

Version

This is the Accepted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Sedeño-Noda, A., & Raith, A. (2015). A Dijkstra-like method computing all
extreme supported non-dominated solutions of the biobjective shortest path
problem. Computers & Operations Research, 57, 83-94.
doi:10.1016/j.cor.2014.11.010

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved, unless
otherwise indicated. Previously published items are made available in accordance
with the copyright policy of the publisher.

© 2015, Elsevier. Licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International

http://www.elsevier.com/about/policies/article-posting-policy#accepted-
manuscript

http://www.sherpa.ac.uk/romeo/issn/0305-0548/

https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1016/j.cor.2014.11.010
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.elsevier.com/about/policies/article-posting-policy%23accepted-manuscript
http://www.elsevier.com/about/policies/article-posting-policy%23accepted-manuscript
http://www.sherpa.ac.uk/romeo/issn/0305-0548/
https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm
https://researchspace.auckland.ac.nz/

1

A Dijkstra-like method computing all extreme supported non-

dominated solutions of the biobjective shortest path problem.

ANTONIO SEDEÑO-NODA (asedeno@ull.edu.es)

Departamento de Matemáticas, Estadística e Investigación Operativa. Universidad de La Laguna,

C.P. 38271, San Cristóbal de La Laguna, Santa cruz de Tenerife, España.

ANDREA RAITH (a.raith@auckland.ac.nz)

Corresponding Author. Department of Engineering Science, The University of Auckland, Private Bag 92019,

Auckland, New Zealand. Phone +64 (9) 3737599 extension 81977.

Abstract: We address the problem of determining all extreme supported solutions of the

biobjective shortest path problem. A novel Dijkstra-like method generalizing Dijkstra’s

algorithm to this biobjective case is proposed. The algorithm runs in O(N(m+nlogn)) time to

solve one-to-one and one-to-all biobjective shortest path problems determining all extreme

supported non-dominated points in the outcome space and one supported efficient path

associated with each one of them. Here n is the number of nodes, m is the number of arcs and

N is the number of extreme supported points in outcome space for the one-to-all biobjective

shortest path problem. The memory space required by the algorithm is O(n+m) for the one-to-

one problem and O(N+m) for the one-to-all problem. A computational experiment comparing

the performance of the proposed methods and state-of-the-art methods is included.

Keywords Biobjective path problems; Supported efficient paths; Label-setting algorithm.

1. Introduction

In a directed network with arbitrary lengths, the shortest path (SP) problem is the problem

of finding directed paths of shortest length from an origin node to all other nodes, or detecting

a directed cycle of negative length. The SP problem is one of the most fundamental problems

in network optimization. Numerous algorithms that solve SP problems and several real-world

applications are reviewed in Ahuja et al. [1]. Also, the SP problem can be classified into one-

to-one or one-to-all problems depending on whether the aim is to determine the shortest path

from one origin node to one destination node or the shortest paths from one origin node to all

other nodes in the network.

Algorithms for the standard single objective SP problems can generally be divided into two

major groups: (1) Shortest path simplex algorithms that determine the optimal tree from an

*Manuscript
Click here to view linked References

mailto:asedeno@ull.edu.es
mailto:a.raith@auckland.ac.nz
http://ees.elsevier.com/cor/viewRCResults.aspx?pdf=1&docID=9785&rev=2&fileID=190624&msid={A8FA9486-B2B6-493D-9445-711F88C69B5D}

2

initial feasible tree, making simplex pivots with non-tree arcs which do not satisfy Bellman’s

optimality condition, and (2) labeling methods that iteratively make distance labels permanent

(guaranteeing they represent the length of an optimal path) for all nodes.

Labeling methods are also partitioned into label setting and label correcting methods.

Label setting methods are characterized by setting one distance label of a known node

permanent in each iteration of the method, while label correcting methods consider all

distance labels as temporary until the end of the algorithm. For one-to-one SP problems label

setting methods terminate when the distance label of the destination node becomes permanent.

For one-to-all SP problems label setting methods terminate once the distance labels of all

nodes in the network have become permanent.

In the literature, biobjective and multiobjective shortest path (BSP and MSP) problems

have received considerable attention. There are different classes of solution approaches

including labeling algorithms, the first of which were introduced by [2, 3] for BSP and MSP

problems. More recently, computational comparisons [4, 5] investigate the performance of

different labeling methods for MSP problems. Other methods include ranking approaches

applied to BSP and MSP first introduced by [6], where solutions are ranked until it can be

guaranteed all efficient solutions are found. A two phase method has been applied to BSP

problems by [7]. It distinguishes two phases in the solution of a BSP problem, where in Phase

1 the so-called supported solutions are found (that are relatively easy to obtain as they can be

found by solving weighted sum problems, for example). Then, the remaining (non-supported)

solutions are obtained in Phase 2. An extensive computational comparison of different types

of algorithms to solve BSP is conducted in [8].

While it is possible to solve large problem instances of BSP problems within reasonable

computation time, problem instances become considerably harder to solve as network size

increases. In particular, obtaining non-supported solutions can be costly. We focus here on the

computation of supported solutions and show this can be achieved quickly and effectively for

large real-world networks. We address solving one-to-one and one-to-all BSP problems

separately.

Other researchers also focus on obtaining supported solutions of BSP and MSP problems.

For example, White [9] discusses parametric shortest path problems, and Mote, Murthy, et. al.

[7] solve a parametric version of the BSP problem to obtain supported paths in Phase 1 of the

two phase method. Xie and Waller [10, 11] solve BSP and MSP problems approximately by

using a parametric approach and follow this by a constrained shortest path method, leading to

an overall approach which is not guaranteed to find all non-supported solutions. Henig [12]

3

considers decision making in the context of BSP problems, where it is assumed that a decision

maker has a utility function that allows her to identify her preferred solution. A section of [12]

is dedicated to the case for which only extreme supported efficient solutions of BSP have to

be obtained, where three approaches are described. One solves a parametric problem, the

other uses a dichotomic approach to explore weights and obtain all extreme efficient solutions

as weighted sum problems, and one is based on labeling and works with sets of extreme

labels.

Here, we propose a new algorithm to generate extreme supported solutions of BSP. While

our algorithms only obtain a subset of solutions of a BSP problem, the obtained extreme

supported solutions may be sufficient for decision making under some circumstances: the

number of efficient solutions of BSP may be overwhelming and extreme supported solutions

may be sufficient from a decision maker’s point of view. Extreme supported solutions also

give the decision maker an idea of the shape of the set of efficient solutions and may help

identify regions of interest that can be further explored for instance using interactive decision

making techniques capable of obtaining non-supported solutions, using approaches such as

the ones proposed in [13, 14]. Also, Henig [12] notes that for quasiconvex utility functions the

decision maker’s choice is guaranteed to be among the supported efficient solutions. Another

use of the proposed algorithm is in the two phase method. In Phase 1 only extreme supported

solutions are required, and our proposed algorithms is a fast and remarkably reliable (in terms

of runtime) method to solve Phase 1 of the two phase method for BSP.

The proposed algorithm is a Dijkstra-like algorithm that generalizes Dijkstra’s algorithm

for the BSP problem. In fact the proposed algorithm is a ratio-labeling algorithm storing

labels associated with each extreme supported solution of the BSP problem for each node in

the network. The labels used in the algorithm are precisely the slopes of the supported

efficient frontier in the outcome space instead of the classical distance labels of nodes. The

running times of the proposed algorithms are O(N(m+nlogn)). Moreover, many improvements

of Dijkstra’s algorithm can be directly applied to the proposed algorithms. We introduce two

algorithms: one solving the one-to-one BSP problem using O(n+m) space and the other one

solving the one-to-all BSP problem using O(N+m) space. The one-to-all algorithm stores

additional labels to keep track of all extreme supported solutions. We compare the proposed

algorithms and state-of-the-art algorithms for both one-to-one and one-to-all BSP problems.

Numerical tests, reported in section 5 of this paper, show that the one-to-one BSP algorithm is

robust and scalable in practice and the one-to-all BSP algorithm becomes the state-of-the-art

4

algorithm on synthetic and road networks (i.e. it is able to determine one hundred millions of

extreme supported efficient solutions on the largest tested road network).

