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Abstract

We perform the first multidisciplinary study of parasites from an extinct megafaunal clade using coprolites from the New
Zealand moa (Aves: Dinornithiformes). Ancient DNA and microscopic analyses of 84 coprolites deposited by four moa
species (South Island giant moa, Dinornis robustus; little bush moa, Anomalopteryx didiformis; heavy-footed moa, Pachyornis
elephantopus; and upland moa, Megalapteryx didinus) reveal an array of gastrointestinal parasites including coccidians
(Cryptosporidium and members of the suborder Eimeriorina), nematodes (Heterakoidea, Trichostrongylidae, Trichinellidae)
and a trematode (Echinostomida). Parasite eggs were most prevalent and diverse in coprolites from lowland sites, where
multiple sympatric moa species occurred and host density was therefore probably higher. Morphological and phylogenetic
evidence supports a possible vicariant Gondwanan origin for some of the moa parasites. The discovery of apparently host-
specific parasite taxa suggests paleoparasitological studies of megafauna coprolites may provide useful case-studies of
coextinction.
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Introduction

Coprolites (preserved faecal boli) are rich sources of paleoeco-

logical information. Historically, the main focus of coprolite

studies has been dietary reconstruction [1–5]. However, paleopar-

asitological analyses have also been reported for a large number of

coprolites, both archaeological and paleontological in origin [6],

and from a broad range of vertebrate taxa including dinosaurs [7],

rodents [8], ground sloth [9], lizards [10], carnivores [11,12], birds

[13] and humans [14–16]. Identification of parasites in coprolites

can provide information on the ecology [17], population dynamics

[18] and diseases of prehistoric animals, and the evolution of host-

parasite relationships [19,20].

During the past fifteen years, advances in ancient DNA

(aDNA) techniques have provided increased potential for the

application of molecular paleoparasitology to coprolites, yet

implementation has so far been limited [20,21]. The potential

benefits of aDNA analysis, when used in conjunction with

conventional microscopic techniques, include better taxonomic

resolution (particularly if only eggs are present) and detection of

very small parasites (e.g. Apicomplexa) or those with fragile

thin-walled eggs (e.g. Strongylus) that may not preserve intact in

coprolites [6]. Paleoparasitological analysis of extinct animal

coprolites can not only inform us about host-parasite relation-

ships, but may also be able to shed new light on biodiversity

loss due to the process of coextinction where parasitic and

mutualistic taxa disappear along with their host taxon. The

relative importance of coextinction in total biodiversity loss is

poorly understood due to a lack of empirical data [22], but

analysis of coprolites may provide a way to obtain such data.

Recently, an ideal resource on which to perform a broad-

scale study of gastrointestinal parasites from an extinct

megafauna group has been uncovered in New Zealand. Here,

accumulations of Holocene coprolites have been excavated from

several cave and rock overhang sites on across the South Island

[5,23–24]. Identification of the coprolites using aDNA analysis

has revealed they were deposited by moa (Aves: Dinornithi-

formes), a group of large avian herbivores that formerly

occurred throughout New Zealand. Nine species of moa

[25,26], ranging from c. 30 to .200 kg [27], all underwent

rapid extermination following initial settlement of New Zealand

in the 13th Century AD [28]. Analyses of several of the

coprolites has already provided answers to some questions

regarding moa biology, including diet, habitat-use and niche

partitioning [5,23–24]. Here, we use both microscopic and

aDNA analyses of parasites from moa (Aves: Dinornithiformes)

coprolites to examine host-parasite relationships, and determine

whether paleoparasitological analysis of coprolites may provide a

suitable method for detecting coextinction events.
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Materials and Methods

