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  Two optimization strategies of multi-stage design in 
clinical proteomic studies    

  Abstract:   We evaluated statistical approaches to facilitate and improve multi-stage designs for clinical pro-

teomic studies which plan to transit from laboratory discovery to clinical utility. To find the design with the 

greatest expected number of true discoveries under constraints on cost and false discovery, the operating 

characteristics of the multi-stage study were optimized as a function of sample sizes and nominal type-I error 

rates at each stage. A nested simulated annealing algorithm was used to find the best solution in the bounded 

spaces constructed by multiple design parameters. This approach is demonstrated to be feasible and lead to 

efficient designs. The use of biological grouping information in the study design was also investigated using 

synthetic datasets based on a cardiac proteomic study, and an actual dataset from a clinical immunology 

proteomic study. When different protein patterns presented, performance improved when the grouping was 

informative, with little loss in performance when the grouping was uninformative.  
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   Introduction and motivation 
 Most laboratory-based biomarker discoveries do not reach clinical use. One reason may be the lack of con-

nection between laboratory and clinical proteomics studies, so that laboratory selections and the clinical 

validation of the protein markers are separate processes in study design (Patterson et al., 2010). In addition, 

there is a risk that false discoveries are introduced by technical artifacts with different proteomic platforms. 

In 2007, the National Cancer Institute (NCI) suggested a three-stage workflow to link laboratory discovery to 

clinical utility in proteomic studies (National Cancer Institute, 2007). The stages are: (1) unbiased discovery 

using tens of samples, followed by (2) targeted verification using hundreds of samples, and finally (3) clinical 

validation using thousands of samples. The whole process integrates knowledge on proteomic infrastructure, 

systematic study design and health economics. It thus requires a systematic design to optimize the number of 

discoveries under constraints of cost and false discovery. 

  Multi-stage design in gene-association and proteomic studies 

 In genetic association studies, Satagopan and Elston (2003) proposed a two-stage design excluding markers 

with little evidence of association in the first stage of the study and selecting only promising markers for the 
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second stage. They used Monte Carlo grid search to obtain combinations of one-stage design parameters, 

i.e., power and type I error, and then applied numerical integration to find the solution of the two-stage 

design parameters that minimized the study cost subject to an overall type I error rate and a statistical power. 

Wang et al. (2006) expanded the two-stage approach from candidate-gene to genome-wide scale. Zuo et al. 

(2008) proposed an optimal resource allocation that maximized the overall power for a fixed total cost. They 

also investigated the impact of genotyping errors. They derived the joint distribution of the test statistic in 

the first and second stage, and converted the objective function to a mixed integer nonlinear programming 

problem (MINLP) with only two parameters under a series of constraints. Skol et al. (2007) described a similar 

approach to Zou et al. but using a different joint test statistic. Moerkerke and Goetghebeur (2008) added that 

genetic markers should be selected and ranked in order of evidence that balanced false positive rate and false 

negative rate at the first stage. At the second stage, more samples are selected and data from both stages com-

bined. They proposed a gain function using the weighted sum of the false positive and false negative rates as 

the objective function for maximization. 

 Originally multi-stage designs were suggested for gene association studies for which budgetary consid-

erations needed to be balanced against statistical power. However, the falling cost of genotyping and the 

economies of scale available from off-the-shelf SNP chips made these designs less useful (Spencer et al., 

2009). In a study for genome-wide interaction analysis (GWIA), Steffens (2010) also argued against the adop-

tion of a two-stage strategy and suggested that multi-stage screening will prevent the detection of pure 

epistatic effects. 

 In contrast, proteomic studies still have substantial per-protein marginal costs, especially in the final 

stage, so that a multistage design is substantially more affordable. The multistage design also provides built-

in technical validation, with protein abundance being measured using different assays at each stage. The 

multistage design may still be weak for assessing pure interaction without main effects, but this is not cur-

rently a major focus of proteomic research.  

   Similarities and differences between multi-stage gene association studies and 
multi-stage clinical proteomic studies 

 A proteomic study using a systems-biology approach to identify disease-related proteins has similarities to a 

multi-stage gene-disease association study. It starts with systematic identification and screening of hundreds 

or thousands of proteins. It then uses a targeted candidate quantification approach to verify and/or validate 

the findings in the same or a separate group of subjects. The decision on the proteins selected at the identi-

fication stage for further study is as vital as that in the screening stage of a genome-wide association study 

(GWAS). The optimization problem in a multi-stage proteomic study also has similar parameters to a multi-

stage GWAS. A common problem in both gene and protein association studies is to search for a design that 

maximizes power with an acceptable false positive rate and cost, or which minimizes cost with fixed power 

and false positive rate. 

 However, there are important differences between proteins and genes relevant to association studies: the 

number of proteins measurable with current technologies is much less than the number of genes. Proteins 

are highly changeable and have a wider dynamic range: their abundance in a cell ranges from   <  500 to 2  ×  10 7  

copy numbers (Beck et al., 2011). The most abundant plasma proteins such as albumin and IgE are usually 

not disease-specific, or of primary interest. Depletion of high-abundance proteins can reduce the problem, 

but large differences in abundance remain after the depletion. 

 Current biotechnologies allow identification of thousands of proteins. To achieve an unbiased discovery, 

NCI advocated a second technical verification using a candidate-based platform. Thus, false discovery due 

to random error and/or technical artifacts needs to be considered in the design. The statistical method used 

to adjust for multiple tests in gene association studies may not be the optimal solution for proteomic screen-

ing. With the upcoming advances in the biotechnologies, tailor-made study design for large-scale protein 

research is, therefore, a timely objective.  
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  The potential value of using biological information in protein groups 

 Bioinformatics profiling information is often used to enrich the design of proteomic studies. Proteins are 

commonly studied in groups defined by function, structure, and localization (Greenbaum et al., 2003). For 

instance, a therapy or drug may target the proteins in the same disease related pathway. Hence, it is useful for 

biologists to study each molecule (protein, metabolite) with others that belong to the same signaling pathway 

(Meani et al., 2009) or biological function. For example, Hoorn et al. (2005) and Chornoguz et al. (2010) suc-

cessfully identified proteins and their related pathways or networks that associated with disease or a physio-

logical intervention. Hoorn suggested that the combination of pathway analysis and proteomic analysis both 

facilitated the interpretation of proteins ’  relationships and made it possible to identify low abundant proteins 

which otherwise would escape from the proteomic analysis. Meani et al. (2009) considered the understand-

ing of protein signaling pathways in diseased and normal tissues to be the first step in cancer molecule char-

acterization and personalized therapy. An optimal design using pathway or protein network information may 

increase the likelihood of candidate proteins of an important group being selected from stage I, and thereby 

improve biologically and clinically relevant discoveries.  

  Objectives of the proposed study 

 We investigate optimal designs under the NCI three-stage workflow, and explore extra options that utilize 

biological information of proteins via bioinformatics approaches or pathway analysis to enrich the study 

design. The approaches proposed for genetic association studies are expanded, focusing on validation of the 

discovery via candidate-based platforms. A range of design problems is investigated, starting from the sim-

plest scenario that proteins are selected separately to the comprehensive option of utilizing protein grouping 

information, but without consideration of the correlation structure across groups. Our main intention is to 

provide different options with computing algorithms to achieve robust designs when research resources are 

constrained.   