The paper is organized as follows: Section 2 describes the BSP problem and introduces

some known results from the literature. In section 3 BSP is formulated as a parametric

programming problem and a detailed study of the resolution of this problem is included in

order to compute all extreme supported points in the outcome space of the BSP problem with

a Dijkstra-like label setting strategy. Section 4 proposes the ratio-labeling algorithm for one-

to-one BSP problems, and the ratio-labeling algorithm for storing the labels to keep track of

all extreme supported solutions of the one-to-all BSP problem is included in a subsection.

Section 4 also provides the worst-case time and space complexities of the proposed new

algorithms and an example showing how the algorithm works. In section 5, computational

experiments comparing performance of the proposed algorithms and other known algorithms

are discussed. Finally, section 6 concludes with final comments and possible future avenues

of investigation.

2. The biobjective shortest path problem.

Given a directed network G = (V, A), let  nV ,...,1 be the set of n nodes and A be the set

of m arcs. Two real-valued costs 1 2
(,)

ij ij ij
c c c are associated with each arc Aji ),(. In a

road network, these values can represent distance and time, respectively. We denote by

 | (,)
i

j V j i A


    and by  | (,)
i

j V i j A


    the set of predecessor and successor

nodes for all nodes i V . Node s is the origin node and t the destination node. Let ,i j V be

two distinct nodes of G = (V, A), we define a directed path
ij

p as a sequence

1 1 2 2 1 1
, (,), , , , (,),

l l l l
i i i i i i i i

 
 of nodes and arcs satisfying

1
i i ,

l
i j and for all

1 1w l   ,
1

(,)
w w

i i A


 . The length of a directed path p is the sum of the arc lengths of the

arcs that make up the path, that is,
(,)

()
ij

i j p

c p c



  . Let P be the set of paths from s to t in G.

Assumption 1 (w.l.o.g.). The network G contains a directed path from origin node s to any

node   i V s (if there is no path in G to some node i, then node i can be removed from G

since it cannot lie on any s-t path).

If a flow
ij

x is associated with each arc),(ji then the following linear programming

problem represents the biobjective shortest path (BSP) problem (see Ahuja et al. [1]):

5

 

1 2

(,) (,)

M in im ize () , (1)

sub ject to

1 if

 0 , (2)

1 if

 0 ,

 

 

 

 
  
 




    


 



 

 
i i

ij ij ij ij

i j A i j A

ij ji

j j

ij

c x c x c x

i s

x x i V s t

i t

x (,) (3) i j A

where for an optimal solution
ij

x has value 1 for all arcs),(ji on the shortest path, and 0

otherwise. The above problem is a special case of the minimum cost network flow (MCNF)

problem. The network simplex algorithm solves the above problem by taking advantage of the

fact that every basis in the MCNF problem is also a spanning tree T A of G. Let X be the

polyhedron defined by constraints (2)-(3) (decision space) and let its image under the

objective function be C = c(X) (outcome space). The next two literature results hold (Ahuja et

al. [1]): (i) Any feasible solution of the BSP problem is a vertex of X and vice-versa and (ii)

Every vertex of X is associated with a directed spanning tree rooted at s.

A directed out-spanning tree is a spanning tree rooted at node s such that the unique path

in the tree from root node s to every other node is a directed path. The predecessor node of

node i in the tree is denoted by ()
i

pred T , for all nodes   i V s . In the remainder of the

paper, we refer to a directed out-spanning tree as tree.

Distance labels associated with a tree T are obtained by setting () 0
v

s
d T  and solving

() () 0
v v v

ij i j
c d T d T   , (,)i j T  for v = 1,2. Given a tree T and associated distance labels,

reduced costs are defined as () () ()
v v v v

ij ij i j
c T c d T d T   , (,)i j A  for v = 1,2.

Assumption 2. The network G does not contain a directed cycle with negative length for each

single-objective SP problem, i.e. taking into account costs c
1
 and c

2
, respectively.

Definition 1. A path (feasible solution) p P (x X) is called efficient if there does not

exist any p P  ( x X) with
1 1
() () c p c p

1 1
(() ()) c x c x and

2 2
() () c p c p

2 2
(() ()) c x c x with at least one inequality being strict. The image ()c p

(())c x of and efficient path p (or solution x) is called non-dominated point.

6

Definition 2. Supported efficient paths (supported efficient solutions) are those efficient paths

(efficient solutions) that can be obtained as optimal paths (solutions) of a weighted sum

problem  1 2

1 2
m in () () 




p P

c p c p   1 2

1 2
m in () () 



x X

c x c x for some
1

0  and
2

0  . All

other efficient paths (solutions) are called non-supported.

The supported non-dominated points lie on the lower-left boundary of the convex hull

(conv(C)) of the feasible set C in outcome space, whereas non-supported solutions lie in the

interior of conv(C). This is illustrated in Figure 1.

Figure 1. Illustration of conv(C) in outcome space.

The focus of this paper is to design a fast algorithm to determine all paths (solutions)

associated with extreme supported non-dominated points in the BSP problem. Those paths

(solutions) are denoted extreme supported path (extreme supported solution). That is, we want

to determine supported efficient paths (supported efficient solutions) whose images are

vertices of the convex hull of the supported non-dominated points. We ensure the proposed

algorithm computes one supported efficient path for each extreme supported non-dominated

point. From assumption 2, it follows that for each extreme supported non-dominated point, a

supported efficient path exists that is a simple path (i.e. a path without repeating nodes).

Additionally, it is easy to show that any supported efficient path, being optimal solution of

the weighted sum problem for fixed
1

0  and
2

0  , satisfies the optimality principle. That

c
2

c
1

conv(C)

non-dominated and

supported

extreme supported

non-supported

7

is, any sub-path
ij

p of a given supported efficient path
st

p is a supported efficient path within

the set of paths from node i to node j for the same values of
1 2
,  . The proof is immediate

from the fact that the objective function of the weighted sum problem corresponds to that of a

single objective shortest path problem where the arcs have length
1 2

1 2
 c c .

Computing all supported efficient s-t paths can also be achieved by identifying all

supported efficient s-i paths for all   i V s . Therefore, we recast our problem to identify

all extreme supported solutions of the biobjective one-to-all shortest path tree problem, that is,

 

1 2

(,) (,)

M in im ize () , (1 ')

su b ject to

- 1 if
 (2 ')

1

 0

i i

ij ij ij ij

i j A i j A

ij ji

j j

ij

c x c x c x

n i s
x x

i V s

x

 

 

 

 
  
 


  

   



 

 

 (,) (3 ')i j A 

Formulation (1’) - (3’) is a biobjective shortest path tree problem which is also used for

example by [7]. It is well known that both formulations (1) – (3) and (1’) – (3’) will naturally

result in integer solutions (corresponding to a shortest path or shortest path tree, respectively,

see Ahuja et al. [1]).

3. Solving the BSP problem as parametric program.

Instead of solving the weighted sum problem  
1 2

1 2
m in () ()

x X

c x c x 


 with
1 2

1   and

1 2
0, 0   , the problem  

1 2
m in () ()

x X

c x c x


 with [0,)   can be solved alternatively.

For the linear programming formulation, this leads to a parametric linear program.

Solving a biobjective linear program such as (1’)-(3’) above as a parametric program

works by initially obtaining a lexicographic solution to the problem, i.e. an efficient solution

is obtained which is optimal for 0  . The parametric method then solves the problem by

iteratively pivoting variables while ensuring that all optimal solutions for increasing values of

 are obtained, which correspond to supported efficient solutions of the biobjective linear

program, until ultimately the other lexicographic solution is reached.

Note that we obtain a shortest path tree minimizing
1
()c x when we solve the parametric

program for 0  , but the corresponding shortest path tree could contain a dominated path as

8

the second objective is not taken into account. To avoid this, the method starts with an

optimal shortest path tree *
T derived from the optimal solution of the parametric program for

0   where  is sufficiently small [15]. This initial solution *
T is obtained by solving

the lexicographic optimization problem  
1 2

lex m in (), ()
x X

c x c x


 (see Isermann [16]). Path
1

p

derived from *
T is a supported efficient path minimizing the first objective. The image of this

path is a supported non-dominated extreme point of the convex hull of the outcome space. For

this tree *
T , we denote the distance labels

1 2 1 * 2 *
(,) ((), ()) 

i i i i i
d d d d T d T and the predecessor

labels *
()

i i
pred pred T for any node i V (see Ahuja et al.[1]). Note that a path that has a

first objective value equal to
1

i
d and a second objective value smaller than

2

i
d cannot arise for

any node i in V as *
T corresponds to a lexicographically optimal solution. This tree *

T will be

optimal for a range of values of θ, and the optimality interval for *
T is the range of θ-values

for which *
T is an optimal solution of the parametric program.

