

LIBRARY Te Tumu Herenga THE UNIVERSITY OF AUCKLAND

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

PROTEOMIC BIOMARKER DISCOVERY FOR PREECLAMPSIA

Kelly René LeFevre Atkinson

School of Biological Sciences The University of Auckland Auckland, New Zealand

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Sciences, The University of Auckland, 2008.

ABSTRACT

Preeclampsia is a serious multisystem complication of late pregnancy with adverse effects for mothers and babies. Currently this disorder is diagnosed from clinical observations occurring late in the disease process. Unknown factors in the maternal circulation, possibly released by the preeclamptic placenta, have been linked to the pathophysiological changes characteristic of the disorder. The research in this thesis used proteomic techniques to identify putative preeclampsia biomarkers from two sources: secreted from a placental cell line undergoing differentiation, and directly sampled from the serum and plasma of women with late-onset preeclampsia.

The first part of this research examined the secreted proteome of a placental choriocarcinoma cell line (BeWo) undergoing forskolin-mediated differentiation. Development of serum-free culture techniques enabled analysis of these secreted proteins by two-dimensional gel electrophoresis (2DE). Statistical testing revealed the significant involvement of seven spots during this differentiation model, with VE-cadherin and matrix metalloproteinase 2 among the proteins identified.

In the second part of this research, maternal serum and plasma proteins were compared from women with preeclampsia and healthy pregnant women. Serum samples were analyzed using 2DE, and plasma was subjected to difference gel electrophoresis (DIGE). Bioinformatic analysis of both datasets identified multiple spot clusters able to classify samples according to disease state. Five of these serum proteins were differentially regulated in preeclampsia, including two isoforms of apolipoprotein E whose isoform-specific expression was confirmed using western blots. Analysis of plasma from preeclamptic women identified six proteins, again including apolipoprotein E. Proteins from both studies are linked to preeclampsia pathophysiology through lipid transport, complement, and retinol transport systems.

The culture methods and secreted proteomic techniques developed in this work have uncovered proteins in a placental cell line and maternal serum and plasma that are associated with preeclampsia. These methods can be extended to any system where secreted proteins are of interest. The differentially regulated proteins found in this study provide an important first step towards developing effective biomarkers for diagnosing and/or predicting preeclampsia.

ACKNOWLEDGEMENTS

First, and foremost, I thank my supervisors, Garth Cooper and Robyn North, for allowing me the opportunity to pursue this PhD on a project with real importance. Marion Blumenstein, my advisor, was a huge help from the start of the project to its completion and I am proud to call her my colleague and friend. These three very busy people invested a significant amount of time in my education, and I am truly grateful for their guidance.

I was fortunate enough to learn a little about bioinformatics and statistics from Mik Black, a kind and very patient kindred technophile. Steven Wu was my compatriot in bioinformatics in SCOPE and never shied away from lending me a hand with analyses I always seemed to need at the last minute. Mik, Steven, Nik Kasabov, Peter Hwang, and Ronald Kates did great work not only in their analyses of my data, but in helping me to understand what it all meant. Thank you for teaching me about your fields.

A 2-D gel proteomicist is nothing without a mass spectrometrist, and I was fortunate enough to work with several very talented ones: Martin Middleditch, Dave Greenwood, Christina Buchanan, and Janine Cooney were responsible for all of my protein identifications. Thank you all for your tireless work, help, and advice.

Members of the Cooper lab, past and present, contributed in untold ways to my research. Hong Wang gifted me precious donkey serum for countless western blots, for which Denise Greenwood was a huge help. Debbie Hay gave excellent feedback on cell culture and written thesis drafts. I still miss regular discussions about music and protein biology with Leo Payne. Friends and officemates, including Anna Brooks, Catherine Lloyd, Lena Ostrovsky, Haylyn Wong, Sarah Glyn-Jones, Bronwen Jongbloed, Tina Lowe, and Gabriel James put up with a lot and formed a great network for support, advice, and friendship. Other SBS members were just as essential in this process, including Jo Dodd, Julie Hill, and Sarah Grieg.

