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ABSTRACT

The work described in this thesis is an anaiytical anrl experimental study of two-phase gas-liquid horizontal
flow in a conduit with particular cnphasis on holdup measurements and predictions. Holdup and rrressure
drop' their inter-relationships. and t.heir flow pattern dependencewere invest.igated. A simple method
for flow pattern determination was presented so that the appropriate prediction method may be selected
for a particular situation. The results were discussed by comparison with a wide range of experimental
data and the relevant literature. Tvro simple devices for holdup measurenlents were developed in this work
and their behaviours were also found to be flow pattern dcpendent. The results are as follows:

In the analytical study, the original Lockhart-Martinelli formulation was treated analytically for
ldeai stratified flow giving eguations which agree with experimental pressure drop and holdup data and
the more rigorously derived relationships of Johannessen and Taitel & Dukler. For ideal annular flow,
the derived equations predicted pressure drop in 'large diameter pipes reasonably weil giving results which
are in agreement with the rrlodified equation of Baker. Poor prediction was achieved for small diameter
plpes. The holdup equations derived for annular flow vrere also in poor agreement with experimental
data although a slight nrodificatlon resulted in an equation that was not only suitable for holdup
prediction' but also may be used to represent the original Lockhart-llartinelli holdup correlation over
the entire operating range.

A correlation was presented for the frictional pressure drop in annular flow based on laboratory
air-water data and geothermal steam-water data. The correlation was found to predict pressure loss
values which agreed vith data from various different sources. The corelation exhibited a point of
inflexion which was believed to be due to the transition from a rlpple lrave type of interfacial
d'lsturbance to one of roll wave-droplet entrainment. An extensive literature survey showed that such
a transilion at high gas rate occurs at all flow orientations and is governed by a critical liquid
rate given by a definit,e value of the l,leber number defined in terms of the liquid phase.

The Butterrnorth form of holdup equation was justified by assuming ideal stratified and annular
turbulent-turbulent and viscous-viscous flows. A full set of equations for stratified flow covering the
cases of liquid-gas, turbulent-viscous and vlscous-turbulent were also derived, It was found that
the variation in the coefficients and exponentia'l factors in the Butterworth equatlon was due to at
least three factors: the flow pattern, the flow regimes of the phases, i.e., viscous or turbulent, and
the range of the value of the ratlo of the liquid holdup to the voidage. Furthermore, experimental
data were found to behave according to whether the flow pattern was stratified, slug and plug or
annular. Equations for determining these flow patterns were presented, based on the derived stratified
flow equations' and were checked to be in agreement with the flow pattern maps of !4andhane et al and Taitel
& Dukler, and the experimental flow pattern observations of this work.

Since the derivation from the original Lockhart-Martine'lli formulation did not yield a conrpletely
satisfactory relationship for the holdup and pressure drop in annular flovr, such a relationship w6s
examined in ternts of the film flow eguations, Newton's law of viscosity and the prandtl,s mixing length.
This was also contpared r'lith the analysis of Levy of annular-mist flow using the nrixing length theory.
Throughout the analysis, the results were compared with various sources of laboratory air-water data
and geothermal steam-water data, and the discrepancies, if any, were discussed.

The rise velocity of Taylor bubbles in conduits was also examined in terms of the film flow equations,
the Newton's law of viscosity, the Prandtl's mixing iength theory and the universal velocity distribution
equations. The rise velocity of a Taylor bubble as derived by the Prandtl's mix.ing length theory
has the same form as that derived by Dumitriscu and Davies & Taylor who used the classical potential
flow theory. The analysis was extended to justify the Armand eguation for holdup for slug and piug flows.

Thus, to surunarise the analytical work presented in this work, given a set of input conditions, the flow
pattern may be predicted as one of three: stratified, slug and plug, annular. From a knowledge of the
flow pattern, appropriate methods of holdup and pressure drop prediction may be chosen. The inter-
relationships between holdup and pressure drop for stratified and annular flow have also been shown.

In the experimental study, the application of two sintple devices, developed in this work, one of which
was subsequently patented, for holdup nteasurement was investigated. Both devices were found to be flow
pattern dependent in their behaviour and require calibrations. During the study of these two devices,
pressure drop' holdup and flow pattern data were also generated and were used for the comparison with the
analytical part of this work.
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factor in Buttenrorth's holdup equation6l of Eqn. (2.4.1g) or (4.1.1).