The reduced cost values of arc (i, j) represent the change in the distance labels of node j if

arc (i, j) replaces arc (predj, j) in the current tree. When including arc (i, j) in the tree the

current label of node j,
1 2

(,)
j j

d d , becomes label
1 1 2 2

(,) 
j ij j ij

d c d c . Note that
1

0
ij

c and
2

0
ij

c

for any arc *
(,)i j T and

1
0

ij
c for any arc (,)i j A . The current optimal solution of the

parametric linear program remains optimal as long as the reduced costs (in terms of the

objective of the parametric linear program), remain non-negative. This is the case as long as

the following remains true:

1 2
0 fo r a ll (,)  

ij ij
c c i j A .

In order to move from the current efficient solution to another efficient one the first objective

has to worsen, or
1

0
ij

c , and the second one has to improve, or
2

0
ij

c . Therefore, the tree *
T

remains optimal for all  in the range 0   
k

 where  
(,)

m in 



k k

ij
i j A

 and

1 2 2
/ if 0

 o therw ise


 
 



k ij ij ij

ij

c c c

That is, if
2

0
ij

c the ratio associated with arc (i, j) with index k (where k = 1 initially) is

1 2
/

ij ij
c c ; otherwise this ratio is infinite. To determine the tree corresponding to the next

supported non-dominated point, the next arc to be included in the tree is identified as:

 2

(,)

(,) arg lex m in (,) : 


  
k k

ij ij ij
i j A

x y c .

9

That is, we must determine the arc with minimum finite ratio, which then enters the tree,

and an arc from the current optimal tree leaves it. If more than one arc with minimum ratio

exists, we select one with smallest (or most negative) value of
2

i j
c (this is why lex min appears

in the above expression). Arc (,)
y

pred y is then replaced by arc (x, y) giving the next solution

with index k+1.

Instead of following the standard steps of a parametric programming method from here, we

now discuss how to integrate the above ideas with a Dijkstra-like label setting shortest path

method. Having identified the arc (x, y) to include into the shortest path tree, we would next

update the distance label of node y. We propose to identify arcs and node labels iteratively

which are updated in a Dijkstra-like fashion based on ratios θ as outlined in the following.

Eventually updated distance labels optimal with respect to the current ratio may reach the

target node t indicating a new shortest path is found. This requires updating reduced costs and

ratios θ as well as distance labels. Therefore, we investigate the ratios 1k

ij


 for all (,)i j A

when the arc (x, y) substitutes arc (predy, y). In this case,
1 2

(,)
y y

d d becomes
1 1 2 2

(,) 
y xy y xy

d c d c

because the only change occurs in the distance label of node y. Therefore, only the ratios of

arcs arriving at, or leaving from, node y can change. In the following we observe how ratios θ

associated with arcs (i, y) from predecessor nodes
y

i


  change, see (1)-(4) below, and also

how they change for arcs (y, i) associated with successor nodes
y

i


  , see (5)-(7) below.

Considering arcs (i, y) for all nodes
y

i


  , the new ratio is

1 1

1

2 2





 


iy xyk

iy

iy xy

c c

c c
 wherever

2 2
0 

iy xy
c c ; otherwise it is  . Since

1 1

2 2
     

xy iyk k

xy iy

xy iy

c c

c c
 (A),

we obtain that:

(1)
 

1

2 2

2 211 1 1 1 1

1

2 2 2 2 2 2 2 2 2
 



 
  

     
      

  

iy

xy xy

iy xyxyiy xy xy xy xyk k

iy xy

iy xy xy iy xy xy iy xy xy

c
c c

c ccc c c c c

c c c c c c c c c
 by (A),

(2)
 

1

2 2

2 211 1 1 1 1

1

2 2 2 2 2 2 2 2 2
 



 
  

     
      

  

xy

iy iy

iy xyiyiy xy iy iy iyk k

iy iy

iy xy iy iy xy iy iy xy iy

c
c c

c ccc c c c c

c c c c c c c c c
 by (A),

(3) If k k

xy iy
  , then

1



 

k

iy
, because

2 2


iy xy
c c and

2 2
0 

iy xy
c c ,

10

(4) If
k

iy
   , then

1k

iy



  , because

2
0

iy
c and

2 2
0 

iy xy
c c .

We conclude that the ratio of any arc (i, y) with
y

i


  increases (2)-(3) or keeps (4) its

previous value and, according to (1), it always is greater than or equal to the ratio of the arc

(x, y). In particular, if the ratio of the arc (i, y) equals the ratio of the arc (x, y), the ratio of (i,

y) becomes + (3).

Considering arcs (y, i) for all nodes
y

i


  , the new ratio is

1 1

1

2 2





 


yi xyk

yi

yi xy

c c

c c
 wherever

2 2
0 

yi xy
c c ; otherwise it becomes  . Since

1 1

2 2
     

xy yik k

xy yi

xy yi

c c

c c
 (B),

we obtain that:

(5)
 

1

2 2

2 211 1 1 1 1

1

2 2 2 2 2 2 2 2 2
 



 
  

     
      

  

yi

xy xy

yi xyxyyi xy xy xy xyk k

yi xy

yi xy xy yi xy xy yi xy xy

c
c c

c ccc c c c c

c c c c c c c c c
 by (B),

(6)
 

1

2 2

2 211 1 1 1 1

1

2 2 2 2 2 2 2 2 2
 



 
  

     
      

  

xy

yi yi

yi xyyiyi xy yi yi yik k

yi yi

yi xy yi yi xy yi yi xy yi

c
c c

c ccc c c c c

c c c c c c c c c
 by (B),

(7) If  
k k

xy y i
, then

1
  


 

k k k

yi xy yi
 following the same arguments as in (5).

That is, the ratio of any arc (y, i) with
y

i


  decreases (6) or keeps (7) its previous value

and, according to (5), it always is greater than or equal to the ratio of the arc (x, y). In

particular, if the ratio of the arc (y, i) equals the ratio of the arc (x, y), the ratio of (y, i) does

not change (7).

 From (1)-(7) above, we can conclude that distance labels of paths optimal with respect to a

current (minimal) ratio θ will iteratively be propagated through the tree as eventually all arcs

with a current minimal ratio will be included in the path tree. If the propagated labels reach

the target node t, a path that is optimal with respect to θ (and hence is a supported efficient

solution) has been obtained. This is summarized in the following theorem:

11

Theorem 1. The set of extreme supported non-dominated points of the biobjective shortest s-i

path problem for all nodes   i V s can be determined starting from an optimal path tree

minimizing
1 2

lex min((), ())c x c x and making a sequence of arc interchanges, i.e. replacing

(predy, y) by (x, y), where  2

(,)

(,) arg lex m in (,) : 


  
ij ij ij

i j A

x y c , until the ratio of any arc in

A is +.

Proof. Since the set of supported efficient paths is connected (see Steuer [15]), we can

enumerate them by a sequence of arc interchanges (predy, y) by (x, y). From assumption 2,

there are no negative length cycles in G, and therefore, any arc interchange produces a tree

that is adjacent to the previous one and both represent supported efficient solutions of

problem (1’) – (3’). Therefore, starting from the supported efficient path tree corresponding to

the shortest path tree minimizing
1
()c x , we identify the inferior boundary of the convex hull

of the outcome space by iteratively identifying the arc  2

(,)

(,) arg lex m in (,) : 


  
k k

ij ij ij
i j A

x y c

to make the interchange replacing (predy, y) by (x, y). This is true since the ratio of this arc

indicates the minimum slope (from the left to right in outcome space, see also Figure 1) to

reach an adjacent path tree in each iteration. Also, the s-y path tree obtained after the

interchange is an optimal solution of the parametric program (1’) – (3’) with
xy

  . This last

claim is true since any other arc has a ratio greater than or equal to
xy

 and never will become

inferior to
xy

 as shown in equations (1)-(7). Furthermore, any arc (y, i) with ratio
xy

 before

the interchange, and improving the second objective, keeps its ratio value after the

interchange, see equation (7).

Identifying the extreme supported non-dominated points means finding paths from s to y for

all  y V s  such that the smallest ratio θ for which it is an optimal solution (or path tree)

of (1’) – (3’) is greater than the corresponding smallest ratio θ of the previous extreme

supported non-dominated solution (or path tree). Therefore, the next supported extreme

solution (and corresponding non-dominated point) is obtained as soon as ratios θ associated

with all arcs are all strictly greater than the ratio for which the previous extreme supported

solution was obtained.