Coprolite Samples
We used coprolites for which the depositing moa species had

previously been determined by aDNA analysis [5, 24, unpublished

data] (Table S1). The coprolites were all intact boli and in an

excellent state of preservation (figured in 5, and supplementary

material of 24). We examined the presence and abundance of

parasites in the coprolites (n = 84) using microscopic techniques,

and used molecular analyses on a subset of the total (n = 16). The

coprolites represent four moa species and three geographic regions

of New Zealand’s South Island (Fig. 1): the relatively high rainfall

Dart River Valley (c. 500 m elevation), in the mountains of West

Otago (heavy-footed moa, Pachyornis elephantopus, n = 8; South

Island giant moa, Dinornis robustus, n = 17; little bush moa,

Anomalopteryx didiformis, n = 3; upland moa, Megalapteryx didinus,

n = 19); the Kawarau and Roxburgh River gorges (c. 200 m

elevation) in the semi-arid region of Central Otago (P. elephantopus,

n = 2); and the subalpine Euphrates Cave (c. 1000 m elevation),

located on the Garibaldi Ridge, Northwest Nelson (M. didinus,

n = 35). The Dart River and Central Otago coprolites are of late

Holocene age (,3,000 BP) [5,29], and the Euphrates Cave

coprolites extend from the late to mid Holocene (oldest dated

sample 6,368631 radiocarbon years BP) until the approximate

time of moa extinction [24]. Unprocessed remainders from the

coprolites have been accessioned into the collections of Canter-

bury Museum for permanent storage (Table S1).

Microscopic Examination of Parasites
Subsamples (0.31–0.10 g) from each coprolite were boiled in

KOH for ten minutes. A known number of exotic Lycopodium

spores [30] (1–2 tablets, batch number 483216, mean of 18583

spores per tablet) were added to each sample. The resulting

sediment was pipette mixed, and drops were mounted on

microscope slides (2–3 per sample) in glycerol jelly. Slides were

systematically scanned at 2006magnification, and helminth eggs

and Lycopodium spores were counted, allowing quantification of egg

abundance. Because of a change in laboratory operating

procedures that occurred during this study, samples that were

prepared earlier are quantified according to volume (mL), while

those prepared later are quantified according to mass (g). The

slides are held by Landcare Research, Lincoln, New Zealand.

aDNA Analysis
DNA extraction, polymerase chain reaction (PCR), cloning, and

sequencing were carried out following the methods of Wood et al.

[24] at the Australian Centre for Ancient DNA. Ancient DNA

(aDNA) extraction and PCR setup was carried out in a

geographically and physically isolated dedicated aDNA laboratory

located 15 minutes from the University of Adelaide campus, where

downstream procedures were performed in a modern DNA

laboratory. Protocols to control for contamination [31] were

strictly followed, including the use of Shrimp DNase to eliminate

potential contaminants in PCR reagents.

We designed two sets of primers: (1) Nem18SF (59-ATTCC-

GATAACGARCGAGAC-39) and Nem18SR (59-

CCGCTKRTCCCTCTAAGAAGT-39); (2) Nem18SlongF (59-

CAGGGCAAGTCTGGTGCCAGCAGC-39) and Nem18-

SlongR (59-GACTTTCGTTCTTGATTAATGAA-39). Both sets

of primers bind to regions that are conserved across a broad range

of invertebrates (including the common parasitic helminth groups

of apicomplexans, nematodes, and trematodes), and amplify

variable regions of the 18S gene (c. 40–120 bp with Nem18S

primers; c. 350–400 bp with Nem18Slong primers) (Figs. S1, S2,

S3, S4).

Preliminary identification of clone sequences was performed

using BLAST. If sequences were obtained using both primer sets,

from the same coprolite, and returned identical taxonomic

matches in BLAST, then these sequences were assumed to

represent the same taxa and were concatenated for the phyloge-

netic analysis. Sequences from the coprolites were sorted into

apicomplexans, nematodes, and trematodes based on nearest

BLAST matches. These were aligned (using MUSCLE in

Geneious) with 18S sequences (c.1700–1900 bp) from a range of

representative taxa from each of these parasite groups (Table S2).

