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ABSTRACT

An investigation is made into the coupled lateral-torsional response of torsionally unbalanced "shear"
buildings to horizontally directed earthquake excitation. Attention is confined to analytical models

that have linearly elastic, viscously damped responses.
The investigation involves three separate analyses:

Firstly, in a preliminary study, the earthquake response of an asymmetric single storey building
model is analyzed and general expressions are derived for the location of the centre of stiffness and

the orientation of the principal axes.

Secondly, an analysis is made of the coupled Tateral-torsional response of a partially symmetric
single storey building model to a single component of earthquéke excitation. A modal solution of the
two equations of motion is developed and a general criterion is derived for the existence of full moaal
coupling.

By employing the design spectrum concept, together with conservative rules for the combination of
modal maxima, analytical results in dimensionless form are evaluated for an equivalent static shear and
an equivalent static torque. The combination expressions are then modified to include an allowance for
modal coupling before the final results are computed and tabulated. The results substantiate previous
findings which have pointed to a possible Tink between strong modal coupling and severely coupled lateral
and torsional responses. In particular, they indicate that those nominally symmetric buildings which
exhibit strong modal coupling are Tiable to respond more strongly in torsion than has hitherto been
recognised by most building codes. This effect has not in the past been quantified in analytical terms.

Although the results have practical applications in design, the analysis concerns itself primarily
with the determination of realistic estimates for the dimensionless response quantities and no attempt

is made to derive design rules.

Finally, the partially symmetric single storey model is extended to a special class of partially
symmetric multistorey "shear" buildings. The importance of this final analysis derives from the
similarity between the results for the single storey model and those for the continuous multistorey

model.
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