Cynthia Tse deserves an extra-special mention for being the best "enabler" I have ever known – without her, I would have ground to a halt at nearly every turn, particularly at the spectacularlyorganized end! The world (and the lab) is a much better place with you in it, Cynthia, and thank you so much again for all you have done for me. I literally could not have finished this PhD without you.

Members of the SCOPE clinical team have had a profound effect on my research, for without them, my work would not exist: Rennae Taylor, Lesley McCowan, Iris Shin, Desley Minahan, and the SCOPE midwives made this work possible, thanks in turn to the generosity of the mothers who participated in the New Zealand portion of the project. My colleagues at HortResearch, particularly John Ingram, Kim Lo, and Roneel Prakash, met me during the end of my thesis writing period and successfully resisted running away from me at high speed. Thank you for being patient with me and allowing me time to finish what I had started.

My family never stopped believing that I would actually finish at university one of these days, and I'm proud to not have disappointed them. Mom and Dad, you'll have to call me Doctor Kelly now! Thanks for your love and support even from afar. My in-laws here in New Zealand were just as supportive though they probably didn't realize that I haven't had a break from "school" for 25 years!

At so many points during this research, particularly during the preparation of this thesis, I thought about giving up and doing something else. My husband, Ross, not only kept me going, but his scientific input strengthened my work just as his love strengthens my life. I can't express how thankful I am for his support, guidance, cooking skills, and boundless enthusiasm for science and for life.

Abstract		III
ACKNOWLED	GEMENTS	V
List of Figur	RES	XIII
LIST OF TABLE	ES	XV
LIST OF ABBRI	EVIATIONS	XVII
CHAPTER 1	INTRODUCTION	1
1.1 Bioma	rker discovery	1
1.2 Proteo	mics	3
1.2.1 Te	echniques	3
1.2.1.1	Two-dimensional SDS-polyacrylamide gel electrophoresis (2DE)	4
1.2.1.2	Difference gel electrophoresis	6
1.2.1.3	Gel-free proteomics using mass spectrometry	7
1.2.2 St	atistical considerations for 2DE analysis	8
1.2.2.1	Power and sample size	9
1.2.2.2	Analysis of individual protein spots	9
1.2.2.3	Generation of multiprotein classifiers	10
1.2.3 Bi	ological systems for proteomic studies	10
1.2.3.1	Plasma proteomics	11
1.3 Preecla	ampsia	15
1.3.1 Ba	ickground	15
1.3.2 Ri	sk factors	16
1.3.3 Pa	thophysiology	18
1.3.3.1	The placenta	18
1.3.3.2	Placental changes in preeclampsia	21
1.3.3.3	Placentally-derived factors in the etiology of the maternal syndrome	22
1.3.3.4	Maternal vascular and inflammatory responses	23
1.3.4 Bi	omarkers for preeclampsia	24
1.3.4.1	Diagnostic markers	24
1.3.4.2	Screening markers	25
1.3.5 Pr	evious proteomic biomarker discovery for preeclampsia	27
1.4 Project	aims	29
CHAPTER 2	SERUM-FREE CULTURE OF BEWO CELLS	31
2.1 Introd	uction	31
2.2 Metho	ds	34
2.2.1 2I	DE of cell culture media additives	34

2.2	2.2	BeWo maintenance culture	35
2.2	2.3	BeWo secretion and viability in serum-containing medium	35
2.2	2.4	BeWo secretion and viability in serum-free medium	36
2.2	2.5	Quantitation of hCG and LDH in conditioned media	37
2.2	2.6	Statistical analysis	38
2.3	Res	ults	38
2.3	5.1	2DE determination of cell culture additive purity	38
2.3	5.2	Optimization of forskolin treatment regime	40
2.3	5.3	Secretion and cell viability in serum-free medium	42
2.3	5.4	Secretion time within serum-free media incubation	43
2.4	Dise	cussion	44
CHAF	PTER	3 SECRETED PROTEOMIC ANALYSIS OF BEWO DIFFERENTIATION	49
3.1	Intr	oduction	49
3.2	Met	hods	51
3.2	2.1	Production of serum-free BeWo conditioned media for 2DE	51
3.2	2.2	Protein purification from culture media	52
3.2	2.3	Protein quantitation	53
3.2	2.4	2DE of BeWo conditioned media	53
3.2	2.5	Image analysis	54
3.2	2.6	Statistical analysis	56
3.2	2.7	Protein identification	57
3.3	Res	ults	57
3.3	5.1	Preparation of conditioned media proteins for proteomic analysis	57
3.3	5.2	Optimization of rehydration solution components for BeWo media proteins	58
3.3	5.3	2DE analysis of secreted proteins from BeWo serum-free medium	60
3.3	5.4	Identification of protein spots	63
3.4	Dise	cussion	66
3.4	.1	a-1B-glycoprotein	68
3.4	.2	Matrix metalloproteinase 2	68
3.4	.3	Ceruloplasmin	69
3.4	.4	Phospholipid transfer protein	69
3.4	.5	Proactivator polypeptide precursor	70
3.4	6	VE-cadherin	70
3.4	.7	Additional considerations	70
3.4	.8	Conclusions	72