  Statistical strategies in the three-stage design 
 This section describes optimization strategies for a three-stage study from discovery to verification, and vali-

dation using different or the same platforms for different independent samples. In the discovery phase, pep-

tides are identified systematically via mass spectrometry (MS) or 2D gel. The discovered peptides are used to 

identify and quantify proteins through peptide sequence database searching and bioinformatics software 

(e.g., ProteinPilot TM ). 

 In the second verification stage, multiple-reaction monitoring (MRM) mass spectrometry is applied to 

verify the changes in abundance that were observed for multiple proteins in the discovery phase. Since the 

1990s, MRM-based assays have emerged as an alternative candidate approach to enzyme-linked immuno-

sorbent assays (ELISAs). These mass spectrometry assays eliminate the cost of producing a large number of 

new immunoassays at an early stage of research, allowing the development of antibodies to be deferred until 

the final stage. 

 In the third and final stage, new antibodies and immunoassays are developed and used in larger samples 

of patients for validation. Multiplex ELISA is one type commonly used in clinical laboratories. A novel 

alternative is the new mass spectrometry-based quantification for candidate peptides smaller than 10 kDa 

(Anderson, 2005). 

 The proposed statistical methods for the optimization of multi-stage studies assume that a known set of 

 p  
1
  
 
 proteins are discovered from the stage I process from which a subset of  p  

2
  of these are then selected using a 

statistical significance threshold based on information from either individual proteins or both individual and 
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groups of proteins. A subset  p  
3
  of these proteins is then selected based on a second selection criterion at the 

verification stage. Finally, these  p  
3
  candidate proteins are validated at the last stage. The sample sizes of the 

second stage,  n  
2
 , and the last stage,  n  

3
 , and the stage-wise false positive rates (i.e., type I error) are selected to 

maximize the power of discovery under the constrained study cost and the overall number of false positives. 

 Before any proof-of-concept pilot experiment, prediction of the number of discoveries at stage I is dif-

ficult because of its dependence on various uncontrollable factors, such as the performance of the mass 

spectrometer, types of biological tissues and other technical artifacts. Given the limited prior information on 

stage I design parameters, the stage I sample size is not included in the objective function for optimization. 

We choose to start the optimization from the selection of  p 
2
   from  p 

1
   discovered proteins so that the optimal 

solution is not influenced by the number of discoveries at stage I. The stage I discoveries will also provide 

information (i.e. means and standard deviations) for the design parameters to be used in the optimization. 

 We demonstrate the optimization in the context of studies involving paired samples at each stage, such 

as 1:1 matched case-control or before-after intervention studies. This method can be generalized to parallel 

group studies, with or without paired samples. In the paired sample design, the analytical units will be the 

log-transformed relative intensities. The detectable mean differences between paired samples are determined 

based on either prior information and/or clinically or biologically relevant differences. The prior information 

can be obtained from the literature or prior experiments; it is not limited to the stage I discovery study. The 

standard deviations can be estimated from the stage I discovery study and/or obtained from prior experi-

ments. In the computations for seeking the optimal design solution, the means and standard deviations of 

the differences are assumed to be constant across stages. 

 The optimization assumes the budget is fixed. The assay costs at stages II and III, the cost of recruitment 

and the stage I sample size are known. A solution of stage I/II nominal false positive rates (decision thresholds) 

and stage II/III sample sizes is derived to maximize the number of discoveries at the final stage. The following 

sections describe two algorithms for the optimization with and without biological grouping information. 

  The simplest scenario: proteins are selected individually 

 In the simplest scenario, selection is carried out independently for each protein, based on single-protein test 

statistics. Student ’ s paired sample  t -test is used to assess the differences in the log-transformed fold change 

between paired samples.  p  
2
  proteins are selected from  p 

1
   proteins based on  p 

1
   individual tests at stage I.  p  

3 

 proteins are selected based on  p  
2
  individual tests at stage II and finally  p  

3
  protein candidates are validated at 

the final stage based on the individual tests. 

   Using Simulated Annealing (SA) to seek optimized solution in the multi-stage design: the algorithm SA-a 

 The proposed method maximizes the expected number of proteins with true effects discovered from a three-

stage study under a cost constraint. The expected number of true effects is derived from an objective function 

which has four design parameters: the stage I type I error rate,   α   
1
 , the stage II type I error rate,   α   

2
 , the sample 

size at stage II,  n  
2
 , and the sample size at stage III,  n  

3
 . The values of these parameters were divided into small 

intervals within defined ranges (i.e.   α   
1 
 ranged between 0.005 and   0.50 with interval size 0.025;   α   

2
  ranged 

between 0.005  and  0.25 with interval size 0.025;  n  
2
  ranged between 100 and   1000 with interval size 10;  n  

3
  

ranged between 100 and   5000 with interval size 100). The combinations of knots at these intervals form the 

solution space of the objective function in the optimization. 

 Simulated annealing (SA) is used to determine the optimal design parameters in stages II and III for a 

specified sample size and number of proteins at the first stage. It is a stochastic optimization method that 

does not require the objective function to be smooth, and is capable of finding global optima even in prob-

lems where many local optima exist (Nikolaev and Jacobson, 2010). In the current problem, lack of smooth-

ness and multiple optima result from the constraint and using Monte Carlo averages to approximate the 
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expected number of discoveries. In contrast to  ‘ hill-climbing ’  approaches that attempt to find a higher value 

of the objective function at each iteration, and so cannot escape a local minimum, SA will sometimes step 

down. At each iteration, the current solution is compared to the next candidate solution. A superior solution 

will be accepted with 100% probability; an inferior solution will be accepted with a probability based on the 

current  “ temperature ”  which is a predefined constant number decreasing as the algorithm progresses.  

  Definition of the SA-a algorithm 

  The solution space,  Ω , bounded by the acceptable limit of each design parameter.   Let the vector of design 

parameters   ω    =  ( n  
2
 ,  n  

3
 ,   α   

1,
    α   

2
 ) be a solution in   Ω  , where  n  

2
  and  n  

3
  are the stage II and III sample sizes, respec-

tively, and   α   
1
  and   α   

2
  are the stage I and II type I error rates, respectively.   Ω   contains all the possible combina-

tions of these parameters which are categorized by small intervals within their bounded ranges.  

  Objective function  

 Let  f ( ω ):   Ω    →  � be the objective function of the solution space, where  f  is the expected number of proteins that 

are discovered at stage III associating with the disease being investigated. It is in the range of 0, 1, … ,  p  
1
 , where  p  

1
  

is the number of proteins discovered in stage I and being considered for inclusion in stages II and III of the study.  

  The proposal neighborhood selection function  

 The proposed neighborhoods are constructed by  M  arbitrarily bounded and possibly overlapping solution 

subspaces,   Ω  
i
   (i = 1, 2, … ,  M ). The   Ω  

i
   are formed by firstly selecting a point   ω  

i
   ( the centre of  Ω  

i
  ) according to 

either a uniform or Beta distributed jumping length from the previous centre point   ω  
i
   
-1
 , and secondly select-

ing a uniformly distributed radius  R 
i
   with probability 0.5 for each direction from the selected center   ω  

i
  . Each 

candidate point can then be assigned within each   Ω  
i
  , according to a uniform distributed probability. 

 This nested SA starts with a uniformly random assignment of a solution   ω   in the radius R 
1
  bounded 

neighborhood   Ω   
1
 , and then a local SA with  k  iterations is used to seek the global minimum of   Ω   

1
.