The alignments were imported into BEAUti v.1.6.1 and the

resulting xml. file was analysed using BEAST v.1.6.1. Our analyses

incorporated a HKY model with estimated base frequencies and

an age-independent transitions only sequence error model, a

relaxed lognormal clock and a Yule tree prior (lognormal birth

rate). Maximum credibility trees were produced from MCMC

chain lengths of 25 (Apicomplexa, Trematoda) or 50 (Nematoda)

million generations (parameters logged every 1000) and assessed

for robustness using Tracer v.1.5. Tree output files were

summarized using Tree Annotator (10% burnin). Sequences

.50 bp in length were deposited in GenBank (Accession numbers

KC405320– KC405484).

Results

Microscopic Examination of Parasites
Nematode eggs were observed on microscope slides, although

no larvae were seen. The taxonomic usefulness of many helminth

eggs is limited and identification can prove difficult [6,32]. Here

we describe the egg types present in the moa coprolites and suggest

their likely taxonomic affinities. Prevalence and abundance of the

different nematode egg types are shown in Table 1. Coprolites

Figure 1. Location and taxonomic representation of moa
coprolite study sites. (a), Moa coprolite from Dart River Valley (b),
Moa coprolite sites on the South Island of New Zealand, showing moa
taxa represented in coprolite assemblages.
doi:10.1371/journal.pone.0057315.g001
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from low altitude sites (Dart River Valley, Kawarau Gorge and

Roxburgh Gorge) had higher parasite egg diversity and prevalence

overall (mean egg types per moa species = 2.25; eggs in 51% of

coprolites) compared with those from the higher altitude

Euphrates Cave (mean egg types per moa species = 1; eggs in

17.1% of coprolites). It was not possible to test whether these

patterns were significant overall, due to two methods having been

used to quantify egg abundance (eggs mL21 and eggs g21).

However, for coprolites where egg abundance was calculated as

eggs g21, there was a significantly lower prevalence at Euphrates

Cave (1000 m elevation) compared with Dart River (500 m

elevation) (p = 0.037, t-test).

Egg type 1 (Fig. 2a). Description: Ovoid to slightly barrel-

shaped (approximately parallel sides). Egg wall relatively thick (c.

5–6 mm), transparent, equal thickness around entire egg, with

smooth outer surface. Inner mass often golden colour and

shrunken away from outer wall. Dimensions: 50–67.5631.5–

45 mm (mean 61639 mm) (n = 16). Likely affinity: Eggs are similar

to those of Heterakoidea spp. (Nematoda). Hosts: A. didiformis, D.

robustus, P. elephantopus, M. didinus. Present in coprolites from the

Dart River Valley and Kawarau Gorge.

Egg type 2 (Fig. 2b, c). Description: Ovoid, light brown. Wall

c. 5 mm thick. Outer layer with short, evenly spaced spinules

protruding up to 3 mm from the surface. The spinulose layer is

often absent around the poles. Dimensions: 70–72.5640–47.5 mm

(n = 4). Likely affinity: undetermined Nematoda. Appears to be

similar to egg type 1 but with a spinulose layer on the external

surface. Hosts: D. robustus, P. elephantopus, M. didinus. Present in

coprolites from the Dart River Valley and Kawarau Gorge.

Egg type 3 (Fig. 2d, e). Description: Elongate ovoid, orange-

brown, surface grades from reticulate to longitudinally striate.

Obvious polar pores. Dimensions: 52–60630–35 mm (n = 2). Likely

affinity: Trichinellidae (c.f. Capillaria) (Nematoda), due to the

presence of polar pores. Hosts: P. elephantopus and M. didinus.

Present in coprolites from the Dart River Valley and Euphrates

Cave.

aDNA Analysis
In total, 167/233 (71.7%) of the clone sequences using the

Nem18S primers and 42/61 (68.9%) of the clone sequences using

the Nem18Slong primers were identified as being from parasites.

Six distinct clusters of parasite clone sequences, likely to represent

identical or very closely related taxa, were identified from

sequence alignments and BLAST matches (Figs. S5, S6). Three

of the groups had nearest BLAST matches within Apicomplexa,

two within Nematoda and one within Trematoda. Non-target

sequences included moa, plant, fungi and soil micro-organisms.

Fish sequences obtained in initial PCRs were eliminated by using

shrimp DNAase, and therefore likely reflected contaminants in the

PCR reagents.