CHAPTER	4 COMPARISON OF SERUM IMMUNODEPLETION METHODS FOR	
	PROTEOMIC ANALYSIS	75
4.1 Intr	oduction	75
4.2 Met	hods	77
4.2.1	Study population	77
4.2.2	Human serum specimens	77
4.2.3	Depletion of albumin and IgG using a spin column	77
4.2.4	Depletion of six proteins using the Multiple Affinity Removal System	78
4.2.4.1	Chromatography	78
4.2.4.2	Preparation of depleted serum for 2DE	79
4.2.5	2DE of depleted serum proteins	80
4.3 Res	alts	81
4.3.1	Depletion of albumin and IgG using a spin column	81
4.3.2	Depletion of six proteins using a MARS column	82
4.4 Dise	russion	87
CHAPTER	5 COMPARATIVE PROTEOMICS OF PREECLAMPTIC SERUM USING	
	2DE	89
5.1 Intr	oduction	89
5.2 Met	hods	90
5.2.1	Study population	90
5.2.2	Human serum and plasma specimens	91
5.2.3	Depletion of abundant serum proteins and sample preparation for 2DE	91
5.2.4	2DE of depleted serum proteins	91
5.2.5	Image analysis	91
5.2.6	Selection criteria for spots of interest	92
5.2.7	Protein identification	93
5.2.7.1	Analysis of post-translational modifications	93
5.2.8	Validation of differentially expressed proteins	93
5.2.8.1	2-D western blot analysis	93
5.2.8.2	Multiplexed immunoassays	94
5.2.9	Statistical analysis	95
5.2.9.1	Clinical data	95
5.2.9.2	Bioinformatic analysis of 2DE data	95
5.2.9.3	Analysis of multiplexed immunoassay data	98
5.2.9.4	Power calculations	98
5.3 Res	alts	98
5.3.1	Maternal and fetal outcomes	98
5.3.2	Univariate statistical analysis of serum 2DE data	100
5.3.3	Multivariate statistical analysis of serum 2DE data	102

5.3.4	Identification of protein spots	105
5.3.5	Investigation of apolipoprotein E isoforms	109
5.3.6	Measurement of plasma apolipoprotein E concentration	112
5.3.7	Measurement of plasma apolipoprotein C-II concentration	112
5.3.8	Power calculations based on serum 2DE data	113
5.4 Disc	cussion	115
5.4.1	Apolipoprotein E	115
5.4.1.1	Role	115
5.4.1.2	Post-translational modification	117
5.4.2	Apolipoprotein C-II	118
5.4.3	Complement C3c	119
5.4.4	Inter-α-trypsin inhibitor heavy chain H4	120
5.4.5	Plasma retinol binding protein	121
5.4.6	Additional considerations	122
5.4.7	Conclusions	123

CHAPTER	6 COMPARATIVE PROTEOMICS OF PREECLAMPTIC PLASM	1A USING
	DIGE	125
6.1 Intr	oduction	125
6.2 Met	hods	126
6.2.1	Study population	126
6.2.2	Human plasma specimens	126
6.2.3	Depletion of abundant plasma proteins	126
6.2.4	DIGE of depleted plasma proteins	128
6.2.4.1	Experiment design	128
6.2.4.2	CyDye labeling	129
6.2.4.3	2DE of CyDye-labeled samples	129
6.2.5	Image analysis	130
6.2.6	Preparative 2DE and protein identification	131
6.2.7	Statistical analysis	132
6.2.7.1	Clinical data	132
6.2.7.2	Bioinformatic analysis of DIGE data	132
6.2.7.3	Power calculations	134
6.3 Res	ults	134
6.3.1	Maternal and fetal outcomes	134
6.3.2	Statistical analysis of plasma DIGE data	134
6.3.3	Protein identification	141
6.3.4	Power calculations based on plasma DIGE data	141
6.4 Dise	cussion	144
6.4.1	Apolipoprotein E	145