 
 After the 

first local SA, a new address is assigned as the centre of the next solution subset   Ω   
2
  
 
 and 

 
 the second local SA 

is repeated. This procedure repeats for up to  M  subsets; the solution from each local SA will be updated if it 

is better than the previous one   

  The temperature cooling schedule 

  The logarithmic cooling schedule is defined as, 

   
( )max

max

,
1

log exp 1

k

temp
T

t
t

t

=
⎛ ⎞⎢ ⎥− × +⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦  

 where  t  is the current iteration,  temp  is the starting temperature for the cooling scheme and   t   
max 

 is the number 

of function evaluations at each temperature (Belisle, 1992).  

  The acceptance probability 

 The Metropolis function, i.e. 
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( ) ( )
exp , ( ) ( ) 0

,

1, ( ) ( ) 0

k

f f
f f

T

f f

ω ω
ω ω

ω ω

⎧ ⎛ ⎞′ −− ′ − >⎪ ⎜ ⎟⎝ ⎠⎨
⎪ ′ − ≤⎩  

 is used to derive the acceptance probability.  

  The objective function for SA-a  

 Let  pr  
i
  be the probability of protein  i  being discovered at stage III ( i  = 1 …   p  

1
 , where  p  

1
  is the number of proteins 

selected from stage I). The objective function is then given by 

   

1 1

1 2 2 3

1 1

( , , , ) ( ),
p p

i i

i i

f n n E pr E prα α
= =

⎛ ⎞
= =⎜ ⎟⎝ ⎠∑ ∑

 

 where   α   
1
  and   α   

2
  are the significance levels at stages I and II, respectively, and  n  

2
  and  n  

3 
 are the sample sizes at 

stages II and III, respectively. 

 Now, let  c  
1
  =  Pt   – 1 (1 –   α   

1
 /2, df  

1
 ),  c  

2
  =  Pt   – 1 (1 –   α   

2
 /2, df  

2
 )  and  c  

3
  =  Pt   – 1 (0.975, df  

3
 ) be the  t  quantiles corresponding to the 

type I error rates at stage I, II and III respectively, where  Pt   – 1  is the quantile function for Student ’ s  t -distribu-

tion, and  df  
1
 ,  df  

2
  and  df  

3
  are the corresponding degrees of freedom at stages I, II and III, respectively. 

 Let   β   
1,i

 ,   β   
2,i

  and   β   
3,i

  denote the paired  t -test type II error rates at stages I, II and III, respectively, for protein 

 i . It follows that (1 –   β  
j
   
,
   
i
  ) is the power at each corresponding stage,  j  ( j  = I, II, III). The expected number of true 

discoveries (power) is expressed as a function of the cumulative density of  t -statistics for the  i th protein at 

each stage, i.e. 

  E ( pr 
i
  ) = (1 –   β   

1,
   
i
  ) (1 –   β   

2,
   
i
  ) (1 –   β   

3,
   
i
  ), 

 where 

   
1

0 0 0
1, 1 1 1

1 1 1 1 1

i i i i i
i df

i i i i i

x x
P c P c P T c

n n n n n

θ θ θ θ θ θ
β

δ δ δ δ δ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −= < = < + − = < +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠  

 and  n  
1
  represents the known stage I sample size. If   θ   

0
  = 0, this simplifies to  1, 1

1

1 1 ,
/

i
i

i

Pt c
n

θ
β

δ

⎛ ⎞
− = − −⎜ ⎟⎝ ⎠

 where 

  θ  
i
   is the absolute difference between the matched diseased and normal groups under the alternative hypoth-

esis for protein  i  and  Pt  is the cumulative paired sample Student ’ s  t -distribution function. Analogously, the 

objective functions for 1 –   β   
2,
   
i
   and 1 –   β   

3,
   
i
   are given by 

   
1 2 2 3 1 2 3

1 1 2 3

( , , , ) 1 1 1 .
m

i i i

i i i i

f n n Pt c Pt c Pt c
n n n

θ θ θ
α α

δ δ δ=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − − − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑

 

 The cost function is defined as  n  
2
   ×   p  

2
   ×   t  

2
  +  n  

3
   ×   p  

3
   ×   t  

3
  + ( n  

2
  +  n  

3
 )  ×   R,  where  t  

2
  and  t  

3
  are the assay costs and  p  

2
  and  p  

3
  

are the numbers of proteins being tested at stages II and III, respectively, and  R  is the recruiting cost. This cost 

function is used in the following simulation study; it may vary based on different cost structures. 

 The actual objective function of SA-a computes the expected number of positive findings by using the 

Monte Carlo average of 1000 simulations. Additionally, technical differences between the stage I and stage II 

assays can be simulated by multiplying each   θ  
i
   by a random  “ technical artifact ”  adjustment,   λ  

i
 ,  in the Stage I 

calculations. Our simulations below incorporate this adjustment.   

  Comparison of nested neighborhood selection with single-step selection 

 Instead of using single-step SA, algorithm SA-a employs a nested-search strategy on subsets of the solution 

space determined by both the jumping length from one centre to another and the radius of the search space. 

Comparing the single-step method with the nested-search method, the latter constructs a local structure 
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of the global search surface. This strategy is shown to be more efficient with shorter computation time and 

without losing effectiveness in finding a good solution. In a case study to identify the global solution of 

a function with known maxima under inequality constraints, the computing time of using the single-step 

search was about twice of that using the nested search. The discovery rate for the known maximum from 100 

experiments using 10,000 iterations in the global search was 54%. Compared to an equivalent nested-search 

of 100 subsets × 100 iterations, the discovery rates were 64%, 58% and 97% for uniform, β(  α   = 4,   β   = 6)-, and 

β(  α   = 4,   β   = 20)-distributed jumping lengths, respectively. When the global search used 100,000 iterations and, 

equivalently, 100 subsets of 1000 iterations in the nested-search, the discovery rate of the known global 

maximum from 100 experiments were all 100%. 

 The convergence of SA-a can be proved by theorem 1 of both Belisle (1992) and Hajek (1988). Belisle ’ s 

theorem 1 is a special case of Hajek ’ s result in which the state space is discrete and finite. SA-a is defined over 

subsets of � d , with a temperature scheme converging in probability to 0. Its transition probability from one 

candidate to another is positive. When  M  (the number of subsets) is sufficiently large, it can naturally deduce 

that SA-a converges in probability to the global minimum of the bounded space   Ω  .   

   An enrichment design: using protein group information and protein selection by 
group and individual 

 Under this more complex scenario, proteins are analyzed in biological groups. Selection of proteins at stages 

I and II is based on the combined criteria of group and individual hypothesis tests. A protein is selected if the 

single-protein test statistic exceeds the threshold of a corresponding type I error rate for the  t -test or if the 

group test statistic exceeds the threshold of a corresponding type I error rate for the Hotelling ’ s  T -test. The 

validation/selection of proteins at the final stage is only based on  t -tests for the individual proteins. 

 The following paragraph describes a simulated annealing algorithm SA-b (Table 1.), which is used to opti-

mize and simulate the three-stage design when grouping information for each discovered protein is available 

in a paired sample study. Utilizing the additional grouping information, nested simulated annealing with Beta-

distributed jumping lengths is used to find the optimal design solution. The selection criteria combine decision 

thresholds of Hotelling ’ s  T -squared statistics for the groups and the  t -statistics for the individual proteins. 

 Apart from using grouping information, compared to SA-a, several improvements have also been made in 

SA-b. The first is to convert the inequality cost constraint into an equality cost constraint by using a series of 

slack terms (Nocedal and Wright, 1999). The second is the reduction in the dimension of the design problem 

by using the fact that the cost constraint will always bind. Instead of searching the entire interval of the stage 

III sample size  n  
3
 , now  n  

3
  is derived from the current cost constraint and other chosen design parameters from 

the early stages. Because the cost function is monotonic with all the design parameters, this change reduces 

the computing time used to search those  n  
3
 s with inferior solutions. The third improvement is to add an 

overall false-positive constraint in the algorithm. 