As arc interchanges are made in order of increasing ratio θ, and ratios of arcs emanating from

a node y never decrease after an arc interchange, see equations (1)-(7), we know that all

12

supported efficient solutions are visited until eventually all ratios θ are + indicating the

lexicographically minimal solution for the second objective is found. □

While not necessary for the correctness of Theorem 1, we note that the criterion to select

the arc (x, y) determines the arc with minimum ratio and, if more than one arc exists, the

criterion selects the one with most negative value of
2

x y
c to accelerate the computation of the

extreme supported non-dominated points.

From this result, in the next section we introduce a labeling algorithm that enumerates all

extreme supported non-dominated points of the biobjective one-to-one s-t paths.

4. A ratio-labeling algorithm for one-to-one s-t BSP

The algorithm initially computes a shortest path tree considering the first objective

function. For this tree, distance labels
1 2

(,)
i i i

d d d and predecessor labels
i

pred for any node

i V are stored. Note that these labels correspond to the solution of

a  1 2
lex m in (), ()

p P

c p c p problem. This problem can be solved by adapting Dijkstra’s [17]

algorithm in such a way that the label of any node i is modified when the distance label
1

i
d is

improved or when there is a tie in
1

i
d -values but

2

i
d can be improved.

Starting with the initial shortest path tree, the proposed algorithm works by updating the

labels
i

d and
i

pred corresponding to the current path tree. An implementation of Dijkstra’s

algorithm needs a heap to store labels of each node i in V. These labels are

    2 1 2 2 2
ˆ, lex m in / , : 0




  
i

i i ji ji ji ji
j

c c c c c

That is, the algorithm stores, in a heap H, the minimum ratio
1 2

/
ji ji

c c of the incoming arcs

(j, i) of node i such that
2

0
ji

c  and
2 2

ˆ
i ji

c c , for any node i. In case two or more arcs arriving

at node i have the same minimal ratio, the algorithm stores the ratio of the arc with smaller

value of
2

j i
c in the heap H. Also, for each node i, the algorithm keeps track of ratio 

i
, reduced

cost
1 2

ˆ ˆ ˆ(,)
i i i

c c c and the candidate predecessor
i

C pred obtained from the above ratio

expression to be able to update labels easily. The algorithm uses an array or vector Cpath to

store the current s-t path for which the optimality interval in the parametric linear program is

under investigation. Variable lastratio is used to identify the lower bound of the optimality

13

interval for each extreme supported non-dominated path. The algorithm keeps track of

distances for both objectives for the current s-t path in d1 and d2; node predecessors in the

tree are stored in pred and node distances are stored in d
1
, d

2
. Cpath stores the current path.

The following heap operations are needed in our algorithm (see [18]): CreateHeap(H),

Insert({labels}, H), Find-min(H), Decrease-key({labels}, H), and Delete-min(H).

Algorithm 1: Ratio-Labeling BSP (RLBSP) Algorithm;

(1) Let
*

T be an optimal tree of  


1 2
lex m in () , ()

p P

c p c p and store d and pred labels of
*

T ;

(2) CreateHeap(H); Use labels pred to store the current s-t path in Cpath; lastratio = 0;
1

1
t

d d ; 2
2

t
d d ;

(3) Set       ; 0; for a ll
i i

C pred i V s ;

(4) Compute  




  
2 1 2 2 2

ˆ(, ,) lex m in (/ , ,) : 0

i

i i i j i j i j i j i
j

c C pred c c c j c  i V s   ;

(5) For all  i V s  do If (0
i

C pred ) then Insert( 
2

ˆ, ,
i i

c i ,H); 1 1
ˆ

ii C pred i
c c ;

(6) While (H  ) do

(7)  
2

ˆ, ,
i i

c i = find-min(H); ˆ ;
i i i

d d c  ;
i i

pred C pred

(8) Delete-min(H);
(9) If (i==t) then

(10) If (
i

lastrat io ) then

(11)
Use Cpath to print the current path with distances (d1,d2) being optimal for the

parametric program with  in [lastratio,
i

]; lastratio =
i

 ;

(12) Use labels pred to store the current s-t path in Cpath;
1

1
t

d d ; 2
2

t
d d ;

(13) ; 0;
i i

C pred    Compute  




  
2 1 2 2 2

ˆ(, ,) lex m in (/ , ,) : 0

i

i i i j i j i j i j i
j

c C pred c c c j c ;

(14) If (0
i

C pred ) then Insert ( 
2

ˆ, ,
i i

c i ,H); 1 1
ˆ

ii C pred i
c c ;

(15) For all
i

j


  do

(16) If (
2

0
i j

c) then

(17) If (( 
1 2

/
i j i j j

c c) or (( 
1 2

/
i j i j j

c c) and (
2 2

ˆ
i j j

c c))) then

(18) If (0
i

C pred ) Then Insert( 
1 2 2

/ , ,
i j i j i j

c c c j ,H);

(19) Else decrease-key( 
1 2 2

/ , ,
i j i j i j

c c c j ,H);

(20)
1 2

ˆ/ ; ; ;
j i j i j j i j j

c c c c C pred i    

(21)
Use Cpath to print the current path with distances (d1,d2) being optimal for the parametric program

with  in [lastratio, ];

Algorithm 1 above is a standard label setting (Dijkstra) algorithm except for lines 9-14. In

lines 13-14 the next ratio for node i, when node i becomes the candidate in the current

solution, is calculated and stored (case (2)-(4)). Lines 15-21 represent cases (6)-(7) in section

3 dealing with outgoing arcs of node i. Lines 9-12 identify whether the current minimum

element in the heap corresponds to node t (line 9) and verifies if the current path is associated

with an extreme supported non-dominated point (line 10). If both are the case, the algorithm

prints the current path stored in Cpath and updates lastratio (lines 11-12 and 21). The current

14

s-t path is always stored in Cpath. In other words, the algorithm identifies one s-t path for

each extreme supported non-dominated point in the outcome space of the BSP problem. The

sequences of the calculated ratios are the slopes of the segments in the inferior convex hull

(non-dominated frontier). The algorithm can be modified to store all s-i paths for each

extreme supported non-dominated point in the outcome space of the one-to-all BSP with

origin s and destination i, for all nodes   i V s (as shown in next subsection).

If we denote by
1

n

i

i

N N



  the number of extreme supported non-dominated points in the

outcome space of BSP, where
i

N is the number of extreme supported non-dominated

solutions of the s-to-i BSP, we can conclude that

Theorem 2. The RLBSP algorithm runs in O(N (m+nlogn)) time and uses O(n+m) space.

Proof. The solution of the  1 2
lex m in (), ()

p P

c p c p using Dijkstra’s algorithm [17] needs

O(m+nlogn) time (see [2]). Note that the size of the heap H in the RLBSP algorithm is at most

n, for example Cpredi takes value 0 only when node i is extracted from the heap. In addition,

any heap operation takes constant time with the exception of the Delete-min operation which

requires O(logn) time when a Fibonacci heap is used (see Fredman and Tarjan [19]). We need

to know the maximum number of iterations between two trees containing two paths being

extremes in the outcome space. For that, suppose that an iteration starts with a different value

of  compared to the previous iteration. This means that the algorithm determined a new

extreme supported non-dominated point in the previous iteration representing an s-to-i path

for one node   i V s . Let
m in

 be the minimum ratio extracted from the heap. We must

determine the maximum number of iterations until a ratio greater than
m in

 is extracted from

the heap. Note that at most n-1 nodes have a ratio in the heap with value
m in

 . Therefore, after

at most n-1 iterations, the ratio of some node j extracted from the heap becomes greater than

m in
 , otherwise there is a negative length cycle where all the arcs have ratio

m in
 in the cycle

and negative reduced costs for the second objective. The latter is a contradiction to

assumption 2. Therefore, the proposed algorithm has at most nN iterations, and since n V

the worst-case time complexity of the algorithm is

15

(((log))) ((log))
i i

i V

O N n n O N n n m
 



       .

The term n outside the sum represents the time needed to store or print Cpath for each

extreme point. Finally, it is easy observe that the space used by the algorithm is O(n+m) when

a candidate s-t path for each extreme supported non-dominated point must be calculated. □

4.1 An example.

In this section, we show the execution of the RLBSP algorithm on the small graph shown

in Figure 2. The graph contains four nodes and six arcs. There are four simple paths from

node 1 to node 4 that are 1234 with lengths (1,9), 124 with lengths (3,3), 134

with lengths (4,2) and 1324 with lengths (8,1). All these paths are extreme supported

paths and their images, or length vectors according to the two length functions, are extreme

supported non-dominated points in the outcome space.