Cvsss-section flow area for the liquid phase,

Cross-secticn flow area for the gas phase.

Total flow channel cross-section area, = AL * AG.

function defined by Eqn. (5.4.4).

factor in Eqn. (4.3.5) with values given in Table (4.3.,|).

factor in Eqn. (4.3.6) with values given in Table (4.3.2).

factor in Eqn. (4.3.t0) with values given in Table (4.3.3).

factor in Eqn. (4.3.11) with values given in Table (4.3.4).

factor in Butterworth's equation6l, Eqn. (4,1.2).

factor used by Arrnandls in Eqn. (2.4.2).

factor used by 8eattie26 in Eqn. (2.5.21).

radlal distance neasured from pipe axis.

factor used by Hcl4anus in'Eqn. (2.5.21.

radius of the.gas-liquid lnterface at the tail-end of a rising Taylor bubbleln a stagnant liquid enclosed in a vertlca'l tube.

radius- of the gas-liquid interface at the tait-cnd of a rising Taylor bubble
In a flowing two-phase mixture in a vertical tube.

factor in Eqn. (4.3.5) with values given in Table (4.3.1).

factor in Eqn. (4.3.6) with values given in Table (4.3.2).

factor ln Eqn. (4.3.'10) with values given in Table (4.3.3).

factor in Eqn. (4,3.11) with values given in Table (4.3.4).

factor in Eqn. (4.'1.2) with values given in Table (4.2.2).

factor.fof.Ahe rise_velocity equafjgn of fine bubbles ofEqn. (2.5.89). Given
by Levichzrv as l.4l and Hannathylul as i.53.

Initia'l function derived by Nguyen & SpeOdinq3l8. Used in Eqn. (2.5.{31 and
(4.2.34 ).

function defined by Eqn. (5.4.5).

factor in Eqn. (4.'1.2) vrith values given in Table (4.2.2t.

factor used by Mcl'lanus in Eqn. (2.5.2').

Armand's factor, given in Eqn. (2.4.3) generally taken as equal to 1.2 for g<0.9.
Equivalent to the reciprocal of K, the Bankoff paramerer.

Factor used in Eqn. (5.1.1) by Oumitriscu and 0avies & Taylor.

Factor in_Blasius' equation, for gas, and liquld respectively. Equals '16.0
for turbulent flow and 0.046 for viscous flow,
factor used by Chisho'lm in Eqn. (2.4.'lS).

factor used by Nlcklin in Eqn. (2.5.38).



IY

C; [-] factor used by Brown & ,s"ri*J5 fn Eq,n. (2.s,46].

C" t-] olstribution paroneter ln Eqn.. (2,6.4iAt used btr Zuber & FlndlaJ,

c6' [-] g;:ffltilllgi coerf,l:crent ln Eqn' (z.r;.+s't and (4-2.3rt) derived' bv r*Euven &,

" [-] factor fn But0qrworth,t equation,, eqn, (4.1,?],

a1t c2 t-f 
:?"ffil;f;3: 

f,actors used by Griffith r ualr{s in Esn. (a.E.ss) fop rh€ vel,ocity
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[-] ftctsr used hy ficManus in EQn. (Z.g.Z].

.[t] Pipe dlame,ter.

,f L] iDlarnsterr ot gas,-liquid lnterfac€ in annu.lar.flow.

fLJ Hlrdraullc dlametar, equalq 4 tinns flow area dirvided by the'wetted flow per{rnetar.

L-] Dinens'lon'less nurnber used by't{allls & Kus arnd defined by Eqn. (z.7.l0).

t-] faetor ured by litcManus ln Eqn. (?.S.e).

fu l*?y'?, pressure gradlent

f -] fractton of llgutd flore ertraliled as drop!,ets.

[-] Gore'latlon furctton used by Levy ln gqn. (Z.5"Zj].
Fr t-l Froude nu&err Fri o t /npt rr-rr. uLf*z *f - -uf/,"f,0q.

f E-] fr"tctlon factor.

ft t-l functton deftned hy Eqn. (3.J,lzr.

fA t-] functlon defined by Eqn" (g.3.13r1.

s [lu--zr] mass ,flux.

o ftr'41] acseleration due to g.raytty.