6.4	.2 Fibrinogen	146
6.4	.3 Proteins co-identified from spot 569	146
(6.4.3.1 Transthyretin	146
(6.4.3.2 Mannose-binding protein C	147
(6.4.3.3 Serum amyloid P component	148
(6.4.3.4 Complement H-related protein 2	149
6.4	.4 Conclusions	149
CHAI	PTER 7 SIGNIFICANCE AND FUTURE DIRECTIONS	151
7.1	Protein glycosylation	151
7.2	BeWo differentiation	153
7.3	Implications for other biomarker discovery efforts	153
7.4	Biomarker validation context	155
APPEN	IDIX A MATERIALS SOURCES	157
APPEN	IDIX B MASS SPECTROMETRY DATABASE SEARCH RESULTS	159
B.1	Results from BeWo secreted proteomics study (Chapter 3)	161
B.2	Results from serum 2DE study (Chapter 5)	177
B.3	Results from plasma DIGE study (Chapter 6)	181
LIST O	PF REFERENCES	191

LIST OF FIGURES

Figure 1-1: Biomarker discovery and validation spectrum	1
Figure 1-2: Concentration ranges of 70 plasma proteins	13
Figure 1-3: Trophoblast differentiation pathways	19
Figure 1-4: Placental invasion of uterine spiral arteries	20
Figure 2-1: Experimental design for BeWo culture optimization	36
Figure 2-2: Proteome patterns of cell culture protein additives	39
Figure 2-3: Effect of varying forskolin on BeWo hCG secretion and LDH release	40
Figure 2-4: Effect of two forskolin concentrations on BeWo hCG secretion and LDH release	41
Figure 2-5: Effect of FeSO ₄ on BeWo hCG secretion and LDH release in serum-free media	42
Figure 2-6: Effect of serum-free culture time on BeWo secretion and viability	44
Figure 3-1: BeWo culture timeline for conditioned media collection	52
Figure 3-2: Hierarchical matching of BeWo 2-D gels using ImageMaster Platinum	55
Figure 3-3: Filtering strategy applied to BeWo 2DE spot datasets before identification	56
Figure 3-4: Conductivity of conditioned media following centrifugal washing	58
Figure 3-5: Effect of rehydration solution composition on media proteome patterns	59
Figure 3-6: Representative map of the BeWo secreted proteome with forskolin treatment	61
Figure 3-7: Distribution of 2DE spot volumes from BeWo secreted proteins	62
Figure 4-1: Effect of albumin and IgG depletion on 2DE protein separation	82
Figure 4-2: Chromatogram from MARS depletion of high-abundance serum proteins	83
Figure 4-3: Comparison of MARS-depleted versus retained serum proteins using 2DE	84
Figure 4-4: 2DE comparison of two serum depletion methods	86
Figure 5-1: Plots of 2DE data during transformation for multivariate analysis	100
Figure 5-2: Locations of collected spot results from multivariate analysis of serum 2DE	104
Figure 5-3: Distribution of 2DE spot volumes from candidate serum markers	105
Figure 5-4: Complement C3 cleavage and fragment identification	108
Figure 5-5: Three-dimensional spot volumes of apolipoprotein E isoforms	109
Figure 5-6: Specific detection of apolipoprotein E isoforms using 2-D western blot analysis	110
Figure 5-7: O-glycosylation pattern of Apo E_A determined by SALSA analysis	111
Figure 5-8: Immunoassay for apolipoprotein E in plasma samples	112
Figure 5-9: Immunoassay for apolipoprotein C-II in plasma samples	113
Figure 5-10: Power curves from serum 2DE data	114
Figure 6-1: DIGE experiment overview	128
Figure 6-2: DIGE gel matching in DeCyder using a pooled internal standard	131
Figure 6-3: Locations of spot results from corrected statistical analysis of DIGE data	139
Figure 6-4: Distribution of DIGE spot volume ratios from candidate plasma markers	140
Figure 6-5: Power curves calculated from DIGE data	143