Figure 2. Graph with two lengths on the arcs.

The labels used in the algorithm are shown in Table 1. The first column iter indicates the

iteration of the algorithm. An iteration of the algorithm corresponds to one execution of lines

7-20 in Algorithm 1. In each row of the table, the modified variables at the end of the iteration

are highlighted. The initialization of the algorithm in lines 1-5 is shown as iteration 0 (iter =

0) in the table. The final row in the table shows the execution of the line 21. This last line

prints the last extreme supported path. The second column, Heap, represents the heap H that

stores the labels ( i ,
2

ˆ
i

c , i). The third column, i, identifies the node extracted in line 7, that is,

the node with the minimum ratio in the heap. The remaining columns, with the exception of

the last column, show the values of labels
1 2

(,)
i i

d d , (,)
i i

C pred pred and  i for any node i in

{2,3,4} (node 1 is not included because it is the origin node of the paths and there are not arcs

arriving at node 1). Finally, the last column shows the path stored in Cpath and the values of

(d1, d2) for each printed path in line 11 or 21.

Initially, the shortest path tree contains the arcs {(1,2), (2,3), (3,4)}. The labels for this tree

are
1 2

(,)
i i

d d and the vector
i

pred shown for iter = 0. The current s-t path stored in Cpath is

421 3
(0, 2) (0, 2)(1, 5)

(1, 0)

(3,1)

(4, 0)

16

1234 with (d1,d2) = (1,9), and lastratio initially has value zero. The heap contains the

labels (1/3,-6,4) and (3/7,-7,3) associated with arcs (2,4) and (1,3) because their reduced costs

are (2,-6) and (3,-7), respectively. Arc (3,2) has reduced costs (5,2) and the tree arcs have

reduced costs (0,0). Clearly, these arcs have a non-negative reduced costs associated with the

second length and, therefore, they are not used in the calculation of the ratios  i for any node

i in {2, 3, 4}. Thus, the initial ratios are 2
   , 3 3 3

7 7



   , 4 2 1

6 3



   with the vector

Cpred = (0,0,1,2). In the remaining rows of the table, the changes of variables by the

algorithm appear in bold. In the first iteration, the label (1/3,-6,4) is extracted from the heap.

Since i = t = 4 and lastratio is zero, which is less than 4 1

3
  , the current Cpath =

1234 is printed on the screen. This path is optimal for the parametric program with 

in 1

3
0 ,   . Now, Cpath is updated to be 124 with (d1,d2) = (3,3), but its optimality interval

is still unknown. The reduced costs of the arcs (2,4) and (3,4) become (0,0) and (-2,6),

respectively. Cpred4 is 0 and 4
   , because the reduced cost associated with the second

objective function is now non-negative for any arc arriving at node 4. In iteration 2, label

(3/7,-7,3) is extracted from the heap. In this case i is 3,
1 2

3 3
(,)d d becomes (4, 0) and pred3 is

node 1. The reduced costs of arcs (3,2), (3,4), (1,3) and (2,3) are (5,-2), (1,-1), (0,0) and (-3,7),

respectively. Therefore, the labels (1,-1,4) and (5/2,-2,2) associated with nodes 4 and 2 are

inserted in the heap. In iteration 3, the label (1,-1,4) is extracted from the heap with i being 4

and, therefore, identifying the optimality interval 1

3
,1   for Cpath = 124. Once the

distance and predecessor labels are updated, Cpath is 134 with (d1,d2) = (4,2). Now,

the reduced costs of the arcs (2,4) and (3,4) are (-1,1) and (0,0), respectively. In iteration 4,

label (5/2,-2,2) is extracted from the heap with i being 2. In this case, the reduced costs of arc

(2,4) become (4,-1) when the distance and predecessor labels are updated. Therefore, 4
4 

and the label (1,-1,4) is inserted in the heap. In iteration 5, this label is extracted from the heap

and now we know that the optimality interval of Cpath 134 is  1, 4 . Once the labels are

updated, we obtain that the current Cpath is 1324 and the heap becomes empty, since

all arcs have a non-negative reduced cost for the second objective function. Therefore, the last

extreme supported path is printed in line 21 of the algorithm. In this case, this path is Cpath =

1324 with (d1,d2) = (8,1) which is optimal for the interval  4,  .

17

Table 1. Execution of the RLBSP algorithm on the graph of Figure 1.
it

er
 Heap i

1 2
(,)

i i
d d (,)

i i
C pred pred 

i Cpath; (d1,d2)

 1 2 3 4 2 3 4 2 3 4

0
(1/3,-6,4),

(3/7,-7,3)
 (0,0) (0,2) (1,7) (1,9) (0,1) (1,2) (2,3)  3/7 1/3

1 (3/7,-7,3) 4 (0,0) (0,2) (1,7) (3,3) (0,1) (1,2) (0,2)  3/7  1234; (1,9)

2
(1,-1,4),

(5/2,-2,2)
3 (0,0) (0,2) (4,0) (3,3) (3,1) (0,1) (3,2) 5/2  1

3 (5/2,-2,2) 4 (0,0) (0,2) (4,0) (4,2) (3,1) (0,1) (0,3) 5/2   124; (3,3)

4 (1,-1,4), 2 (0,0) (5,0) (4,0) (4,2) (0,3) (0,1) (2,3)   4

5 4 (0,0) (5,0) (4,0) (8,1) (0,3) (0,1) (0,2)    134; (4,2)

 1324; (8,1)

4.2 A one-to-all ratio-labeling algorithm keeping track of all extreme supported solutions.

To address the one-to-all BSP problem some modifications to the RLBSP algorithm

proposed in the previous section are necessary which are outlined here. With the following

exceptions, the notation is identical to that used in algorithm RLBSP: Storing a path

associated with each supported extreme non-dominated point requires a set of labels L for

each node i V denoted Li. Individual labels at node i are
1 2
, , , iN

i i i
L L L . Labels

k

i
L with k

varying in {1,..,Ni} for all i V must be dynamically created (as the value of Ni is unknown

before the end of the algorithm). In particular label
k

i
L stores the information of the kth

extreme supported point associated with the s-i BSP. For label
k

i
L ={j, r,

1

i
d ,

2

i
d } j is the node

predecessor of node i in the kth solution, r denotes the index of extreme supported point of the

node j that allows to obtain the kth solution for node i, and
1

i
d ,

2

i
d are the distance labels of the

node i. The values of j and r associated with the label allow identifying the kth path of the s-i

BSP problem. Additionally, the algorithm uses the values of lastratioi for storing the last ratio

of the extreme supported point corresponding to an s-i path, and Ni to store the number of

extreme supported points obtained for node i.

Note that the RLBSP2 algorithm allows to identify the set of extreme supported non-

dominated points of the one-to-all BSP problem in O(N(m+nlogn)) time. To solve the one-to-

all BSP problem a major modification in the proposed algorithm consists of deleting line 9.

In this case, the algorithm requires O(N+m) space in the worst-case.

Note that the reduced cost of any arc (,)i j A is computed as () . .
ji

NNp p

ij ij i j
c T c L dp L dp  

with p=1,2. The only differences between the RLBSP and RLBSP2 algorithms appear in lines

2 and 9-12, that is, the updating operation of labels L. Therefore, the RLBSP2 algorithm runs

18

in O(N(m+nlogn)) time since accessing the labels
k

i
L takes constant time. Clearly, the

memory space used by the algorithm is determined by the labels L, that is, O(N + m) memory

space.