  Definition of the simulated annealing algorithm SA-b using grouping information 

  The solution space  Ω  bounded by the acceptable limit of each design parameter  
 Let the vector of design parameters   ω    =  ( n  

2
 ,  n  

3
 ,   

1tα ,   
2tα ,   

1f
α ,  

2fα ) be a solution in   Ω  , where  n  
2
  and  n  

3
  are the 

Stage II and III sample sizes,   
1tα  and   

2tα  are the stage I and stage II type I error rates for the individual tests 

and   
1f

α  and   
2fα  are the type I error rates for the group tests.   Ω   contains all the possible combinations of 

these parameters categorized into small intervals within the bounded ranges.  

  Objective function 
  Let  f ( ω ):   Ω    →  � be the objective function of the solution space, where  f  is the expected number of pro-

teins detected at stage III. The expected number of detected proteins with true effects is subject to first- and 
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second-stage type I error rates of the group Hotelling ’ s  T -tests, the individual  t -tests, second-stage sample 

size and third-stage sample size. In the optimization, this objective function is constrained by: 1) cost and 2) 

the number of false positives. The selection criteria of the multi-stage design are: 

 –    Stage I: (group test p-value       
1f

α< ) or (individual test p-value       
1tα<  

 
 and group test p-value   <  0.05), i.e.  

  ( ) ( )
1 11 1 1 1 1 1 1

2 1 1 2 1

( ), ( ) ( ) ( ) ( )( 1 ) ( 1 / 2) ( 0.95 )f tdf p df n p df n df p df n pT F T Pt T Fα α− − −
− −> − > − >∪ ∩  

 –     Stage II: (group test p-value       
2fα<  and individual test p-value   <  0.05) 

 
 or (individual test p-value     

2tα< ), i.e.  

        ( ) ( )
2 22 2 2 2 2

2 1 1 1

( ), ( ) ( ) ( )( 1 ) ( 0.975 ) ( 1 / 2)f tdf p df n p df n df nT F Pt T Ptα α− − −
−> − > −∩ ∪   

 –    Stage III:  
  2

1

( ) ( 0.975 )df nT Pt−>     

 In the above,   
1tα  and   

2tα are the significance levels of individual tests at stages I and II;   
1f

α and   
2fα are the 

significance levels of the group tests at stages I and II;  T 2   is the  F-  distributed Hotelling ’ s  T -squared statistic 

with degrees of freedom determined by the number of proteins and the sample size at each stage;  T  is the 

Student’s  t -statistic;  F   – 1  is the quantile function for the  F -statistic. 

 The configuration of the objective function is described in Section 2.2.2. 

 A similar cost function as described in 2.1.2 is defined as  n  
2
   ×   p  

2
   ×   t  

2
  +  n  

3
   ×   p  

3
   ×   t  

3
  + ( n  

2
  +  n  

3
 )  ×   R – S,  where  t  

2
  and  t  

3
  

denote the assay costs at stages II and III, respectively,  R  is the recruiting cost,  S  is the slack term of the total 

budget, and  p  
2
  and  p  

3
  are the numbers of proteins being tested at stages II and III, respectively. 

 The false-discovery constraint controls the expected number of false discoveries and is defined as  m   ×  2 P-

t ( c  
1
 )  ×  2 Pt ( c  

2
 )  ×  2 Pt ( c  

3
 ), where  m  represents the total number of proteins with true effects. 

 The actual objective function in SA-b computes the expected number of proteins with true effects by 

using the Monte Carlo average of 1000 simulations with adjustment for technical artifacts. To utilize the 

grouping information and according to requirements from the subject area, the first-stage criterion is set to 

select groups with a changeable significance level, and proteins with a changeable significance level but 

belonging to groups significant at the fixed 0.05 level during the optimization. The second-stage criterion is 

set to select proteins with a changeable significance level, and proteins significant at 0.05 levels but belong-

ing to groups with a changeable significance level. The third-stage selection is based only on the individual 

tests being significant at the 0.05 levels. 

 In SA-b, the proposal neighborhood selection function, temperature cooling schedule, and acceptance 

probability are set to be the same as those of SA-a. 

 Table 1      The contents of the SA-b algorithm.  

 Step 1.  Assign study parameters: cost constraint,  “ technical artifact ”  adjustment vector    λ  ,  mean difference and its standard 

deviation for each protein, and cost functions for stages II and III. 

 Step 2. Initialize number of iterations, simulated annealing parameters and solution. 

 Step 3. Initialize the sequences of slack term,  S i  , for the cost constraint;  i  ranges from 1 to J. 

 Step 4. While the number of iterations   <   M , repeat the following steps: 

    4.1  Randomly select an address as the centre of the local search neighborhood using a uniformly or Beta distributed jumping 

length. 

   4.2  Activate simulated annealing for the local search with  k  iterations. 

 The simulated annealing local search algorithm contains three functions: 1. the objective function, which uses Monte 

Carlo simulation to calculate the expected number of detected positives at the final stage; 2. the proposal neighborhood 

function, which determines the next searching subset of new candidate points; and 3. the cost-sample size function 

that calculates the stage III sample size according to the inequality cost constraint, slack term  S i   , cost functions and the 

currently chosen design parameters. 

   4.3  Compare the local maximum with the best solution from the past. If the current solution is better, then replace the previ-

ous best solution with the current one. 

  4.4 Start next neighborhood search and repeat Step 3. 

  4.5 Repeat Step 2 using the next slack term  S i + 1.   
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     Use of analytical approximation to compute the analytical objective function for SA-b 

 In SA-b, using the Monte Carlo average to estimate the expected number of true discoveries prolongs the opti-

mization process. To simplify the optimization, we investigated using an approximated analytical function to 

replace the Monte Carlo average. The expected number of true discoveries is given by 

   1, 2 , 3,

1

( 1 )( 1 )( 1 ),
p

i i i

i

β β β
=

− − −∑
 

 where   β   
1,
   
i
 ,  β   

2,
   
i
   and   β   

3,
   
i
   represent the nominal type II error rates at stages I, II and III, respectively, for the 

 i th protein. Under the selection criteria for this multi-stage design utilizing the protein group information, 

described in Section 2.2.1, the analytical function for the type II error,   β   
1,
   
i
 ,  of the  i th protein at stage I is equiva-

lent to the probability that  the group containing the i th  protein is not selected at the current group test decision 

threshold  (event  A ), and  either the i th  protein is not selected at the current individual test decision threshold  

(event  B ) or  the group is not selected at the 0.05 level  (event  C ). 

 The probability of the  i th protein not being selected at stage I is, therefore, be expressed as  pr ( A  ∩ ( B ∪ C )), 

and can be expanded to 

  Pr (( A  ∩  B )∪( A  ∩  C )) =  pr ( B )  ×  ( A  |  B ) +  pr ( A  ∩  C ) –  pr ( B )  ×   pr (( A  ∩  C ) |  B ) 

 Analytically,   β   
1,
   
i
   is a function of the cumulative density function of the  t- statistic and the cumulative density 

function of the group Hotelling ’ s  T -squared statistic which is  F  distributed after the transformation and is 

conditional on the individual  t- statistic for each protein. It can be decomposed as follows. 

