Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
"THE PROPAGATION OF SEISMIC WAVES THROUGH NONLINEAR SOIL MEDIA"

A Thesis submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Civil Engineering

- at the -

School of Engineering
University of Auckland
New Zealand

- by -

T.J. LARKIN
September, 1976
Synopsis

This study is concerned with a theoretical, laboratory and in situ investigation of the propagation of seismic stress waves through soil media.

Analyses are carried out to predict the surface response that results from earthquake motions being transmitted through the upper layers of the earth. The nature of the near surface geological layers affect to a marked degree the intensity of surface motion. The mathematical models presented are used in the evaluation of site response to earthquakes.

The theoretical methods used depart from the traditional viscoelastic approach and use a nonlinear hysteretic soil model to describe the complex dynamic stress-strain relationships evident in soil response. The dynamic soil model is based on previous laboratory work carried out at this university.

The theoretical solutions formulated are limited to one-dimensional situations. Three methods of analysis are presented for the propagation of seismic shear waves through nonlinear soil media and conclusions are drawn as to the best approach. The results of these analyses are generally significantly different from those obtained using a viscoelastic soil model. Seismic dilatational waves are also considered important and a method is presented to calculate the response of hysteretic soil media to these disturbances. The outcome from these dilatational and shear wave analyses is more accurate surface response spectra for use in aseismic structural design.

The nonlinear hysteretic soil model is generated from laboratory data. To this end an existing laboratory dynamic torsion test apparatus was modified and a series of tests carried out. The torsion equipment was coupled to an on-line computer which allowed accurate data recording and analysis over a wide range of strain (2×10^{-3} to 2×10^{-6}).

To provide a means of estimating sample disturbance, and to develop a method of in situ soil testing in the very low strain range, in situ shear wave measurements were undertaken. The downhole method of seismic wave testing was used to furnish values of the shear wave velocity of layers of silts, clays and sands down to a depth of 50m. Comparison of these wave velocities with those obtained from laboratory torsion tests on undisturbed samples revealed large differences and established the magnitude of sample breakdown.

A method of modifying the laboratory established shear modulus - strain relationship to obtain the correct (in situ) curve is presented. This allows more correct dynamic soil properties to be incorporated in the simulation of the in situ soil response to seismic shear waves.
Acknowledgements

The work presented in this thesis was carried out at the University of Auckland, Civil Engineering Department under the headship of Professor N.A. Mowbray.

During the course of the study the author was supervised by Associate Professor P.M. Taylor. The author wishes to express his great appreciation to Professor Taylor for the substantial knowledge, enthusiasm and vigour he imparted to the project, and the friendly manner in which this help has been given.

The author wishes to express his deepest gratitude to Judy, without whose encouragement and understanding this work would have been a much more onerous task.

Most sincere thanks are especially due to Mr. and Mrs. Money of Milford for the support and companionship given the author during his university studies. Their patience and understanding are greatly appreciated.

Grateful thanks are extended to the author’s parents for their unfailing help and countenance given over a number of years.

Many people on the university staff have assisted the author during the course of this work. The interest and help given by the following is much appreciated.

Dr. M. O’Sullivan and Dr. I. Medland for help with mathematics and computing.
Mr. R. Atkinson and Dr. P. Alexander for assistance with computer work and instrumentation.
The late Mr. E. Fleming, Mr. J. Brown and workshop staff for their skilful work.
Messrs. R. Bowen, G. Daske, R. Rutledge, G. Greenbrook, C. Collins and T. McCarthy for the various parts they played.
Dr. D.V. Toan for his photography efforts.
The staff and drillers of the Auckland M.W.D. laboratory for their contribution to the field work.
Mrs. G. Margetts for helpful assistance and efficient typing of the text.
Fellow research students for their friendship over the course of this study.
The author has been the grateful recipient of a U.G.C. Postgraduate Scholarship.
Table of Contents

SYNOPSIS (i)

ACKNOWLEDGMENTS (ii)

CONTENTS (iii)

SYMBOL NOTATION (vii)

CHAPTER 1 INTRODUCTION TO EARTHQUAKE STUDIES
 1.0 Introduction 1
 1.1 Earthquakes: The World and New Zealand 2
 1.2 Causes of Earthquakes 3
 1.3 Socioeconomic Aspects 4
 1.4 Seismic Ground Vibrations 6
 1.5 Thesis Outline 6