Maximum credibility trees. Single representative sequenc-

es from each of the six groups were used in this analysis, and are

listed in Table S3.

Apicomplexa
Sequence 1, obtained from a single Dart River M. didinus

coprolite (Table 2), was well-supported (posterior value 1.0)

within the clade including Cryptosporidium species, and sister

(100% bootstrap support) to C. ‘struthionis’, an undescribed strain

sequenced from ostrich (Struthio camelus) (Figs. 3, S7). Sequences

2 (M. didinus from Dart River and Euphrates Cave) and 3 (D.

Table 1. Prevalence and abundance of nematode egg types in moa coprolites.

Locality and moa species n Egg type 1 cf. Heterakoidea Egg type 2 undetermined Nematoda Egg type 3 cf. Trichinellidae

P Am Ar P Am Ar P Am Ar

Dart River Valley

Anomalopteryx didiformis 3 0.67876 370–1383 0 0 0 0 0 0

Dinornis robustus 6 0.5 960 245–2203 0 0 0 0 0 0

11 0.55 1148* 347–1931* 0.09 7288* 0–7288* 0 0 0

17 0.53 0.06

Pachyornis elephantopus 5 0.2 2655 0–2655 0 0 0 0.2 490 0–490

3 0.67 1636* 1101–2170* 0.33 271* 0–271* 0 0 0

8 0.38 0.13 0.13

Megalapteryx didinus 15 0.2 363 226–570 0 0 0 0.13 280 262–298

4 0.25 307* 0–307* 0.5 303* 262–344* 0 0 0

19 0.21 0.11 0.11

Kawarau Gorge

Pachyornis elephantopus 1 1.0 4645* – 1.0 3650* – 0 0 0

Roxburgh Gorge

Pachyornis elephantopus 1 0 0 0 0 0 0 0 0 0

Euphrates Cave

Megalapteryx didinus 35 0 0 0 0 0 0 0.17 653 241–965

P = prevalence (proportion of coprolites in which the egg type was present), Am = mean abundance where present, Ar = range of abundance where present. Am and Ar

are shown as eggs g21, except where a * symbol signifies the data are eggs mL21.
doi:10.1371/journal.pone.0057315.t001
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robustus from Dart River) were both placed within the suborder

Eimeriorina with posterior values of 1.0 and 0.43 respectively

(sequence 2 as sister to Calyptosporidae and 3 as sister to all

non-Cryptosporidiidae Eimeriorina) (Fig. S7). It should be noted

that several families within Eimeriorina (Elleipsisomatidae,

Selenococcidiidae, and Spirocystidae) were not represented in

the analysis due to unavailability of 18S sequences on Genbank,

and this may have affected the exact placement of clones within

this group.

Nematoda
Both Nematoda sequences were placed within well-supported

clades (Fig. S8). Sequence 4 is nested within the superfamily

Heterakoidea (posterior value 1.0) (Figs. 3, S8), and was the

most widespread sequence obtained, occurring in coprolites

from all four moa species and both Dart River Valley and

Euphrates Cave (Table 2). Sequence 5 is nested within the

family Trichostrongylidae (posterior value 0.98) (Figs. 3, S8) and

was recorded from just a single M. didinus coprolite from

Euphrates Cave (Table 2).

Trematoda
Sequence 6 (M. didinus from Dart River and Euphrates Cave;

Table 2) is well-supported as being nested within the Trematode

order Echinostomida (posterior value 1.0), and sister to Notoco-

tylidae (Figs. 3, S9).

Discussion

Parasite Assemblage
The parasite groups identified from the moa coprolites have all

been recorded previously from New Zealand birds [33] and are

typical of parasites recorded from extant ratites [34–35]. Although

there was some overlap in the parasite taxa identified by both

microscopic and DNA analysis (Heterakoidea), each analysis

method detected taxa that the other did not, highlighting the

usefulness of a multidisciplinary approach in paleoparasitological

studies. Whereas microscopic analysis was used on more samples

and may have detected some of the less prevalent parasite taxa,

DNA analysis detected coccidians, which due to their small size

may not have preserved as well as larger, thick-walled eggs.