 Let  pr ( B ) denote the probability that the  i th protein is not selected at the current  t -test threshold. It can be 

expressed as  pr ( B ) =  Pt ( t   <   c  
1
  +  t 

i
  ), described in 2.1.2, where  c  

1
  is the threshold for the corresponding type I error 

of the  t -test; and  t  
i
  is the  t -statistic for the  i th protein. Now, let  pr ( A  |  B ) denote the probability that the group 

containing the  i th protein is not selected at the current group test decision threshold, given that the  i th protein 

is not selected at the current  t -test threshold. This can be expressed as  ( )2

1 1( | ) ,i ipr A B F T d t c t= < < + where   2

iT  

represents the scaled  F  distributed Hotelling ’ s  T -squared statistic of the group containing the  i th protein; and 

 d  
1
  represents the  F -statistic for p-value   <   the decision threshold of Hotelling ’ s  T -test for the group. 

  pr ( A  ∩  C ) is the probability that the group of  i th protein is not being selected under the combination of the 

group test statistic thresholds ( d  
0.05

  and  d  
1
 ) and can be expressed as   ( )( )2

1 0.05( ) min ,ipr A C F T d d∩ = < , where 

 d  
0.05

  represents the  F  statistic for p-value   <  0.05 in the group test. Finally, let  pr (( A  ∩  C ) |  B ) denote the condi-

tional probability of  A  ∩  C  given the  i th protein is not selected. 

 The conditional cumulative  F  density, defined as   ( )2

1 1( | ) i ipr A B F T d t c t= < < + , is equivalent to the mar-

ginal distribution of the cumulative  F  density with respect to the  t -statistic for the  i th protein, i.e. 

    
( ) ( ) ( )

1

2 2

1 1 1| ,
ic t

i i iF T d t c t F T d pt t dt

+

−∞

< < + = < ×∫
 

( a )
 

 where  pt ( t ) represents the density function of the  t- statistic, and Hotelling ’ s  T -squared statistic is given by 

   

( ) ( )2 ,

T

i i i i i

i

i

X u X u
T

S

λ − −
=

 

 where 

   ( )
1 1,

1, 1 1

i

i

i

n p

p n
λ

−
=

−  

 denotes the scale factor which transforms Hotelling ’ s  T -squared statistic into an  F -statistic;  X 
i
   and  u 

i
   are the 

observed and null-hypothesis means for all proteins in the group containing the  i th protein;  S 
i
   is the variance-

covariance matrix of this group,  n  
1
  is the stage I sample size, and  p  

1,
   
i
   is number of proteins included in stage I 

for the group to which the  i th protein belongs. 

 The integrand in equation ( a ) is approximated by   ( ) ( )2 2

1 1, ,i iF T d t pt tλ< − × ×� i.e. 
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( ) ( ) ( )

1 1,

2 2 2

1 1 1 1,| ,
ic t

i i i i iF T d t c t F T d t pt t dtλ
+

−∞

< < + ≈ < − ×∫ �
 

 where the group test, Hotelling ’ s  T -squared statistic   2 ,iT  is approximated by the sum of   2

iT�  and the  t -sta-

tistic for the  i th protein (i.e.   2 2 2

i i i iT T tλ≈ +� ), and   2

iT�  is   2

iT  excluding the mean effect of the  i th protein (i.e. 

  ( ) ( )2 1

i i i i

T

i iT S X u X uλ−
− − − −= − −� ). 

 Finally, we approximate  pr (( A  ∩  C ) |  B ) by  pr ( A  ∩  C ), which would be exact if  B  were independent of  A  and  C . 

 A similar approximation is also applied to the stage II nominal type II error   β   
2,
   
i
   = Pr( B  ∩ ( A∪  D )), where  D  

denotes the event that  a protein is not selected at the 0.05 significance level.  β   
2,
   
i
   is expanded as 

 Pr(( B  ∩  A )∪( B  ∩  D )) =  pr ( B )  ×  pr   ( A  |  B ) +  pr ( B  ∩  D ) –  pr ( B  ∩  D )  ×   pr ( A  | ( B  ∩  D )). 

 The approximated analytical objective function for SA-b was implemented in several synthesis datasets 

for comparing with its Monte Carlo simulated function. The computing times of using the analytical approxi-

mation were shown to be between 20 – 100 times faster than using the Monte Carlo average in SA-b. The design 

parameters and solutions were also shown to be similar to the results utilizing the Monte Carlo simulated 

objective function. More discussions are provided in the following immunology case study.    

  Case studies 

  An immunology study 

 The lymphocyte proteome was analyzed in 17 Common Variable Immunity Deficient (CVID) patients and 34 

normal controls. CIVD, also known as acquired hypogammaglobulinemia, is the most common primary immu-

nodeficiency disorder encountered in clinical practice (Park et al., 2008). CVID patients have low levels of immu-

noglobulin G, A and M; and also are susceptible to recurrent infections because of their inability to produce 

antibodies. Much of the past research has focused on deciphering the genetic basis of CVID (Park et al., 2008). 

However, the genetic causes of this disease are complex and still not fully understood. We hypothesize that 

proteomic characterization of CVID cases (beyond the gross immunoglobulin deficiencies) will be an alternative 

approach to reveal genetic causes and mechanisms. This study aimed to identify proteins with differentiated 

expression in CVID patients compared to the matched controls. 

 Patients and controls were matched by age group, ethnicity and gender. All patients and controls are 

Caucasian. Lymphocytes were isolated from blood using Ni-NTA agarose (Invitrogen) in an accredited lab 

(Lab PLUS, Auckland City Hospital). The proteome of the lymphocytes cell lysates were then analyzed and 

quantified by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) at the Center for 

Genomics and Proteomics, University of Auckland. Samples were all analyzed using the tagged proteomics 

technique iTRAQ, where eight samples were allocated as one batch of the multiplex assay. A reproducibility 

pilot study was performed before the main discovery study. Since the reproducibility of the experiments was 

shown to be satisfactory, the main study was performed. This mass spectrometry-based approach identified 

peptides from 289 proteins and provided the relative quantification for each peptide. The log-transformed 

relative quantity of the peptide was used to derive the natural log transformed protein ratio for patients 

and normal controls in the hierarchical multi-level mixed effect model. The proteins were grouped into 20 

rudimentary classes according to their biological function by the Biochemist (STW) in  Table 2 , while the over-

lapped functions of some proteins were not presented.   

  Grouping of proteins 

 The 289 proteins discovered were grouped according to their functions: namely immunity, metabolic, tumor, 

protein synthesis/degradation, nuclear metabolic, cell migration, ER membrane, protein structure, signaling 
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 Table 2      The functional group and observed fold-changes in their relative intensity between the matched 

normal controls and patients on the natural log scale.  