CHAPTER 2 THE SEISMIC RESPONSE OF HORIZONTAL SOIL LAYERS
 2.1 Introduction 9
 2.2 Fundamental Concepts 10
 2.2.1 The Time-Convolution Theorem 10
 2.2.2 The General Concept of a Fourier Transform Method 11
 2.2.3 Response of a Uniform Soil Layer to Periodic Waves 12
 2.3 The Time Domain Method of Ray Tracing 14
 2.4 Seismic Response of Multilayered Viscoelastic Soil Media 17
 2.4.1 The Development of a Transfer Function 18
 2.4.2 The Effect of the Elasticity of the Half-Space 23
 2.4.3 Extension to Earthquake Transients 23
 2.5 The Discrete Mass Approach 27
 2.6 Conclusions 29

CHAPTER 3 THE NONLINEAR SOIL MODEL
 3.1 Introduction 30
 3.2 Rheological Soil Models in Use 32
 3.2.1 Astburys' Model 33
 3.2.2 The Standard Anelastic Solid 33
 3.2.3 The Ramberg-Osgood Relationship 35
 3.3 Dynamic Stress Controlled Compressive Tests on Cohesive Soils 36
 3.3.1 Types of Stress Controlled Tests 39
 3.3.2 The Importance of Stress Reversals 39
 3.3.3 Dynamic Effects on Pore Pressure 42
 3.3.4 Frequency Effects 45
 3.3.5 Energy Absorption 45
 3.4 Characteristics of Cohesive Soils in Dynamic Compressive Tests 45
 3.5 Modelling of Soil Hysteresis Loops 50
 3.5.1 The Elastoplastic Element 50
7.3.3 Stability and Accuracy Analysis
7.3.4 Case Study
7.3.5 Conclusions
7.4 Comparison of Methods of Shear Wave Analyses
7.4.1 Study No. 1
7.4.2 Study No. 2
7.4.3 Differences and Conclusions on the Methods
7.5 Seismic Soil Response Incorporating Degradation
7.5.1 Conclusions on the Effects of Degradation
7.6 Conclusions

CHAPTER 8 IN SITU SHEAR WAVE PROPAGATION
8.1 Introduction
8.2 Shear Waves in Multiphase Soil Media
8.3 Types and Sources of Stress Waves in Soil Media
8.3.1 Experimental Sources of In Situ Stress Waves
8.4 Methods of In Situ Shear Wave Analyses
8.4.1 The Shear Wave Refraction Method
8.4.2 The Interhole Method
8.4.3 The Downhole Method
8.5 In Situ Shear Wave Measurements at Te Atatu
8.5.1 The Method Used in the Field Studies
8.5.2 Equipment and Field Operation
8.5.3 Method of Analysis
8.5.4 Results of Analyses
8.5.5 Calculation of In Situ Strain from Shear Waves
8.6 Conclusions

CHAPTER 9 THE DYNAMIC TORSION TEST
9.1 Introduction
9.2 The Free Vibration Torsion Test
9.2.1 Method of Analysis
9.3 Modifications to the Air Bearing
9.4 Linking the Dynamic Torsion Apparatus to an On-Line Computer
9.5 Procedure Taken in Dynamic Torsion Tests
9.6 Dynamic Torsion Tests Undertaken
9.7 Results of Laboratory Tests
9.7.1 Comparison of Laboratory Preparation Methods
9.8 Discussion of Test Results
9.9 Comparison of In Situ and Laboratory Derived Shear Moduli
9.10 Recommended Correction Procedure for Dynamic Shear Moduli
9.11 Conclusions

CHAPTER 10 THE PROPAGATION OF COMPRESSION WAVES THROUGH NONLINEAR SOIL MEDIA
10.1 Introduction
10.2 Finite Difference Representation of Compression Waves in Nonlinear Soil Media
10.2.1 Stability of the Solution Procedure
10.2.2 Introduction of the Degenerative Element in Response Studies
10.2.3 Simulation of Hysteresis Loops
10.3 Case Studies of Site Response to Compression Waves
10.3.1 High Strain Response
10.3.2 Low Strain Response
10.3.3 Sensitivity of Analyses to Poisson's Ratio
10.4 Conclusions on Compression Wave Propagation
Chapter 11 - Summary and Conclusions