Figure 2. Helminth eggs from moa coprolites. (a), egg type 1, cf. Heterakoidea; (b–c), egg type 2, undetermined Nematoda; (d–e), egg type 3,
Trichinellidae cf. Capillaria.
doi:10.1371/journal.pone.0057315.g002

Table 2. Prevalence of six helminth taxa identified by aDNA analysis of moa coprolites.

Dart River Valley Euphrates Cave

Anomalopteryx
didiformis

Dinornis
robustus

Pachyornis
elephantopus

Megalapteryx
didinus Megalapteryx didinus

Coprolites analysed (n) 1 3 2 4 6

Minimum individual
birds#

1 2 2 4 6

Total clones* 22/0 27/21 14/0 95/40 75/0

Sequence
group

Identity

1 Cryptosporidium – – – 0.25 –

2 Eimeriorina sp. 1 – – – 1.0 0.17

3 Eimeriorina sp. 2 – 0.33 – – –

4 Heterakoidea 1.0 1.0 0.5 0.5 0.17

5 Trichostrongylidae – – – – 0.17

6 Echinostomida – – – 1.0 0.67

#minimum individual moa represented by analysed coprolites based on moa haplotypes and radiocarbon dates;
*number of clones obtained using Nem18S primers/Nem18Slong primers.
doi:10.1371/journal.pone.0057315.t002
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Within each of the six parasite DNA sequence groups (Figs. S5,

S6) there is some genetic variation, which may partly be due to

ancient DNA damage [36], but may also represent different

parasite haplotypes or closely-related species. An example of the

latter is evident in group 6 (Echinostomida), where sequences with

an A in position 99 were recovered from both Dart River Valley

and Euphrates Cave coprolites, but sequences with a G in that

position were present only in coprolites from Euphrates Cave (Fig.

S5).

Our results for nematode egg counts (Table 1) indicate that moa

at lower altitudes had higher parasite prevalence and diversity.

This does not appear to be due to a higher number of moa species

represented in the lowland coprolite assemblages. For example, all

three nematode egg types were detected in M. didinus coprolites

from Dart River Valley (overall prevalence 0.31), whereas just one

type was present in the M. didinus coprolites from Euphrates Cave

(overall prevalence 0.17). This effect is likely due to host density,

with has been shown to positively correlate with parasite

abundance [37]. In prehuman New Zealand, moa density was

probably relatively high in lowland sites, where multiple sympatric

species often coexisted (i.e. remains of four moa species from the

Dart River Valley, one from Euphrates Cave). However, the lower

Figure 3. Phylogenetic position of 18S sequence groups obtained from moa coprolites. (a), apicomplexa; (b), nematoda; (c), trematoda.
The complete maximum credibility trees are provided as Figs. S7, S8, S9.
doi:10.1371/journal.pone.0057315.g003
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parasite prevalence observed at Euphrates Cave may also be partly

due to the extended temporal range of the coprolites from the site.

Whereas coprolites from the low altitude sites are all late Holocene

(a period of relative climatic stability), coprolites from Euphrates

Cave extend back into the early-mid Holocene period, when

climatic conditions in that region were relatively warm and dry

[38]. A larger sample of radiocarbon dated coprolites from

Euphrates Cave would be required to test any potential temporal

affect on parasite prevalence.

Gondwanan Vicariance
The hypothesis that New Zealand’s indigenous fauna and flora

represent recent dispersal events following complete submergence

of the current landmass during the Oligocene has been a topic of

contentious debate during the last decade [39,40]. Moa have long

been regarded as having vicariant Gondwanan origins [41],

although recent molecular studies using mitochondrial DNA have

presented a range of widely varying taxonomic relationships and

evolutionary histories for palaeognaths, some inferring repeated

dispersal events and loss of flight (reviewed by Allentoft and

Rawlence [42]). However, a recent re-evaluation of morphological

relationships suggests that a vicariant Gondwanan origin for moa

cannot be ruled out [43]. This is in line with new fossil evidence

providing support for the presence of multiple ancient vicariant

lineages in New Zealand, including sphenodontine reptiles [44],

acanthisittid wrens [45] and freshwater limpets (Latia) [46]. Our

results provide some evidence that moa parasites may also have

Gondwanan affinities.

