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ABSTRACT 
Acid mine drainage (AMD) typically involves waters with low pH (pH 2-4) and high 

concentrations of Fe, SO4 and potentially toxic trace metals. Adsorption onto iron 

oxyhydroxides is the dominant mechanism controlling the transport and toxicity of trace 

metals in water bodies impacted by AMD. The purpose of this study was to apply the Diffuse 

Layer Model (DLM) to describe the adsorption of trace metals by iron oxyhydroxides from 

these systems, using synthetic iron oxyhydroxide minerals, ferrihydrite, pure acicular 

goethite, SO4-rich goethite prepared from FeSO4 oxidation and a synthetic schwertmannite. 
 

The ferrihydrite adsorption of the trace metals Cu, Zn, Cd and Co from single sorbate systems 

was accurately described using the DLM with two surface site types (type-1 and type-2) 

having site densities of 0.005 and 0.2 mol (mol Fe)-1 respectively. The ferrihydrite adsorption 

of SO4 from single sorbate systems was accurately described using the DLM with adsorption 

on the type-2 sites. However, the enhanced adsorption of Cu, Zn, Cd and Co in the presence 

of SO4 was not predicted using adsorption constants derived from single sorbate systems. By 

including a neutral ternary complex with stoichiometry ≡Fe(2)OHMeSO4 (where ≡Fe(2)OH is a 

type-2 surface site and Me is the trace metal) the effect of SO4 on metal adsorption was 

accurately described for the range of Me, Fe and SO4 concentrations studied. The adsorption of 

Cu and Zn onto schwertmannite at total metal to iron ratios (MeT:Fe) up to 8 x 10-3 was almost 

identical to that predicted for ferrihydrite in the presence of 0.01 mol kg-1 SO4. To model the 

ferrihydrite adsorption of Pb from single sorbate systems a third higher affinity site (type-0) 

with a site density of 0.00035 mol (mol Fe)-1 was required. The effect of SO4 on Pb 

adsorption could only be modelled by including a neutral ternary complex on both the type 1 

and type 2 sites in the case of Pb.  
 

Metal adsorption onto a pure acicular goethite could be accurately described by the DLM with 

two surface site types. The type 2 site density that provided the best fit to the goethite 

adsorption data was 0.027 mol (mol Fe)-1 corresponding to 2.3 nm-2. The type-1 site density 

that provided the best fit to goethite adsorption of Cu, Pb and Cd was 0.00028 mol (mol Fe)-1 

corresponding to 0.024 nm-2. For Zn adsorption on goethite the type-1 site density was 

significantly larger at 0.0015 mol (mol Fe)-1 corresponding to 0.13 nm-2. In all cases studied 

the presence of SO4 caused an increase in the extent of metal adsorption by goethite. This 

increased adsorption of metals in the presence of SO4 was accurately predicted by including 

ternary complex formation at both the high and low affinity adsorption sites.  
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For both ferrihydrite and goethite the values of adsorption constants for ternary complex 

formation (logKxMe
TC) were related to the adsorption constant for metal adsorption in the absence 

of SO4 (logKxMe
INT). This was evident from a plot of logKxMe

TC as a function of logKxMe
INT for all 

metals, which showed a linear relationship with slope of 0.69 and intercept of 8.03. This 

relationship suggests that the enhancement of metal adsorption on both oxyhydroxides due to 

SO4 occurs by the same process.   
 

When comparing Cu, Zn and Cd adsorption onto ferrihydrite and acicular goethite the effect 

of the larger goethite adsorption constants are approximately compensated for by the lower 

goethite site densities. Therefore the Cu, Cd and Zn adsorption isotherms on ferrihydrite and 

acicular goethite are fairly similar at low adsorption densities. In the case of Pb, the site 

densities and adsorption constants are both larger on ferrihydrite and there is a large 

difference between the ferrihydrite and acicular goethite adsorption isotherms. 
 

Sulfate-rich goethite had considerably higher site densities, per mol of oxide, than the pure 

acicular goethite. Adsorption onto the sulfate-rich goethite could be modelled reasonably 

accurately using the parameters developed to model adsorption onto the pure acicular goethite 

but with a higher surface area and a higher ratio of type-1 to type 2 sites. In general, therefore, 

the parameters developed for pure goethite are apparently similar to those for the sulfate-rich 

goethite, but are not directly transferable. The difficulty in measuring the surface area of the 

highly aggregated sulfate-rich goethite makes comparisons between the two goethites more 

difficult. 
 

The adsorption of Cu, Zn and Cd onto the SO4-rich goethite exceeds that of ferrihydrite 

because the higher adsorption constants of goethite are combined with the considerably higher 

site densities of the SO4-rich goethite compared to the acicular goethite. In contrast the higher 

site densities of the SO4-rich goethite does not completely compensate for the low logKINT 

values of Pb adsorption on goethite. Therefore SO4-rich goethite adsorption of Pb is lower 

than that of ferrihydrite. 
 

When applied to literature data from AMD oxides the parameters derived in this thesis have 

significantly improved the ability of the DLM to predict trace metal adsorption in AMD 

systems, compared to using ferrihydrite as a proxy for all iron oxyhydroxides and adsorption 

data derived only from single sorbate systems. 
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