LIST OF TABLES

Table 1-1: Detection limits of common post-electrophoresis 2-D gel stains	5
Table 1-2: Early-onset versus late-onset subgroups of preeclampsia	16
Table 3-1: Rehydration solution mixtures tested with BeWo conditioned media proteins	53
Table 3-2: Isoelectric focusing parameters for BeWo conditioned media samples	54
Table 3-3: Results of BeWo spot dataset filtration strategy	60
Table 3-4: Proteins identified from BeWo conditioned media 2DE spots	64
Table 3-5: Cellular location and function of proteins identified from forskolin-treated BeWo cells	67
Table 4-1: Liquid chromatography program for MARS depletion of serum samples	79
Table 4-2: Preparation conditions for depleted serum samples	80
Table 4-3: Electrophoretic parameters for serum 2DE	81
Table 4-4: Protein yields from serum depletion methods	81
Table 5-1: Isoelectric focusing parameters for depleted serum samples	94
Table 5-2: Maternal and neonatal clinical characteristics from serum 2DE and immunoassay study participants	, 99
Table 5-3: Results from univariate statistical analysis of serum 2DE data	101
Table 5-4: Results from multivariate analysis of serum 2DE data	103
Table 5-5: Proteins identified from serum 2DE classifier spots	107
Table 6-1: Liquid chromatography program for MARS plasma depletion	127
Table 6-2: Preparation conditions for depleted plasma samples	127
Table 6-3: Experiment design for plasma DIGE	129
Table 6-4: Isoelectric focusing parameters for depleted plasma samples	130
Table 6-5: Maternal and neonatal clinical characteristics from plasma DIGE study participants	135
Table 6-6: Results from uncorrected univariate statistical analysis of plasma DIGE data	136
Table 6-7: Spots resulting from nearest shrunken centroid analysis of plasma DIGE data	138
Table 6-8: Proteins identified from plasma DIGE spots	142
Table B-1: Database search results for BeWo 2DE spot 638	161
Table B-2: Database search results for BeWo 2DE spot 655	163
Table B-3: Database search results for BeWo 2DE spot 679	164
Table B-4: Database search results for BeWo 2DE spot 818	170
Table B-5: Database search results for BeWo 2DE spot 841	171
Table B-6: Database search results for BeWo 2DE spot 895	175
Table B-7: Database search results for BeWo 2DE spot 1073	176
Table B-8: Database search results for serum 2DE spot 28	177
Table B-9: Database search results for serum 2DE spot 125	177
Table B-10: Database search results for serum 2DE spot 161	178
Table B-11: Database search results for serum 2DE spot 168	179
Table B-12: Database search results for serum 2DE spot 194	179
Table B-13: Database search results for serum 2DE spot 428	180
Table B-14: Database search results for plasma DIGE spot 355	181
Table B-15: Database search results for plasma DIGE spot 356	185

Table B-16: Database search results for plasma DIGE spot 521
Table B-17: Database search results for plasma DIGE spot 569

188 189

xvi

SI unit prefixes are not included in the list below.

°C	degrees Celsius
1-D	one-dimensional
2-D	two-dimensional
2DE	two-dimensional gel electrophoresis
А	ampere(s)
A1BG	a-1B-glycoprotein
ANOVA	analysis of variation
ApoC2	apolipoprotein C-II
АроЕ	apolipoprotein E
ApoE _A	apolipoprotein E, acidic isoform
ApoE _B	apolipoprotein E, basic isoform
BCA	bicinchoninic acid
BFA	brefeldin A
BSA	bovine serum albumin
C7BzO	3-(4-heptyl)phenyl-3-hydroxypropyl)dimethylammoniopropanesulfonate
cAMP	cyclic adenosine monophosphate
CHAPS	3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate
CHRP2	complement factor H-related protein 2
CI	confidence interval
СТВ	cytotrophoblast
CV	coefficient of variation
Da	Dalton(s)
DIGE	difference gel electrophoresis
DLOO	double leave-one-out
DMEM	Dulbecco/Vogt Modified Eagle's Minimal Essential Medium
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
DTT	dithiothreitol
E-cadherin	epithelial cadherin
EDTA	ethylenediaminetetraacetic acid
ESI	electrospray ionization
EVT	extravillous cytotrophoblast
FDR	false discovery rate
FSK	forskolin
FT-ICR	Fourier transform ion cyclotron resonance
g	gram(s)
GalNAc	N-acetyl galactosamine
Glc	glucose
GO	Gene Ontology
h	hour(s)
hCG	human chorionic gonadotropin
HC1	hydrochloric acid