Within the Heterakoidea, Inglis & Harris [47] erected the family

Kiwinematidae to include the genera Hatterianema and Kiwinema

described from New Zealand’s indigenous tuatara (Sphenodon

punctatus) and kiwi (Apteryx sp.) respectively. Subsequently, a newly

erected African genus Mammalakis has also been placed within

Kiwinematidae [48]. Kiwinematidae are characterized by prim-

itive features from which features in other Heterakoidea families

could have hypothetically been derived, and thus may represent a

Gondwanan relict [47]. Although we cannot definitely attribute

the Heterakoidea from moa coprolites to Kiwinematidae because

this family is not represented on Genbank, the DNA sequence is

sufficiently divergent from both Ascaridia and Heterakis to suggest

that it belongs to neither of these widespread genera (pairwise %

identities for Nem18Slong fragment: 97.4% Ascaridia galli : moa

taxon; 95.9% Heterakis gallinarum : moa taxon; 98.4% Ascaridia galli :

Heterakis gallinarum). Further DNA work on extant Kiwinematidae

may help resolve the placement of the moa coprolite taxon within

Heterakoidea.

Another potential Gondwanan link may lie in the Cryptosporidium

sequenced from a moa coprolite. Of seven Cryptosporidium spp.

included in the phylogenetic analysis, the coprolite sequence

formed a well-supported ‘ratite’ clade with Cryptosporidium

‘struthionis’, basal to the two Cryptosporidium clades reported by

Xiao et al. [49] from mammals, snakes and lizards (Figs. 3, S7). A

diverse array of avian Cryptosporidium genotypes have been

recognized using the SSU rRNA locus [50], and future

phylogenetic analyses of this parasite group may provide an

interesting complimentary data set with which to understand

evolutionary relationships between bird groups.

Coextinction and Habitat Fragmentation
The process of coextinction (loss of parasitic and mutualistic

taxa) makes a significant contribution to biodiversity loss during

extinction events [51], and could potentially account for the

majority of species losses [52]. Therefore, an understanding of the

process could assist with making more accurate estimates of the

total numbers of species at risk of extinction [51–52]. A lack of

empirical data has so far precluded an accurate assessment of the

importance of coextinction in overall biodiversity loss [52].

Paleoparasitological analysis of coprolites from extinct animals

such as moa may provide important quantitative case studies of

coextinction events, at least of gastrointestinal parasites.

The question of whether parasite coextinctions occurred in New

Zealand is not new; in 1994, Bush and Kennedy [53] pondered

whether ‘‘when the moas of New Zealand went extinct over a

century ago, did they take with them parasite metapopulations or

are those parasites found today in other ratites (e.g. the kiwi, emu,

cassowary, rhea and ostrich)?’’. Although a complete 18S DNA

survey of gastrointestinal parasites in extant New Zealand birds

would be required to prove whether the taxa present in moa

coprolites are now extinct, some of the taxa were identified only

from coprolites of Megalapteryx, providing some evidence for host-

specificity and likely coextinction (Fig. 4). These taxa include

species in the order Echinostomida and suborder Eimeriorina,

which were both present in all Megalapteryx coprolites from Dart

River and in coprolites from Euphrates Cave, but were not present

in coprolites of the three other moa species (Table 2). The

Echinostomida sequence was in a well-supported clade with

members of the Notocotylidae (Catatropis and Notocotylus), a family

of trematodes that inhabit the digestive tracts (commonly caeca) of

mammals and birds [54]. Both Catatropis and Notocotylus have been

recorded from wild birds in New Zealand, in particular avian

herbivores in close association with water (ducks, geese) and

wading birds [33]. Aquatic snails, such as the native Potamopyrgus

antipodarum are the intermediate hosts [55]. The presence of such a

parasite in Megalapteryx would not be unexpected, as evidence from

coprolites show that this moa species occasionally fed around

margins of alpine tarns and lakes, and grazed aquatic plants [56].