Algorithm 2: Ratio-Labeling BSP2 (RLBSP2) Algorithm;

(1) Let
*

T be an optimal tree of  


1 2
lex m in () , ()

p P

c p c p and store d and pred labels of
*

T ;

(2)
lastratioi = 0, 1

i
L = (predi,1,

1

i
d ,

2

i
d) and Ni=1 fo r a ll i V with  0

i
pred ; Otherwise

i
L = NULL and

Ni = 0;

(3) Set       ; 0; for a ll
i i

C pred i V s ; CreateHeap(H);

(4) Compute  




  
2 1 2 2 2

ˆ(, ,) lex m in (/ , ,) : 0

i

i i i j i j i j i j i
j

c C pred c c c j c  i V s   ;

(5) For all  i V s  do If (0
i

C pred ) then Insert( 
2

ˆ, ,
i i

c i ,H); 1 1
ˆ

ii C pred i
c c ;

(6) While (H  ) do

(7)  
2

ˆ, ,
i i

c i = find-min(H);

(8) Delete-min(H);
(9) If ( 

i i
lastrat io) then

(10) Ni = Ni + 1; i
N

i
L = (

i
C pred ,

iC p red
N ,

1
i

N

i
L .d1+

1
ˆ

i
c , 1

i
N

i
L .d2+

2
ˆ

i
c);

(11) Else

(12) i
N

i
L = (

i
C pred ,

iC p red
N , i

N

i
L .d1, i

N

i
L .d2); i

N

i
L .d1 = i

N

i
L .d1+

1
ˆ

i
c ; i

N

i
L .d2 = i

N

i
L .d2+

2
ˆ

i
c ;

(13) lastratioi =
i

 ; ; 0;
i i

C pred   

(14) Compute  




  
2 1 2 2 2

ˆ(, ,) lex m in (/ , ,) : 0

i

i i i j i j i j i j i
j

c C pred c c c j c ;

(15) If (0
i

C pred ) then Insert ( 
2

ˆ, ,
i i

c i ,H); 1 1
ˆ

ii C pred i
c c ;

(16) For all
i

j


  do

(17) If (
2

0
i j

c) then

(18) If (( 
1 2

/
i j i j j

c c) or (( 
1 2

/
i j i j j

c c) and (
2 2

ˆ
i j j

c c))) then

(19) If (0
i

C pred ) Then Insert( 
1 2 2

/ , ,
i j i j i j

c c c j ,H);

(20) Else decrease-key( 
1 2 2

/ , ,
i j i j i j

c c c j ,H);

(21)
1 2

ˆ/ ; ; ;
j i j i j j i j j

c c c c C pred i    

We use the next PrintPath procedure to determine the kth supported extreme path from

node s to node i with distances labels
k

i
L .d1 and

k

i
L .d2:

Procedure PrintPath(s, i, k, L);
(1) If (s i) then
(2) PrintPath(s, k

i
L .j, k

i
L .r, L);

(3) Print “i ”;

19

The computational effort of the recursive procedure PrintPath is O(n) time since any

supported path is a simple path. Therefore, the process of printing / identifying all supported

paths requires O(nN) time.

In the next section, we examine the performance of the presented RLBSP.

5. Computational Results

The computational experiments are split into two sections. We separately present results

for one-to-one s-t BSP and one-to-all BSP.

5.1 One-to-one BSP problems

To investigate the computational performance of the proposed RLBSP algorithm, we

compare its runtime with that of alternative algorithms capable of finding supported extreme

solutions of BSP from [8]. Those algorithms are the parametric network simplex (PARA), i.e.

the parametric simplex for biobjective linear programs implemented in a network simplex

framework; and the dichotomic Phase 1 method that iteratively solves single-objective

shortest path problems based on the weighted sum scalarization from [8]. To solve single-

objective shortest path problems we adapt the heap (DIKH) and double bucket (DIKBD)

shortest path algorithms from [20] as well as using a label correcting algorithm (LCOR) from

[21]. We label the dichotomic algorithm with DIKH (DIKBD, LCOR) shortest path algorithm

DDIKH (DDIKBD, DLCOR).

Computational experiments are conducted on a Laptop running Ubuntu 12.04 with Intel®

Core™ i5 CPU M 560 @ 2.67GHz × 4. Algorithms are implemented in C, and compiled

using the gcc compiler (version 4.6.3) with –O4 compile option.

We use large road networks from the DIMACS Shortest Path Implementation Challenge

[22] for our computational experiments and grid networks created similar to those in [8], but

of larger dimensions. Characteristics of the road network instances are shown in Table 2. It

should be noted these road network instances are much larger than those considered in [8].

Arc costs represent distance and travel time.

Grid networks represent rectangular grids with arcs between each node and its immediate

neighbors in the grid, arc costs are selected randomly between 1 and 10. Paths lead from one

side of the grid to the other. The instances in [8] are small and do not allow to distinguish

performance of algorithms that focus on supported efficient extreme solutions. We therefore

generate larger problem instances with grid height and width as shown in Table 3.

20

Table 2: Characteristics of road network instances from [22].

Name Number of nodes Number of arcs

NY 264346 733846

BAY 321270 800172

COL 435666 1057066

FLA 1070376 2712798

NE 1524453 3897636

CAL 1890815 4657742

LKS 2758119 6885658

Table 3: Characteristics of grid instances.

Name Height Width Number of nodes Number of arcs

G1-G7 300 300,350,…,600 90002 to 180002 35940 to 718800

G8-G14 350 300,350,…,600 105002 to 210002 419400 to 838800

G15-G21 400 300,350,…,600 120002 to 240002 479400 to 958800

G22-G28 450 300,350,…,600 135002 to 270002 539400 to 1078800

G29-G35 500 300,350,…,600 150002 to 300002 599400 to 1198800

G36-G42 550 300,350,…,600 165002 to 330002 659400 to 1318800

G43-G49 600 300,350,…,600 180002 to 360002 719400 to 1438800

5.1.1 Results for road networks

We randomly choose 100 different origin-destination pairs as the performance of

algorithms depends on how far origin and destination node are apart. All algorithms are tested

on the same set of origin-destination pairs. It should be noted that the parametric network

simplex is very slow, hence we only run it for a single origin-destination pair to give an idea

of its excessive runtime (no result is reported for the largest network LKS).

Results are shown in Table 4 where average, minimum and maximum observed runtimes

are given (best average runtimes are bold). From Table 4 we note that PARA clearly solves

the problem very slowly, this is because of the large overhead of the network simplex, where

each basic feasible solution corresponds to a tree in the network. Hence, many basis

exchanges simply modify the tree, but do not affect the actual s-t shortest path making the

approach highly inefficient in solving BSP. There is also significant overhead in maintaining

the basic tree structure of the network simplex. We note the significant improvement of

performance when comparing RLBSP and PARA.

21

Table 4: Computational results for one-to-one BSP on road networks: average, minimum

and maximum, number of extreme supported solutions (Nt).

DLCOR DDIKBD DDIKH PARA* RLBSP Nt

NY

avg 1.23 5.29 0.73 1428.99 1.11 12.05

min 0.10 0.00 0.01 - 0.83 1

max 2.92 19.46 2.59 - 1.53 29

BAY

avg 6.50 7.22 0.67 1456.87 0.99 9.17

min 0.98 0.01 0.01 - 0.68 1

max 24.22 27.52 2.07 - 1.46 20

COL

avg 14.20 11.54 1.07 2176.52 1.68 11.41

min 0.59 0.01 0.01 - 1.23 1

max 275.81 51.45 4.98 - 2.76 33

FLA

avg 45.74 95.87 4.15 17844.62 5.03 15.01

min 3.11 0.04 0.04 - 3.77 1

max 243.05 266.78 13.06 - 7.52 36

NE

avg 24.46 106.00 9.84 40764.08 13.65 23.02

min 3.07 0.09 0.11 - 9.42 3

max 64.33 356.13 35.50 - 19.93 56

CAL

avg 272.07 229.65 9.92 50913.74 12.78 18.15

min 16.22 0.06 0.06 - 8.24 1

max 1306.47 746.11 27.72 - 18.79 36

LKS

avg 189.88 457.73 31.01 N/A 40.50 36.00

min 21.26 0.20 0.24 - 27.98 4

max 661.35 1542.28 106.42 - 62.58 83

* PARA results for one origin-destination pair

Despite the BAY network being slightly larger than the NY network, DDIKH and RLBSP

perform slightly better, on average, for BAY than for NY which is likely due to the network

structure leading to a lower number of extreme supported solutions which indicate the BAY

problems may be easier to solve despite larger network size. This is similar for NE and CAL

networks.