 Proteins  Estimate  StdErr  Group 

 EZR cDNA F  2.3702  0.5794  Immunity 

 CTSG Cathe  2.6498  0.6883  Immunity 

 VIM Viment  0.4954  0.2677  Immunity 

 MNDA Myelo  0.5187  0.2532  Immunity 

 PSMA6 28 k  0.3144  0.1672  Immunity 

 MPO Isofor  0.3874  0.2368  Immunity 

 IL4R IL4R n  1.0728  0.5822  Immunity 

 CALR Calre  0.2572  0.1735  Immunity 

 MIR1244-3;   – 1.1069  0.755  Immunity 

 S100A8 Pro  0.5802  0.4038  Immunity 

 DSG2 Desmo  0.8601  0.5558  Immunity 

 LTF Unchar  0.6448  0.463  Immunity 

 DEFA1;DEFA1  0.4371  0.3296  Immunity 

 YBX1 Prote  2.0715  0.6459  Immunity 

 LCP1 Plast  0.3222  0.2527  Immunity 

 CORO1A Cor  0.3327  0.267  Immunity 

 PPIA Pepti  0.2315  0.1871  Immunity 

 S100A9 Pro  0.3585  0.2926  Immunity 

 MSN Moesi  0.2576  0.2173  Immunity 

 PSME2 Unch  0.2518  0.217  Immunity 

 MIF Macroph  0.6192  0.4975  Immunity 

 UBA1 Ubiqu  2.5894  0.6904  Metabolic 

 GLRX Gluta  0.7093  0.3601  Metabolic 

 LYZ Lysozy  0.3312  0.1898  Metabolic 

 CA1 Unchar  0.3841  0.2144  Metabolic 

 PGLS 6-pho  1.4955  0.9774  Metabolic 

 HNRNPK cDN  0.5699  0.3119  Tumor 

 PKM2 Pyruv  0.3182  0.3106  Tumor 

 HSPA5 cDNA  0.6351  0.1413  Protein synthesis 

 AARS cDNA   – 1.2433  0.436  Protein synthesis 

 RPS10-NUDT   – 0.7353  0.2703  Protein synthesis 

 RPS5 40S r  0.3428  0.2061  Protein synthesis 

 HNRNPA2B1 I  0.6766  0.3045  Nuclear metabolic 

 HNRNPK cDN  0.5699  0.3119  Nuclear metabolic 

 APRT Adeni  0.4482  0.2525  Nuclear metabolic 

 MNDA Myelo  0.5187  0.2532  Nuclear metabolic 

 S100A4 Unc  0.341  0.2102  Nuclear metabolic 

 BANF1 Barr  0.3083  0.1815  Nuclear metabolic 

 ANP32A;ANP  0.3749  0.2375  Nuclear metabolic 

 HNRNPC cDN  0.6791  0.4071  Nuclear metabolic 

 LGALS1 Gale  1.1107  0.7363  Nuclear metabolic 

 VCP Transi  0.4181  0.3348  Nuclear metabolic 

 TUBA1B Unc  0.6446  0.2011  Cell migration 

 FCHO2 89 k  0.6863  0.2114  ER membrane 

 TMSB4X TMS  0.5501  0.2172  Protein structure 

 KRT9 Kerat  0.8742  0.3978  Protein structure 

 PRKAR1A cAM  0.6009  0.1081  Signaling 

 HSPA5 cDNA  0.6351  0.1413  Signaling 

 ANXA4 cDNA  0.9266  0.3574  Signaling 

 S100A11 Pr  0.4635  0.2458  Signaling 

 HSP90AA1 I  0.5218  0.2874  Signaling 

 RAC1 Isofo  0.5155  0.3021  Signaling 
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function, mitochondrial, blood protein, DNA repair/structure, trafficking/secretory, inflammation, apopto-

sis, autoantibody, ER/membrane, angiogenesis, transcription, neuro protection and redox. Nine groups were 

noted to contain protein candidates with significant fold changes between CVID patients and normal con-

trols. Fifty-two proteins in total were needed to be considered for inclusion in the stage II verification study. 

We used the SA-a, SA-b, and the SA-b with analytical approximation to identify the optimal solutions for the 

second and third stages of this study.  

   Demonstration of code and results for three-stage design using SA-a, SA-b and 
approximation for SA-b 

 The cost structure used in this study is different to that described in 2.2.1. At stage II, the cost per protein 

for peptide synthesis is  $ 280 and per biological sample for proteomic analysis is  $ 1015. At stage III, the 

cost is assumed to be  $ 200 per protein per biological sample for laboratory analysis. The recruitment cost 

is set to be  $ 100 per biological sample. The assay cost functions in the R language for stages II and III are 

defined as 

 assaycost2 = function(n,p) { 280*p + 1015*n }  

 and 

 assaycost3 = function(p) (200*p), 

 respectively, where p is the number of proteins selected at the nominal stage and n is the sample size. 

 The programs were run in the computer clusters of NeSI: http://www.nesi.org.nz/, where each program 

was assigned to 4GB memory within a cluster. 

The codes used in the R function to utilize group information and analytical approximations are: 

   >   optim.two.stage.appr(budget = 6e6, protein = protein, N1 = 30, 

  artifact = rep(1,52),iter.number = 10,assaycost2.function = assaycost2, 

assaycost3.function = assaycost3, recruit = 100, a1.t.min = 0.01, a1.t.max = 0.25, 

a1.f.min = 0.01, a1.f.max = 0.25, a1.step = 0.025, a2.t.min = 0.01, a2.t.max = 0.05, 

a2.f.min = 0.05, a2.f.max = 0.05, a2.step = 0.025, n2.min = 100, n2.max = 1000, 

n2.step = 100, n3.min = 100, n3.max = 1000, n3.step = 100) 

 The approximation programs had run times within an hour. The group program SA-b had run times 

between 7  and  10 h for the five proteins examples and between 20  and  30 h for the 52 proteins examples. 

 Different budget ranges determined by the known health funding agents were tested for this case study. 

Three different budgets with the solutions are presented for the verification/validations of the top five pro-

teins of interest, and the targeted 52 proteins in  Table 3 . Considering the relatively low prevalence of CVID, all 

budgets were assessed by different ranges of stage II sample size. To verify and validate the top five proteins, 

using ranges of 30 – 100 and 100 – 1000 for the stage II sample size are demonstrated to be feasible. The 1.2 million 

dollar budget was shown to be insufficient for a sample size between 100  and  1000 at stage II, 1000 – 5000 at 

stage III, but is sufficient for a sample size in the range of 30 – 100 at stage II and 100 – 1000 at stage III. 

  The solutions using the approximated analytical objective functions are shown to be in a similar range to 

the results from their Monte Carlo simulated objective functions, except for the first and third scenarios pre-

sented in  Table 3 . In these two scenarios, while both solutions from the analytical function achieve the same 

numbers of discoveries as their Monte Carlo simulation, they contain two smaller stage II sample sizes as the 

design parameters and thus results in different resource allocations. This discrepancy indicates the existence 

of multiple global optimal solutions for the objective function. 

 Despite the similar results (sample sizes and costs) from using and not using grouping information in this 

study, due to the large fold changes for all included proteins, proteins ’  functional group information is still 

considered essential for biologists to assess the discoveries and assist in the decision making in the protein 

selections from stage I.  
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 Table 3      The optimal design parameters for a given budget using three different algorithms for the multi-stage CVID proteomic 

study.  