11.1 Introduction
11.2 Summary and Conclusions of the Work Presented

Appendix I - Electrical Circuits

Appendix II - Documentation of Computer Programs

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2.1</td>
<td>Introduction</td>
<td>291</td>
</tr>
<tr>
<td>A.2.2</td>
<td>Seismic Soil Response by a Discrete Mass Approach - "MATCHSTICK"</td>
<td>291</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>Notes for Users of Lumped Mass Program</td>
<td>291</td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>User Options for Lumped Mass Program</td>
<td>292</td>
</tr>
<tr>
<td>A.2.2.3</td>
<td>Data Deck Details - "MATCHSTICK"</td>
<td>293</td>
</tr>
<tr>
<td>A.2.2.4</td>
<td>Listing of Program MATCHSTICK</td>
<td>294</td>
</tr>
<tr>
<td>A.2.3</td>
<td>Seismic Soil Response by the Method of Characteristics - "CHARA"</td>
<td>305</td>
</tr>
<tr>
<td>A.2.3.1</td>
<td>Notes for Users of Program "CHARA"</td>
<td>305</td>
</tr>
<tr>
<td>A.2.3.2</td>
<td>User Options for Program "CHARA"</td>
<td>305</td>
</tr>
<tr>
<td>A.2.3.3</td>
<td>Data Deck Details - "CHARA"</td>
<td>306</td>
</tr>
<tr>
<td>A.2.3.4</td>
<td>Listing of Program CHARA</td>
<td>307</td>
</tr>
<tr>
<td>A.2.4</td>
<td>The Finite Difference Method of Seismic Soil Response - "FINDIF"</td>
<td>311</td>
</tr>
<tr>
<td>A.2.4.1</td>
<td>Notes for Users of Program "FINDIF"</td>
<td>311</td>
</tr>
<tr>
<td>A.2.4.2</td>
<td>Data Deck Details - "FINDIF"</td>
<td>312</td>
</tr>
<tr>
<td>A.2.4.3</td>
<td>Listing of Program FINDIF</td>
<td>313</td>
</tr>
<tr>
<td>A.2.5</td>
<td>Soil Response to Dilatational Earthquake Waves - "SQUEEZE"</td>
<td>316</td>
</tr>
<tr>
<td>A.2.5.1</td>
<td>Notes for Users of Program "SQUEEZE"</td>
<td>316</td>
</tr>
<tr>
<td>A.2.5.2</td>
<td>User Options for Program "SQUEEZE"</td>
<td>316</td>
</tr>
<tr>
<td>A.2.5.3</td>
<td>Data Deck Details - "SQUEEZE"</td>
<td>317</td>
</tr>
<tr>
<td>A.2.5.4</td>
<td>Listing of Program SQUEEZE</td>
<td>318</td>
</tr>
</tbody>
</table>

Appendix III - Dynamic Torsion Test Procedure

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.3.1</td>
<td>Hardware Involved</td>
<td>322</td>
</tr>
<tr>
<td>A.3.2</td>
<td>Sample Setting up and Consolidation</td>
<td>322</td>
</tr>
<tr>
<td>A.3.3</td>
<td>Test Procedure</td>
<td>324</td>
</tr>
<tr>
<td>A.3.4</td>
<td>Analysis Procedure</td>
<td>326</td>
</tr>
<tr>
<td>A.3.5</td>
<td>An Introduction to the PDP12 and the Program "MASAM3"</td>
<td>328</td>
</tr>
<tr>
<td>A.3.6</td>
<td>Program Documentation</td>
<td>331</td>
</tr>
</tbody>
</table>