Eimeriorina sp. 2, Trichostrongylidae and Cryptosporidium were also

only identified from Megalapteryx, but from single coprolites, so

further samples would need to be analysed to test the host-

specificity of these taxa.

The apparent differences in parasite diversity between moa

species (Tables 1, 2) could be due to several factors. The

evolutionary histories of hosts and parasites are often closely

mirrored [57], and the basal position of Megalapteryx within moa

[25] may explain the apparent host specificity of several parasites

identified from coprolites of this species. However Dinornis is the

second most basal moa genus, yet we found similar parasite

diversity to Pachyornis and Anomalopteryx, which represent more

recent splits within the moa phylogeny [25]. Another possibility is

that the parasite diversity may relate to the species’ ecology. For

example, Megalapteryx may have favoured feeding near water

sources such as small alpine tarns [56] and therefore been more

susceptible to waterborne parasites (e.g., Cryptosporidium) and

parasites with aquatic intermediate hosts.

Analysis of parasites in coprolites from other New Zealand

extant bird species offers the potential to examine how parasite

communities deal with severe habitat fragmentation. For example,

the extensive pre-European kakapo (Strigops habroptilus) coprolite

record across New Zealand [58,59] could provide a means to

contrast past kakapo parasite diversity with that in modern birds,

which now have severely contracted population size (,150

individual birds) and distribution (few offshore islands).

Conclusions
We have confirmed the presence of apicomplexan, nematode

and trematode gastrointestinal parasites in the coprolites of New

Zealand’s extinct moa. Several of these parasites appear to have

been host-specific, and therefore are likely to have become extinct
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with the moa. This study has shown the potential for multidisci-

plinary paleoparasitological studies of coprolites to contribute to

our understanding of evolutionary histories of both parasites and

hosts, and to provide case studies of coextinction. The relatively

young ages of moa coprolites, and the recent discovery of many

specimens from multiple sites, offer an ideal sample for such a

study. Questions relating to parasite-host evolutionary histories,

and coextinction, could also be answered by detailed paleopar-

asitological analyses of many Late Quaternary coprolites known

from around the world, including ground sloth [9] and mammoth

[60].

Supporting Information

Figure S1 Alignment of Nematoda, Trematoda, and
Apicomplexa 18S sequences used for designing the
Nem18SF and Nem18SR primers.

(DOC)

Figure S2 Alignment of Nematoda 18S sequences used
for designing the Nem18SlongF and Nem18SlongR
primers.

(DOC)

FigureS3 Alignment of Trematoda 18S sequences for
designing the Nem18SlongF and Nem18SlongR primers.

(DOC)

Figure S4 Alignment of Apicomplexa 18S sequences for
designing the Nem18SlongF and Nem18SlongR primers.

(DOC)

Figure S5 Alignment of clone sequences obtained from
moa coprolites using Nem18SF and Nem18SR primers.

(DOC)

Figure S6 Alignment of clone sequences obtained from moa
coprolites using Nem18SlongF and Nem18SlongR primers.

(DOC)

Figure 4. Network diagrams of identified moa - parasite interactions. (a) interactions between moa species and parasite egg types, based
on morphological identification of parasite eggs from 84 coprolites; (b) interactions between moa species and DNA sequence groups, based on DNA
identifications of parasites from a subset of 16 coprolites. Parasite boxes are scaled relative to overall prevalence in analysed coprolite assemblages
and moa bones are proportional to the number of coprolites analysed from each species/locality. Localities (in parentheses) are: O, Central Otago; D,
Dart River Valley; E, Euphrates Cave.
doi:10.1371/journal.pone.0057315.g004

Gastrointestinal Parasites of Moa

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e57315



Figure S7 Maximum-credibility tree for 18S sequences
of representative Apicomplexa (from Genbank), and
moa coprolite sequences 1–3. The tree is rooted with
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