HDL	high density lipoprotein
HELLP	hemolytic anemia, elevated liver enzyme activity, low platelet count syndrome
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HLA	human leukocyte antigen
HPLC	high-performance liquid chromatography
HUPO	Human Proteome Organization
IAA	iodoacetamide
IATI	inter-a-trypsin inhibitor
ICAM	intercellular cell adhesion molecule
IFN	interferon y
IgA	immunoglobulin A
IgG	immunoglobulin G
IHRP	inter- α -trypsin inhibitor family heavy chain-related protein
IMP5	ImageMaster TM 2D Platinum version 5.0
IMP6	ImageMaster [™] 2D Platinum version 6.0.1
IPG	immobilized pH gradient
IS	internal standard
kDa	kilodaltons(s)
KIR	killer immunoglobulin-like receptor
I.	liter(s)
	liquid chromatography
LC-MS	liquid chromatrography coupled with mass spectrometry
LC MS/MS	liquid chromatography coupled with tandem mass spectrometry
I DH	lactate debydrogenase
I DI	low density linoprotein
MALDI	matrix-assisted laser desorption/ionization
MARS	Multiple Affinity Removal System
MRP	mannose-binding protein C
MES	2-(N-morpholino)ethanesulfonic acid
min	z-(1v-morphomo)ethanesunome acte
MMP	matrix metalloproteinase
mol	matrix metanoprotentase
MPM	multiple reaction monitoring
	maniple reaction monitoring
MS/MS	tandom mass spectrometry
	multidimensional protein identification technology
	multidimensional protein identification technology
	National Contor for Piotochnology Information
NCDI	national Center for Diotechnology Information
	natural killer cell
NL	nonlinear
NSC	nearest shrunken centroids
PAGE	polyacrylamide gel electrophoresis
PAI-1	plasminogen activator inhibitor-1
PAI-2	plasminogen activator inhibitor-2
PAPP-A	pregnancy-associated plasma protein A
PBS	phosphate-buffered saline

PBST	phosphate-buffered saline + Tween 20
PES	polyethersulfone
pI	isoelectric point
PlGF	placental growth factor
PLTP	phospholipid transfer protein
PP13	placental protein 13
PPP	Plasma Proteome Project
PSA	prostate-specific antigen
PVDF	polyvinylidene fluoride
RBP	retinol binding protein
RFE	recursive feature elimination
RNA	ribonucleic acid
S	second(s)
SALSA	Scoring Algorithm for Spectral Analysis
SAP	serum amyloid P-component
SCOPE	SCreening for Pregnancy Endpoints
SD	standard deviation
SDS	sodium dodecyl sulfate
SDS-PAGE	SDS polyacrylamide gel electrophoresis
SELDI	surface-enhanced laser desorption/ionization
sFlt1	soluble fms-like tyrosine kinase 1
SFM	serum-free media
SGA	small for gestational age
SILAC	stable isotope labeling with amino acids in cell culture
SNP	single nucleotide polymorphism
STB	syncytiotrophoblast
STBM	syncytiotrophoblast microvillous membranes
TG	triglyceride
TGF-β	transforming growth factor- β
TIMP	tissue inhibitor of metalloproteinases
TNF-a	tumor necrosis factor-α
TOF	time-of-flight
Tris	2-amino-2-(hydroxymethyl)propane-1,3-diol
V	volts
V·h	volt hours
VCAM	vascular cell adhesion molecule
VE-cadherin	vascular epithelial cadherin
VEGF	vascular endothelial growth factor
VLDL	very low density lipoprotein
W	watts