We further observe that the combination of the dichotomic approach with DIKH performs

best. Comparing finally with RLBSP we note that the average performance of RLBSP is

worse than that of the dichotomic approach, but the maximum runtime of RLBSP is always

shorter than that of the other approaches. To understand this we further analyze the problems

by the distance between origin and destination as shown in Figure 3 for the NY instance. This

illustrates that the runtime of RLBSP is relatively stable and does not appear to depend on

distance between origin and destination node. For DDIKH (and the other dichotomic

algorithms), we see a much higher dependence of runtime and distance between origin and

destination node. We observe similar behavior for the other road network instances. In Table

5 we present the results from Table 4 by shortest path length: results are now grouped in three

22

categories, according to closest origin-destination pairs, those with medium distance, and

those with longest distance; each group contains a third of the test runs. Table 5 clearly

demonstrates the strength of RLBSP for origin-destination pairs that are far apart. This makes

the RLBSP algorithm particularly attractive in real-world routing applications because it has

stable runtime performance and consistently performs better for problems that are more

difficult.

Figure 3. Run time of DDIKH and RLBSP for NY road network instance by distance between origin and

destination node.

In Figure 4 we similarly observe that as the number of extreme efficient solutions found

increases, the runtime of the dichotomic method DDIKH tends to increase. However, this is

not the case for RLBSP, which, again, shows very stable runtimes. Analyzing results by low,

medium and high number of efficient extreme solutions found, see Table 6, again shows that

the performance of RLBSP is superior for the more difficult problems with a high number of

efficient extreme solutions. In Table 6 the group with a low number of efficient solutions has

up to approximately one third of the maximum number of efficient solutions encountered for

this instance, the medium group between one third and two thirds of the efficient solutions,

and the high group contains the rest. The ranges of efficient solutions in each group are also

shown in Table 6 for each instance.

In conclusion, RLBSP is clearly an improvement compared to PARA. In fact, PARA

runtimes were so excessive that we only showed results for a single origin-destination pair.

While the dichotomic approach with heap-based Dijkstra (DDIKH) performs well, the

23

strength of RLBSP becomes apparent in reliably stable runtimes that are superior in particular

for difficult problem instances with a large distance between origin and destination node and

with many efficient solutions.

Table 5. Road network average runtimes: by closeness of origin and destination

 s-t distance

 group DLCOR DDIKBD DDIKH RLBSP

NY

close 0.69 0.98 0.18 1.03

medium 1.36 5.22 0.72 1.12

long 1.63 9.55 1.28 1.17

BAY

close 4.75 1.49 0.17 0.99

medium 5.69 5.86 0.56 0.96

long 8.99 14.10 1.26 1.01

COL

close 5.23 4.31 0.41 1.57

medium 9.48 8.14 0.79 1.67

long 27.49 21.87 1.98 1.79

FLA

close 34.43 33.96 1.59 4.87

medium 43.12 99.52 4.18 4.87

long 59.27 152.41 6.62 5.35

NE

close 12.73 20.83 2.16 13.69

medium 22.35 97.18 8.78 13.07

long 37.90 197.22 18.32 14.18

CAL

close 118.26 68.06 2.91 12.10

medium 232.88 236.86 10.38 12.87

long 440.20 465.15 19.86 14.01

LKS

close 84.34 85.54 6.18 39.35

medium 175.92 396.96 25.77 38.57

long 140.49 1542.28 106.42 62.58

24

Figure 4. run time of DDIKH and RLBSP for NY road network instance by number of efficient extreme

solutions found.

Table 6. road network average runtimes: by number of efficient solutions (Nt)

 Nt Nt

 Group Range DLCOR DDIKBD DDIKH RLBSP

NY

low 1-10 0.69 1.62 0.27 1.05

medium 11-20 1.53 7.05 0.95 1.15

high 21-30 2.31 14.08 1.88 1.14

BAY

low 1-7 3.48 1.93 0.22 0.94

medium 8-13 6.35 7.68 0.73 1.01

high 14-20 12.73 16.46 1.42 1.02

COL

low 1-11 7.18 5.50 0.55 1.59

medium 12-22 17.91 18.53 1.66 1.79

high 23-33 143.40 47.00 4.48 1.99

FLA

low 1-12 31.27 33.21 1.64 4.81

medium 13-24 51.32 124.88 5.19 5.12

high 25-36 79.02 219.51 9.63 5.54

NE

low 1-18 12.28 33.94 3.27 12.92

medium 19-36 26.41 119.24 10.74 13.49

high 37-56 46.53 232.02 22.15 15.72

CAL

low 1-13 109.96 47.48 2.26 12.20

medium 14-26 273.41 267.55 11.51 13.20

high 27-41 496.36 578.39 24.57 13.71

LKS

low 1-27 86.81 94.36 6.86 40.50

medium 28-54 201.65 529.78 34.65 38.18

high 55-83 386.34 1079.69 75.02 45.77

25

5.1.2 Results for grid networks

Interestingly, results are very different for grid networks. We illustrate runtimes for the

different instances in Figure 5. The proposed RLBSP approach consistently performs worse

than the dichotomic approach combined with any shortest path algorithm. Here, the

dichotomic approach performs best with a label correcting shortest path algorithm, which was

different for road networks.

The problems have between 49 and 103 efficient solutions. The observed behavior may be

explained by the fact that the grid networks have a very peculiar network structure, and arc

cost functions that do not reflect real-world costs.

Figure 5. run time of DLCOR, DDIKBD, DDIKH and RLBSP for grid network instances.

5.2 One-to-all BSP problems

Encouraged by the stable runtime of RLBSP, which is easily adjusted to obtain paths from

origin node s to all other nodes in the network, we now consider the one-to-all biobjective

shortest path problem. We note that Guerriero and Musmanno [4], for example, also analyze

the performance of standard multiobjective shortest path algorithms by solving one-to-all

multiobjective shortest path problems.

For computational tests we can still compare PARA to RLBSP (in this section, we refer to

RLBSP2 as RLBSP). However, we saw in section 5.1 that PARA is excessively slow and thus

26

omit further testing of PARA. The dichotomic approaches from section 5.2 cannot solve the

one-to-all problem as they relied on s-t shortest path algorithms in each iteration. Instead, we

suggest to adjust a biobjective label setting algorithm, see for example [8], to only retain

supported labels in each iteration instead of retaining all non-dominated labels. This is a

straightforward adjustment of a standard biobjective label setting algorithm, which can then

be used to find extreme supported solutions of one-to-all BSP. We denote this modified

biobjective label setting algorithm for finding supported extreme non-dominated path SLSET.

As in [8] the algorithm is implemented using a binary heap in lexicographic order to manage

extreme supported non-dominated labels.

5.2.1 Results for road networks

Table 7 shows average, minimum and maximum runtimes for the different road networks

each based on 100 runs each with randomly chosen origin node. The number of extreme

supported solutions found is also given, and it should be noted that this is the sum of the

number of all s-i solutions found for all nodes   i V s . As expected, there is a large

number of such solutions. Comparing Tables 4 and 7 shows that one-to-all RLBSP does take

two to three times longer than one-to-one RLBSP on average. For the one-to-all problem

(Table 7) we note the clearly superior performance of RLBSP compared to SLSET. As

problem instances become larger both SLSET and RLBSP take longer to solve the problem

with NY and BAY (NE and CAL) again being an exception - likely due to numbers of

extreme supported solutions being similar or lower for BAY (CAL) which is a better indicator

of problem difficulty than network size. Average runtimes of SLSET increase at a faster rate

than those of RLBSP. Furthermore, the maximum runtime for RLBSP is always less than the

minimum one of SLSET for any problem instance solved showing the superiority of RLBSP

for the one-to-all BSP problem.

Table 7. Computational results for one-to-all BSP on road networks: average, minimum and maximum,

number of extreme supported solutions (N).

SLSET RLBSP N

NY

avg 16.45 2.30 3007848.45

min 6.79 1.50 2136756

max 37.03 3.23 4030225

BAY

avg 10.72 1.98 2891352.75

min 3.74 1.31 2045515

max 23.68 2.74 3816554

COL

avg 21.61 3.73 5189011.40

min 6.64 2.47 3735277

max 83.59 6.46 8025144

27

FLA

avg 119.17 12.80 15186195.22

min 33.68 7.41 9669456

max 571.92 28.01 29019702

NE

avg 520.16 37.06 35698609.17

min 249.72 23.21 24576843

max 1138.89 53.14 48569782

CAL

avg 516.72 34.91 35116514.50

min 184.59 20.31 22340853

max 1350.79 54.24 49076178

LKS

avg ** 131.97 104675211.78

min ** 83.30 73077937.00

max ** 225.36 160617349.00

**results omitted as too time consuming, partly due to extensive memory requirement

While results are not shown in Table 7, we have also conducted experiments with a

standard biobjective label setting algorithm to solve the one-to-all problem, which identifies

all efficient solutions (including non-supported ones). Such a standard algorithm already

spends a very long time (746.33 seconds) on the first problem instance of NY, i.e. the smallest

road network considered here. To compare SLSET takes 10.67 seconds to solve this problem

instance, and RLBSP takes 2.30 seconds. This illustrates that finding all solutions, including

non-supported ones, of one-to-all BSP is computationally challenging for large real-world

problem instances. However, the problem can be solved for large instances using RLBSP if

only supported solutions are required.