   Objectives  Method 

 SA-a  SA-b  SA-b, with analytical 
approximation 

 Full discovery of 52 proteins   

 Cost  =  $ 6  ×  10 6    

 n 
2
  = 100 – 1000 

  pt  
1
 ,  pt  

2
 ,  n  

2
 ,  n  

3
 :    

 0.10,0.04,500,517   

 Cost stage II: 572,060   

 Cost stage III: 

5,426,940   

 Time: 12.7 h 

  pt  
1
 ,  pf  

1
 ,  pt  

2
 ,  pf  

2
 ,  n  

2
 ,  n  

3
 :    

 0.22,0.10,0.04,0.05,500,517   

 Cost stage II: 572,060   

 Cost stage III: 5,426,940   

 Time: 20.0 h 

  pt  
1
 ,  pf  

1
 ,  pt  

2
 ,  pf  

2
 ,  n  

2
 ,  n  

3
   
(100 – 1000)

 :    

 0.22, 0.22, 0.01, 0.05,365,100   

 Monte Carlo objective function 

used to derive n 
3*

 : 532   

 Cost stage II: 421,535   

 Cost stage III: 5,577,465   

 Time: 56 min 

 Full discovery of 52 proteins   

 Cost  =  $ 1.2  ×  10 6    

 n 
2
  = 30 – 100 

  pt  
1
 ,  pt  

2
 ,  n  

2
 ,  n  

3
 :    

 0.18,0.01,86,104   

 Cost stage II: 110,450   

 Cost stage III: 

1,088,550   

 Time: 11.7 h 

  pt  
1
 ,  pf  

1
 ,  pt  

2
 ,  pf  

2
 ,  n  

2
 ,  n  

3
 :    

 0.11, 0.18, 0.01, 0.05,86,104   

 Cost stage II: 110,450   

 Cost stage III: 1,088,550   

 Time: 19.0 h 

  pt  
1
 ,  pf  

1
 ,  pt  

2
 ,  pf  

2
 ,  n  

2
 ,  n  

3
   
(100 – 1000)

 :    

 0.04,0.15,0.01,0.05,90,100   

 Monte Carlo objective function 

used to derive n 
3*

 : 104   

 Cost stage II: 114,910   

 Cost stage III: 1,084,090   

 Time: 53 min 

 Discovery of five  most  interest-

ing proteins   

 Cost  =  $ 5  ×  10 5    

 n 
2
  = 100 – 1000 

  pt  
1
 ,  pt  

2
 ,  n  

2
 ,  n  

3
 :    

 0.20,0.01,330, 118   

 Cost stage II: 369,350   

 Cost stage III: 129,650   

 Time: 3.2 h 

  pt  
1
 ,  pf  

1
 ,  pt  

2
 ,  pf  

2
 ,  n  

2
 ,  n  

3
 :    

 0.05,0.20,0.01,0.05,330,118   

 Cost stage II: 369,350   

 Cost stage III: 129,650   

 Time:7.0 h 

  pt  
1
 ,  pf  

1
 ,  pt  

2
 ,  pf  

2
 ,  n  

2
 ,  n  

3
   
(100 – 1000)

 :    

 0.02,0.04,0.01,0.05,100,200   

 Monte Carlo objective function 

used to derive n 
3*

 : 351   

 Cost stage II: 112,900   

 Cost stage III: 386,100   

 Time: 5 min 

 Discovery of five  most  interest-

ing proteins   

 Cost  =  $ 5  ×  10 5    

 n 
2
  = 30 – 100 

  pt  
1
 ,  pt  

2
 ,  n  

2
 ,  n  

3
 :    

 0.01,0.01,60,392   

 Cost stage II: 68,300   

 Cost stage III: 430,700   

 Time: 3.3 h 

  pt  
1
 ,  pf  

1
 ,  pt  

2
 ,  pf  

2
 ,  n  

2
 ,  n  

3
 :    

 0.06,0.01,0.01,0.05, 60, 392   

 Cost stage II: 68,300   

 Cost stage III: 430,700   

 Time: 8.3 h 

  pt  
1
 ,  pf  

1
 ,  pt  

2
 ,  pf  

2
 ,  n  

2
 ,  n  

3
   
(100 – 1000)

 :    

 0.04,0.01,0.01,0.05,74,100   

 Monte Carlo objective function 

used to derive n 
3*

 : 378   

 Cost stage II: 83,910   

 Cost stage III: 4,150,90   

 Time: 7 min 

  aStage III sample size, n 
3
 , was re-derived using the Monte Carlo simulated objective function. The solution from this Monte Carlo 

simulated function assumes the study used up the budget minus the slack term. 

 bThe stage I sample size equals to the number of controls in this study. It needs to be greater than the number of proteins each 

group. The minimal stage II sample size also needs to be greater than the number of proteins in each group.  

  Using simulated protein datasets 

  Data 

 To assess the performance of the SA-b algorithm and to investigate the factors that are associated with the 

efficiency of the program, we simulated different protein patterns from synthetic datasets that were gen-

erated from a cardiac proteomic study (Zeng et al., 2009). The cardiac proteomic study collected coronary 

plasma blood samples of eight ischemic patients before and after an angioplasty procedure, and used LC-MS/

MS with iTRAQTM labeling to discover and quantify the proteins. The simulated datasets were created by using 

mean differences and ranges of variances in the relative quantity on the log scale between these two time 

points. Different patterns were simulated by setting the mean difference to zero or by doubling the variances 

of some proteins. The factors being investigated included the grouping property of proteins, number of pro-

teins with non-zero mean differences, variations in the protein effect, and budgets. The grouping property 

focuses on the co-regulation of proteins in the same biological functional group, which are believed  a priori  

to act in concert with one another. 
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 Each synthetic dataset comprises 50 proteins of which 44, 18 or six have non-zero mean difference, 

which we will refer to as  “ true effects ” . These are either clustered in a few groups or scattered across different 

groups, with some proteins either in overlapping or non-overlapping groups. 

 The expected number of discovered true effects (true positives, power) is affected by multiple factors. 

These factors include cost, significance thresholds at stages I and II, sample sizes at stage II and III, and the 

effect size (mean difference/standard deviation) of each protein. Results from some of these datasets are 

shown in  Tables 4 a–c.    

  Results using SA-b for a multi-stage design in different simulated protein datasets 

  Computation time and number of true effects  
 The simulations were implemented using computer clusters with 16 CPUs of 1 GB per CPU. Computation time 

is shown to increase with the number of true effects.  

  Budget, numbers of true effects and design parameters 
  In the simulated data of 44 true effects among 50 proteins ( Table 4 a), the budget of  $ 10 million results in 

90% discovery. In the simulation with 18 ( Table 4 b) or six ( Table 4 c) true effects among the 50 proteins of 

interest,  $ 5 million is sufficient for 95% discovery in the 18 true-effects scenario and 100% discovery for the 

six true-effects scenario. The budget of  $ 1 million achieves 100% discovery in the six true-effects scenario. All 

simulations use the same stage I sample size of 60 and the same cost function as described in sections 2.2.1 

and 2.2.2 and footnotes of  Table 4 c. 

 In scenarios where the  $ 10 million budget cannot achieve 100% discovery of all true effects, we note that 

the optimal stage I  F -test decision threshold for selection is close to the upper bound of the parameter space. 

This phenomenon indicates that, the default 0.05 threshold would be far from optimal given the small sample 

size at stage I and the budget constraint. Both of the decision thresholds for the stage I  F - and  t -test are   >  0.05. 

Conversely, in  Table 4 c, where a  $ 1 million budget can achieve a 100% discovery for the five true effects, the 

optimal stage I  t -test decision threshold is smaller than 0.05. 

 The relations between the cost ratio of stage III-to-stage-II and the p-value of the stage I individual  t -test, 

the cost ratio of stage III-to-stage-II and the p-value of the stage I group test were investigated using the 44 

true effects data. The stage II sample size was fixed at 100, and the budget at  $ 5 million. The p-values of the 

stage I  t -tests were set between 0.001 and 0.25, and the p-values of the stage I  F- tests were set between 0.01 

and 0.25. When using SA-a, the cost ratio is shown to decrease with a higher p-value threshold for the  t -test 

( Figure 1 b). When using SA-b, although a similar relation between the cost ratio and the p-value threshold 

for the groups ’   F -tests is observed, the p-value of the  t -test does not influence the cost ratio within the same 

band of the  F -test p-values. 

