulphate additions on the dissolution of sphalerite and chalcopyrite. \((T = 110^\circ\text{C}, \text{[acid]}_i = 0.8 \text{ mol l}^{-1}, \text{pO}_2 = 0.138 \text{ MPa}, \rho_p = 115 \text{ g l}^{-1}, \text{MR} = 1.1, \omega = 1000 \text{ rpm}, d_p < 49 \text{ pm} - \text{ore batch 2})\).

The effect of cupric sulphur and ferric sulphur additions on the dissolution of pyrite. \((T = 110^\circ\text{C}, \text{[acid]}_i = 0.8 \text{ mol l}^{-1}, \text{pO}_2 = 0.138 \text{ MPa}, \rho_p = 115 \text{ g l}^{-1}, \text{MR} = 1.1, \omega = 1000 \text{ rpm}, d_p < 49 \text{ pm} - \text{ore batch 2})\).

The effect of agitation on the dissolution of sphalerite, chalcopyrite and pyrite. \((T = 110^\circ\text{C}, \text{pO}_2 = 0.069 \text{ MPa}, \text{[acid]}_i = 0.8 \text{ mol l}^{-1}, \rho_p = 115 \text{ g l}^{-1}, \text{MR} = 1.1, d_p = 49 \text{ pm})\).

Dissolution curves for sphalerite, chalcopyrite and pyrite from replicate leaching experiments.

The effect of temperature, oxygen partial pressure, initial acid concentration and molar ratio on the percent theoretical sulphur and sulphate yields after seven hours leaching.

The effect of temperature, oxygen partial pressure, initial acid concentration and molar ratio of acid/ore on the fraction of galena converted to lead sulphate after seven hours leaching.

Scanning electron micrograph of unreacted ore screened -149 + 125 \text{ pm} \text{(nominal 137 pm)}. 93 x 120 mag.
34(b) Scanning electron micrograph of leached 137 μm ore (residue from experiment #16). x 100 mag.

35 EDX analyses of mineral surfaces of
(a) sphalerite
(b) galena
(c) pyrite
(d) chalcopyrite

36 Scanning electron micrograph of unreacted ore screened -53 + 44 μm (nominal 49 μm). x 400 mag.

37 Scanning electron micrograph of residue from experiment 1 (R1) treated by sulphur removal followed by lead sulphate removal. x 500 mag.

38(a) Scanning electron micrograph of R1 after lead sulphate removal. x 400 mag.
(b) EDX elemental analysis of the surface of a sulphur agglomerate

39(a) Scanning electron micrograph of R1 after sulphur removal. x 500 mag.
(b) EDX elemental analysis of a point on the surface of one of the fine particles.
(c) EDX elemental analysis of the surface of the cubic particle

40 Scanning electron micrograph of R1. x 400 mag.

41 Scanning electron micrograph of a sulphur particle (R16). x 1000 mag.

42(a) Scanning electron micrograph of reacted sphalerite surface (R2) showing patches of elemental sulphur. x 3000 mag.
(b) EDX elemental analysis of a point on the surface of one of the sulphur patches.
(c) EDX elemental analysis of the general surface.

43 Scanning electron micrographs of
(a) reacted sphalerite surface (R2) showing patches of elemental sulphur and the pitting form of attack. x 2000 mag.
(b) a similar surface with sulphur removed. x 3000 mag.

44(a) Scanning electron micrograph of pyrite (R2) showing an extensive coating of sulphur. x 3000 mag.
(b) EDX elemental analysis of a point on the surface of the sulphur layer.
(c) EDX elemental analysis of the general surface.

45(a) Scanning electron micrograph of chalcopyrite (R2) showing a partial sulphur coating. x 3000 mag.
(b) EDX elemental analysis of a point on the surface of a sulphur patch.
(c) EDX elemental analysis of the general surface.