As shown in Figure 6 we can also analyze runtimes and number of extreme supported

solutions (N) found which again confirms that while the runtime of RLBSP increases slightly

with increasing number of extreme supported solutions found, the rate of increase seen is very

low compared to that of the SLSET method.

28

Figure 6. Run time of SLSET and RLBSP for NY road network by number of efficient extreme solutions

found.

5.2.2 Results for grid networks

We repeat our computational tests of one-to-all BSP for grid networks. Other than one-to-one

results for grid networks, we observe that for one-to-all BSP RLBSP consistently outperforms

SLSET for all problem instances as shown in Figure 7.

Figure 7. Run time of SLSET and RLBSP for grid network instances.

29

RLBSP is also less affected by increasing problem difficulty than SLSET: over all grid

instances, the runtime of RLBSP is between 3.33 and 33.88 seconds whereas that of SLSET

varies between 53.95 and 889.9 seconds.

From Figure 8 we observe that as the runtime of SLSET increases the runtime of RLBSP

increases less, when expressed as a percentage of runtime of SLSET. RLBSP takes only

between 3.7% and 6.4% of the runtime of SLSET, in particular for the more difficult problem

instances RLBSP only takes around 4% (or under) the time of SLSET.

Figure 8. Run time of RLBSP as a percentage of runtime of SLSET for grid networks.

As for road networks we observe that RLBSP is particularly suited to solving the one-to-all

BSP problem in grid networks.

6. Conclusions.

We propose a novel Dijkstra-like method to find all extreme supported solutions of BSP

problems. A strength of the algorithm is a very effective adaptation of Dijkstra’s algorithm

based on the ideas of a parametric network simplex method for biobjective linear programs.

The proposed Dijkstra-like algorithm determines the extreme supported solutions of the one-

to-one and one-to-all BSP problem by computing, for each node, the ratio labels (the slope or

trade-off of the two objective functions between two consecutive extreme supported

solutions) instead of working with distance labels as the classical Dijkstra method. To do that,

we prove that the sequence of the values of the ratios associated with each extreme supported

solution is non-decreasing, that is, the ratio of any arc (node) never decreases below that of

the current minimum ratio (see Section 3, expressions (1)-(7)). In the classical Dijkstra

method, the distance labels of any nodes never decrease below that of the current minimum

30

distance label. The result is an efficient algorithm generalizing Dijkstra’s method to find

extreme supported efficient solutions to the BSP problem. Moreover, the space needed by our

algorithm is minimal since it does not need to store the paths associated with each extreme

supported solution. In its place, the algorithm stores predecessor labels that allow to build one

extreme supported path for each extreme supported solution in O(n) time. This property is

fundamental since to store hundreds of millions of paths in large networks containing millions

of nodes in RAM is not possible on a conventional personal computer.

Our computational results distinguish one-to-one and one-to-all BSP problems. In the case

of one-to-one BSP we find that a dichotomic approach that repeatedly solves parametric

(weighted sum) shortest path problems is able to identify all supported extreme solutions of

BSP more quickly than RLBSP, on average. For grid networks this is true for all test runs,

whereas for road networks we observe that RLBSP shows superior performance for the more

difficult problems where origin and destination are far apart, or where there are many efficient

solutions. RLBSP is shown to be very reliable for all road network instances where its

runtime remains very close to its average runtime no matter where the origin and destination

nodes are, whereas the other tested algorithms are much more affected by choice of origin and

destination nodes. For one-to-all BSP problems, the corresponding variant of RLBSP

(RLBSP2 in section 4.1) clearly outperforms an implementation of a biobjective label setting

algorithm that has been modified to only retain supported extreme efficient labels at all nodes.

Here, RLBSP shows superior performance throughout the computational tests performed.

Again, we note that RLBSP is affected by problem difficulty (as measured in numbers of

extreme supported solutions) to a much smaller degree than the biobjective label setting

algorithm we compare it to.

Our RLBSP algorithm could be beneficial particularly when solving large BSP problems

where obtaining all supported solutions takes too much time, as long as obtaining the set of

supported efficient solutions is considered sufficient. Another use would be the integration (as

Phase 1 algorithm) in a two phase method [7] where it may perform better than alternative

algorithms.

Acknowledgments

This research was partially supported by Marsden grant UOA1008 / 9075 362506 and by

the European Union Seventh Framework Programme (FP7-PEOPLE-2009-IRSES) under

31

grant agreement n° 246647 and from the New Zealand Government under grant 649378 v2 as

part of the OptALI project.

References

[1] Ahuja R, Magnanti T, Orlin JB. Network Flows: theory, algorithms and applications.

Englewood Cliffs, New Jersey: Prentice-Hall; 1993.

[2] Hansen P. Bicriterion Path Problems. In Multiple Criteria Decision Making, Theory and

Application. Proceedings of the 3
rd

 International Conference, Hagen/Königswinter 1979,

Springer Verlag, Berlin, 1980, 177, 109-127.

[3] Martins E. On a multicriteria shortest path problem. Eur Journal of Oper Res

1984;16:236-245.

[4] Guerriero F, Musmanno R. Label Correcting Methods to Solve Multicriteria Shortest

Path Problems. J Optim Theor and Appl 2001; 111:589-613.

[5] Paixão J, Santos J. Labeling Methods for the General Case of the Multi-objective

Shortest Path Problem -- A Computational Study Optimization Methods and Software,

Computational Intelligence and Decision Making, Springer Netherlands; 2013.

[6] Martins E, Clímaco J. On the determination of the nondominated paths in multiobjective

network problem. Method of Oper Res 1981;40:255-258.

[7] Mote J, Murthy I, Olson DL. A parametric approach to solving bicriterion shortest path

problems. Eur Journal of Oper Res 1991;53:81-92.

[8] Raith A, Ehrgott M. A comparison of solution strategies for biobjective shortest path

problems. Comput and Oper Res 2009;36:1299-1331.

[9] White D. The Set of Efficient Solutions for Multiple Objective Shortest Path Problems

Comput and Oper Res 1982;9:101-107.

[10] Xie C, Waller ST. Optimal Routing with Multiple Objectives: Efficient Algorithm and

Application to the Hazardous Materials Transportation Problem. Comput Aided Civil

and Infrastruct Eng 2012; 27, 77.

[11] Xie C, Waller ST. Parametric search and problem decomposition for approximating

Pareto-optimal paths. Transp Res Part B 2012;46:1043-1067.

[12] Henig M. The Shortest Path Problem with Two Objective Functions. Eur Journal of

Oper Res 1985; 25:281-291

[13] Current JR, Revelle CS, Cohon JL. An interactive approach to identify the best

compromise solution for two objective shortest path problems. Comput and Oper Res

1990;17:187-198.

32

[14] Coutinho-Rodrigues J, Clímaco J, Current J. An interactive bi-objective shortest path

approach: searching for unsupported nondominated solutions. Comput and Oper Res

1999; 26:789-798.

[15] Steuer R. Multiple Criteria Optimization. Theory, Computation, and Application. New

York: Wiley;1985.

[16] Isermann H. Proper efficiency and the linear vector maximum problem. Oper Res

1974;22:189-191.

[17] Dijkstra E. A note on two problems in connection with graphs. Numeric Math 1959;

1:269-271.

[18] Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms. 3rd ed.

Cambridge, Massachusetts:the MIT press;2009.

[19] Fredman ML, Tarjan RE. Fibonacci heaps and their uses in improved network

optimization algorithms. J of the ACM 1987;34(3):596-615.

[20] Cherkassy B, Goldberg A, Radzik T. Shortest path algorithms: Theory and experimental

evaluation. Math Program 1996;73:129-174.

[21] Carlyle WM, Wood RK. Near-shortest and k-shortest simple paths. Networks 2005;

46(2):98–109.

[22] DIMACS, 9th DIMACS Implementation Challenge - Shortest Path.

http://www.dis.uniroma1.it/challenge9/download.shtml, last visited May 2013.

http://www.dis.uniroma1.it/challenge9/download.shtml