    Effect size and number of detectable true effects 
 In the synthesized datasets, there are several proteins with extremely small effect sizes that cannot be 

detected. The detection of these proteins are hindered by the sample size and significance thresholds at 

stages I and II. Under the unconstrained optimization, 100% discovery was achieved for the case of 44 true 

effects with a second stage sample size of 670 and third stage sample size of 2800 when the stage I individual 

test p-value   <  0.36 and the second stage individual test p-value   <  0.16, given that the stage I sample size was 

60. When there are no multiple stage selections, a sample size of 4751 can detect the protein with the small-

est effect size (mean difference = 0.1, standard deviation = 2.3) with 85% statistical power and 5% type I error 

rate. This indicates that the detection of proteins with small effect size may be restricted using the systematic 

approach due to the step-wise type I error rate control and the constrained monetary resource in a proteome-

wide study.  
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  Convergence 
  SA-b is restricted to a smaller solution space, in which only those  n  

3
  meeting the cost constraint are included. 

Thus, the convergence of algorithm SA-b is better than SA-a when the same number of iterations is applied.  

  Overlapping groupings 
 When utilizing biological information, a protein may belong to several functional groups (Whitford, 2005). It 

is known that there are overlapping protein complexes sharing several proteins within biological networks. 

For example, in the TNF/NF- κ B signaling pathway, proteins p100, 1KKa, 1KKb and 1KKc are shared by several 

functional groups in this pathway (Zotenko et al., 2006). When utilizing SA-b, the overlapping proteins can 

be included in the group statistic for every group to which they belong.     

   A comparison between using grouping information and not using 
grouping information 
 Simulations using different synthetic protein datasets were conducted and used to investigate the influence 

of different protein patterns in optimizations using SA-a (without group information) and SA-b (with group 

information). When the budget is under a tight constraint and the grouping is informative, SA-b results in 
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 Figure 1      Associations between cost ratios and test decision thresholds in scenarios of using vs. not using biological group 

information. 

 (A) The six graphs represent the associations between cost ratios and stage I  t -test, when the group  F  test p-values are in differ-

ent ranges. The six graphs arrange in a descending order of the group test p-values, starting from the bottom left corner to the 

upper right corner. The protein dataset has 44 true effects among 50 proteins and is the same one to that used in Table 4a. (B) 

The graph represents the association between cost ratios and stage I  t -test p-values with a same range as that in Figure 2a. The 

protein dataset has 44 true effects among 50 proteins discovered at stage I and is the same one to that used in Table 4a.    
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more proteins being selected from stage I given that the number of proteins in each group is less than the 

sample size. SA-a results in fewer proteins being selected from stages I, but larger sample size in stage III. 

 Comparison of protein discovery rates between SA-a and SA-b within the same ranges of design param-

eters shows that, SA-b has more favorable results in the protein-wise discovery when there is informative 

grouping. Informative grouping information increases the individual protein discovery rate and the average 

number of true discoveries. Uninformative grouping information does not make a meaningful difference to 

the discovery rate and cost allocation. The benefit of using grouping information is greater when the budget 

is under a tight constraint for detecting a large number of true effects. Under this condition, SA-b tends to 

allocate more resources to verifying more proteins at stage II. With respect to CPU running time, SA-b uses 

about twice to three times more system time than SA-a. 

  Table 5  provides scenarios of when to use SA-b and SA-a. Since SA-b with the analytical approximation 

runs much faster than the other two methods, it should be used firstly to assess whether a fixed budget will 

yield a good design solution to verify/validate the proteins of interest. 

    Discussion 
 Proteomic techniques used to investigate large numbers of proteins simultaneously are comparable to 

genomic platforms used to investigate gene-disease associations, and have similar challenges in experi-

mental design and data analysis (Greef et al., 2007). In this paper, we used simulated annealing to simul-

taneously optimize the design for a multi-stage proteomic study comprising discovery, verification and 

clinical validation phases, taking into account the resource constraints for maximizing the number of true 

discoveries. 

 We investigated two different strategies for the design of a multi-stage clinical proteomic study, and 

recommend considering biological grouping information in the optimization of the design. Multi-stage 

designs are cost-effective because non-promising candidates can be eliminated after the first stage, leaving 

only promising candidates to be validated in later stages. While, with the falling cost of genotyping, multi-

stage designs are no longer commonly used in genome-wide association studies, they remain appealing 

for proteomic studies given the substantial per-protein cost of clinical validation. As suggested by the NCI, 

verification using a candidate-based platform and validation in large-scale clinical samples will improve 

the discoveries of disease related proteins and their final translation to utilization. A systematic approach 

to design optimization allows resources to be allocated efficiently across the different stages of the study. 

Further, using integrated biological information enriches the design for laboratory discovery and clinical 

application and thereby optimizes the solution. From simulations of different protein datasets in the current 

paper, we discovered that using protein grouping information improves the optimization results when the 

grouping information is informative. 

 We also found that a structured two-step search was more efficient than a one-step global search and that 

using a Beta distribution for jump lengths in the two-step search further improved the speed. 

 Table 5      Different scenarios to use SA-a and SA-b.  

 When to use SA-a  When to use SA-b 

 1.  There is a small number of proteins that are of interest 

(i.e.,   <  5) 

 1. There is a large number of proteins that are of interest 

 2.  The fixed budget will be more than sufficient for the 

verification/validation of all proteins of interests 

 2.  There is informative group information (i.e., some proteins 

have a large effect size and are clustered in the same group) 

 3. All proteins in the same group have a large effect size  3.  A number of proteins of interest have small effect size and 

cluster with proteins of large effect size in the same group 

 4. All proteins belong to a single group   
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 A design based only on individual-protein tests could be optimized more easily because the objective 

function is smooth and can be calculated analytically, but individual-protein tests do not make full use of 

available biological information. Using a combination of individual-protein and group tests gives an objec-

tive function that has no simple analytical form, and for this reason Monte Carlo estimation and simulated 

annealing is necessary. 

 An important limitation of the current group algorithm is that Monte Carlo estimation prolongs the 

computing time required for the optimization process. However, the computations that form the main 

computing load can be easily parallelized, and the code made more efficient by using a faster program-

ming language. Greater gains are also shown to be achievable from an analytical function to approximate 

the objective function. The current algorithms are conditional on the stage I discovery design parameters 

(sample size and number of discoveries). This limitation reflects a common problem in the funding process 

that many biomedical researchers currently face. Before significant funding can be sought for a multiple-

phase study, pilot data from a stage I discovery is often needed as proof-of-concept; the stage I sample size 

is, therefore, determined by the available funds at this pilot stage. In general, the pilot study has a small 

available budget. As recommended in the current practice, the stage I sample size is in the range of 10 – 100. 

However, some of our simulations showed that a larger stage I sample size (  >  100) leads to a smaller cost 

allocation in the stage II verification, and increase the statistical power at stage I. This suggests that a 

bigger range of sample size at stage I may need to be considered in some cases. This will be one topic of 

our future research.  

  The software 
 The R functions optim.two.stage.single (SA-a), optim.two.stage.group (SA-b) and optim.two.stage.app (SA-b 

using analytical approximation) performing the methods described in this paper are contained in the R 

package proteomicdesign 2.0. This package is available from the CRAN website: http://www.r-project.org. 

The R functions have been assessed and tested on multiple synthetic datasets (parts of these results were 

shown in the paper), and an actual case study dataset at the desktop and the computer cluster.   
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