H - [-] factor In Eqn. (d.l.g),
llA t-] Cor.e:la,tion f:ctor used by Armand tn Eqn, (e.4.1).

h ft] hefght of llquld ln the pleaonreter rl:ng aboye.the l,orrsst point in the flos tube,
fi' f,t] nern rrue height used {n Egn. (a.g,rO) by sekaguchi et ar,.

hm fL] rnanometer defteetlon.

K t-]l H:iSff p.arrameter ln Eqn,. (;2.s.66,). Equiva,ilent to the reclprocal ,sf,,Arnand,s

Ki t-] Correlotlon fictor definad by Gomeaplata, et djl, gi,ven fn Eqn. (1a.5.5;g).

Kr [-] cornetratlsn factor d,efined;by ]anazakl et al , glven in Eqnr (?.8.82).

q' b t-l factors in Egn. t2.5,41) used Oy Grifftths,.

K4 F-] factor. used by |lrrghmark given in Eon. (A.S.44).

kl [-] 3![:ttl:i:riic'tor rela,ti,ns actual holdup to theorerical holdup, eiven in

kf !r't] t|a'ye nmrber, used, ln Eqn. (3.1.8) eguals ZnAf.

ku r-l g.3i#lliollo'?fffi',ti:i::ll ffi];.ll: ffi*'?l'*i.,llins,hH.'n" mean *rn
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kr t-l 9:il:lij':1,'if;l'i,i,i'ill:fl.::lT#l ?;:'lil* i: lll",xill,::,,!iol:un "''
[s [L] Slug length, used by Hoissis & Griffith.

L fL] axial distance along flow channel.

I ft] mixlng length.

lv fL] length of bubble along rrinor axis.

l'l f-] function defined by Eqn. (4.3.3).

r4s t-l 3:il:,;t.ll'i!liilor?"'ll,lt?3:i.Ei:ssure drop aooss an orifice. used bv

nA t-] Correlation factor used by Armand in Eqn. (2.4.21.

m f -] ;ffi:"t, 
in Blasius' equation, equals 1.0 for viscous flow and 0.? for turbulent

m' f-] Porrer law exponent used by Bankoff in Eqn. (2.5.64'l .

t{ f-] function deflned by Eqn. (4.3.9).

n f-] exponent ln Blasius'equation, equals 1.0 for viscous flow and 0.2 for turbulent flow.

n' t-] Poyer law exponent used by Bankoff in Eqn. (2.5.65).

nA t-] Correlation factor used by Arrnand in Eqn. (2.4.1).

nL t-] factor used by Levy in Eqn. (2.5.25).

P f-] function defined in Egn. lq.Z.tZ)i orheruise,

f ur--lr-2, pressure.

p E-] factor in Butterworth's holdup equatlon of Eqn. (2.1.t8) or (4.1.1).

a fl3f-l] volumetric flou rate; Q,-r, liguid flow rate in the film only, = Q,_ if EO=g.

q f-] factor in Butterwort.h's holdup equation of Eqn. (2.4.18) or (4,1.1).

41 t-] Correlation. factor used by Turner & ltallis in Eqn. (3.4.11).

96, Q; ff.3f-t, volunetric flow rate of gas and liquid respectively as collected by the subchannel
sampl er.

R ftl radius.

Rr t-] density ratio function, used by Levy, given in Eqn. (2.5.25).

E t-l 
!f,:ol8i,Hl"". 

*'. 
';,"ili'lloil:,1?l:"Bruna 

Fe t!f;r,ll:f'Eo:: 
?iii8;i:'. F, is

-tt It the liquid holdup at the tail end of a lirge gas bubbie in siug flow._h t-l ffil:":3llr?,ii"fl.1!lthe 
correlation of uTP bv Hasedorn & Brown for the

n' t-] fictitjous holdup defined by Egn. (6.5.1) and (6.s.2).

t f-] factor in Butterworth's holdup equation of Eqn. (2.4.18) or (4.1.1).

rf t-] factor used by Turner & Wallis in Eqn. (3,4.71.

rc t-] local void fraction. rn, is the pipe centre value.

Re r-r :ii::l:; llil!i";"ro:ri"::. "t'Revnords 
nunber, = 46,p,U, ln the case of a

LLL

u1

S fL] length of flow channel perimeter in contact with the fiowing phase.

s t-] stip ratio, = %/Ur.

T, t Turbulent flow.

Us fLT-l] slip velocity, used.by Holmes & Russellzos in Eqn. (z.E.7B).

ii fLT-l ] True average velocity, e.g. Ue = Qc/(ArR-c)'
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