46 Scanning electron micrographs of
(a) reacted galena surface (R1, 110 C) small crystals of anglesite. x 7000 Mag.
(b) a similar surface (R1) after the removal of anglesite by ammonium acetate leaching. x 3000 mag.
<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>Scanning electron micrographs of reacted galena surface (R2, 70°C) showing the larger crystals of anglesite formed at the lower temperature. x 2000 mag.</td>
<td>104</td>
</tr>
<tr>
<td>48</td>
<td>Scanning electron micrographs of a similar surface (R2) after the removal of anglesite by ammonium acetate leaching. x 2000 mag.</td>
<td>105</td>
</tr>
<tr>
<td>49(a)</td>
<td>Scanning electron micrograph of an agglomerate particle from Fig. 48(a). x 1600 mag.</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Elemental analysis of the general agglomerate surface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elemental analysis of points 1, 2 and 3 on the agglomerate surface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elemental analysis of points 4 and 5 on the agglomerate surface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elemental analysis of point 6 on the agglomerate surface.</td>
<td></td>
</tr>
<tr>
<td>50(a)</td>
<td>Scanning electron micrograph of ore leached using ferric sulphate as a catalyst (R20). It shows almost complete dissolution of the sulphide minerals and the large sulphur agglomerates resulting. x 300 mag.</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>EDX elemental analysis of a sulphur agglomerate showing traces of pyrite, sphalerite, chalcopyrite and lead (sulphide or sulphate).</td>
<td></td>
</tr>
<tr>
<td>51(a)</td>
<td>Scanning electron micrograph of a sulphur agglomerate (R20) consisting principally of covellite. x 120 mag.</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>EDX elemental analysis of the general surface of the agglomerate.</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Scanning electron micrographs of 49 μm ore leached for three weeks in 0.8 mol l−1 sulphuric acid at room temperature, showing the extensive conversion of galena to anglesite. x 300 mag.</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>reacted sphalerite surface showing pitting attack. x 2000 mag.</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Generalized leaching curves for sphalerite, chalcopyrite and pyrite.</td>
<td>113</td>
</tr>
<tr>
<td>54</td>
<td>Graphs of H₂S concentration versus time per proposal (i)</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>The formation and oxidation curves.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The resultant concentration curve.</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Graphs of H₂S concentration versus time per proposal (ii).</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>The formation and oxidation curves.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The resultant concentration curve.</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>The effect of temperature on the linear leaching of sphalerite, chalcopyrite and pyrite.</td>
<td>125</td>
</tr>
<tr>
<td>57</td>
<td>Arrhenius plot for sphalerite dissolution.</td>
<td>125</td>
</tr>
<tr>
<td>58</td>
<td>The effect of oxygen partial pressure on the linear leaching of sphalerite and chalcopyrite.</td>
<td>128</td>
</tr>
</tbody>
</table>
The linear leaching rate as a function of oxygen partial pressure for sphalerite.
The effect of acid concentration on the linear leaching of sphalerite, chalcopyrite and pyrite.
The linear leaching rate as a function of acid concentration for sphalerite.
The effect of impeller rotation speed on the linear leaching of sphalerite, chalcopyrite and pyrite.
The linear leaching of sphalerite - three pairs of replicate experiments.
Arrhenius plot for chalcopyrite dissolution.
The linear leaching rate of chalcopyrite as a function of oxygen partial pressure.
Arrhenius plot for "purite" dissolution.
The linear leaching rate as a function of oxygen pressure for "pyrite".
A schematic representation of the catalytic role of soluble iron in promoting the cathodic discharge of oxygen.
Temperature - composition diagram for the liquid-vapour equilibrium of H2SO4 and water.

Fig. No.	Title	Page
 59 | The linear leaching rate as a function of oxygen partial pressure for sphalerite. | 128 |
 60 | The effect of acid concentration on the linear leaching of sphalerite, chalcopyrite and pyrite. | 130 |
 61 | The linear leaching rate as a function of acid concentration for sphalerite. | 130 |
 62 | The effect of impeller rotation speed on the linear leaching of sphalerite, chalcopyrite and pyrite. | 131 |
 63 | The linear leaching of sphalerite - three pairs of replicate experiments. | 131 |
 64 | Arrhenius plot for chalcopyrite dissolution. | 133 |
 65 | The linear leaching rate of chalcopyrite as a function of oxygen partial pressure. | 134 |
 66 | Arrhenius plot for "purite" dissolution. | 136 |
 67 | The linear leaching rate as a function of oxygen pressure for "pyrite". | 137 |
 68 | A schematic representation of the catalytic role of soluble iron in promoting the cathodic discharge of oxygen. | 141 |
 A1 | Temperature - composition diagram for the liquid-vapour equilibrium of H2SO4 and water. | 163 |
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kinetic studies of zinc sulphide leaching</td>
<td>17, 18</td>
</tr>
<tr>
<td>2</td>
<td>Studies of pyrite leaching</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Kinetic studies of chalcopyrite leaching</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>Process oriented studies of chalcopyrite leaching</td>
<td>32</td>
</tr>
<tr>
<td>5A</td>
<td>Process oriented leaching studies of sphalerite concentrates</td>
<td>35</td>
</tr>
<tr>
<td>5B</td>
<td>Process oriented studies of lead and lead-zinc concentrates</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>Ore analyses</td>
<td>68</td>
</tr>
<tr>
<td>7</td>
<td>Ore mineralogy</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>Range of experimental variables</td>
<td>71</td>
</tr>
<tr>
<td>9</td>
<td>Leaching results</td>
<td>72</td>
</tr>
<tr>
<td>10</td>
<td>The size of anglesite crystals formed as a function of experimental conditions</td>
<td>92</td>
</tr>
<tr>
<td>11</td>
<td>The ratio of, moles of galena reacted/moles of sphalerite reacted, for each experiment</td>
<td>120</td>
</tr>
<tr>
<td>A1</td>
<td>Oxygen reservoir calibration</td>
<td>153</td>
</tr>
<tr>
<td>A2</td>
<td>Chemicals used</td>
<td>162</td>
</tr>
<tr>
<td>A3</td>
<td>Starting conditions</td>
<td>175</td>
</tr>
<tr>
<td>A4</td>
<td>Mass balance after seven hours leaching</td>
<td>175</td>
</tr>
<tr>
<td>A5</td>
<td>Calculation of sphalerite and chalcopyrite extractions</td>
<td>176</td>
</tr>
<tr>
<td>A6</td>
<td>Calculation of "pyrite" extractions</td>
<td>175</td>
</tr>
<tr>
<td>A7</td>
<td>Calculation of the fraction theoretical sulphur yield</td>
<td>177</td>
</tr>
<tr>
<td>A8</td>
<td>Calculation of the fraction theoretical sulphate yield</td>
<td>177</td>
</tr>
<tr>
<td>A9</td>
<td>Additional Results</td>
<td>178</td>
</tr>
<tr>
<td>A10</td>
<td>Errors</td>
<td>179</td>
</tr>
<tr>
<td>A11</td>
<td>Thermodynamic data</td>
<td>180</td>
</tr>
</tbody>
</table>