Appendix IV - Suggestions for Further Work

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.4.1</td>
<td>Introduction</td>
<td>337</td>
</tr>
<tr>
<td>A.4.2</td>
<td>Radiation Damping</td>
<td>337</td>
</tr>
<tr>
<td>A.4.3</td>
<td>Generation of Stochastic Earthquake Records</td>
<td>337</td>
</tr>
<tr>
<td>A.4.4</td>
<td>Love Wave Propagation</td>
<td>338</td>
</tr>
<tr>
<td>A.4.5</td>
<td>2D Solutions for Seismic Wave Propagation</td>
<td>341</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>344</td>
</tr>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>A_i</td>
</tr>
<tr>
<td>A_p</td>
</tr>
<tr>
<td>$A(\omega)$</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>c_c</td>
</tr>
<tr>
<td>c^*,c^-</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>$F[\cdot]$</td>
</tr>
<tr>
<td>$F(x,t)$</td>
</tr>
<tr>
<td>$F(\omega)$</td>
</tr>
<tr>
<td>f_N</td>
</tr>
<tr>
<td>f_s</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>G^*</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>$H_{i(\omega)}$</td>
</tr>
<tr>
<td>H_n</td>
</tr>
<tr>
<td>$h_{i(t)}$</td>
</tr>
<tr>
<td>h_{k}</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>J_r</td>
</tr>
<tr>
<td>J_u</td>
</tr>
<tr>
<td>j</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>K_e</td>
</tr>
<tr>
<td>k</td>
</tr>
<tr>
<td>k_e</td>
</tr>
</tbody>
</table>
k* initial elastoplastic element stiffness
k' final elastoplastic element stiffness
L length of torsion sample
M mass; applied moment
MIN minimum signal value in displayed points
M_i ith soil mass
MPY scaling parameter
m mass
P natural undamped frequency
R Coulomb resistance of elastoplastic element; spectral radius
R* initial Coulomb limit of elastoplastic element
R' final Coulomb limit of elastoplastic element
S_u undrained shear strength
T period of oscillation
T_N period of highest pseudo-mode of an N-mass system
T_n nth natural period of an n mass system
T_R relaxation time
T_1 pseudo natural period of nonlinear soil layer
t time
\hat{U}(\omega) Fourier transform of soil acceleration record
u displacement of soil particle in the x direction (horizontal)
\frac{\partial u}{\partial x}
u_x velocity of compressional wave through soil medium
V_c velocity of shear wave through soil medium
V_s
v displacement of soil particle in the z direction (vertical)
W maximum strain energy stored during a cycle of loading
\frac{\partial^2 u}{\partial z^2}w_z
X_s time value read off computer screen
x cartesian coordinate direction (horizontal)
x_i displacement of the ith mass relative to the base
Y_s rotational displacement read off computer screen
\hat{Y}(\omega) Fourier transform of bedrock acceleration record
y displacement of soil-rock interface
\hat{y}
y base acceleration
z cartesian coordinate direction (vertical)
\(\alpha_e \) effective tangent modulus
\(\alpha_m \) complex impedance ratio of the \(m \)th layer
\(\alpha_n \) tangent modulus of the \(n \)th hysteresis loop
\(\beta_n \) lateral stiffness of \(n \)th shear spring
\(\delta \) logarithmic decrement
\(\delta(t) \) unit impulse
\(\Delta D \) energy dissipated
\(\Delta t \) time increment
\(\Delta x \) space increment in \(x \) direction
\(\Delta z \) space increment in \(z \) direction
\(\varepsilon \) strain
\(\varepsilon_y \) yield strain of elastoplastic element
\(\tilde{\varepsilon} \) cubical dilation or volume expansion
\(\eta \) soil viscosity coefficient; parameter of Newmark's integration scheme
\(\gamma \) shear strain
\(\gamma_y \) yield shear strain of elastoplastic element
\(\lambda \) fraction of critical viscous damping; Lame's constant; stability parameter
\(\lambda_{eq} \) equivalent viscous damping factor
\(\lambda_n \) viscous damping ratio in the \(n \)th mode
\(\mu \) parameter of Newmark's integration scheme
\(\nu \) Poisson's ratio
\(\omega \) angular frequency, rad/sec; rotation of solid particles
\(\omega_n \) \(n \)th eigenvalue
\(\omega_{w} \) rotation of fluid particles
\(\psi \) specific damping capacity
\(\rho \) mass density
\(\rho_A \) mass density of fictitious mass representing coupling between the fluid and elastic structure
\(\rho_f \) mass density of pore fluid
\(\rho_s \) mass density of elastic structure
\(\sigma \) normal stress
\(\sigma_e' \) mean interparticle stress
\(\sigma_i' \) intrinsic stress
\(\sigma_m' \) mean effective principal stress
\(\sigma_v' \) vertical effective stress
\(\sigma_1 \) major principal stress
\(\tilde{\sigma} \) normal stress from simulated hysteresis loop
\(\theta \) angular displacement of soil sample; disturbance factor; tolerance level in moduli prediction
\(\tau \) shear stress; dummy variable