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Running title: Evaluating mass trapping attractants 15 

 16 

Abstract  17 

BACKGROUND: The identification of new attractants can present opportunities for 18 

developing mass trapping, but standard screening methods are needed to expedite this. We 19 

have developed a simple approach based on quantifying trap interference in 4×4 trap arrays 20 

with different spacings. We discuss results from sex pheromones in Lepidoptera (lightbrown 21 

apple moth, Epiphyas postvittana), Diptera (apple leafcurling midge, Dasineura mali), and 22 

Homoptera (citrophilous mealybug, Pseudococcus calceolariae), compared with a kairomone 23 

for New Zealand flower thrips (Thrips obscuratus).  24 
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RESULTS: The 25:1 ratio of catch in corner to centre traps observed at 750 D. mali traps/ha 1 

was still evident as ~5:1 at 16 traps/ha, suggesting trap interference even at such low trap 2 

densities. Trap competition for sex pheromone lures at close spacing (<5 m) was evident in 3 

16 trap arrays of the Pseudococcus calceolariae, but less so for Epiphyas postvittana.  No 4 

trap competition was observed at 4 m spacings with the kairomone for T. obscuratus. 5 

CONCLUSIONS: The ratio of catch in traps in the corner : centre of a 16 trap array at 6 

different spacings offers a rapid preliminary assessment method for determining potential for 7 

mass trapping. Additional knowledge of vital rates and dispersal is needed for predicting 8 

population suppression. Our approach should have value in mass trapping development. 9 

 10 

Key words: mass trapping, Epiphyas postvittana, Thrips obscuratus, Pseudococcus 11 

calceolariae, Dasineura mali, pheromone, arthropod, semiochemical, vertebrate 12 

 13 

1.0 INTRODUCTION 14 

Insect pest management has benefited from the development of a range of powerful 15 

pheromones and other attractants. 1 Attractants have been incorporated into a range of tactics, 16 

including mass trapping, lure and kill, and mating disruption; these tactics can play a key role 17 

in pest eradication or long term management. 2, 3 Mass trapping and lure and kill methods 18 

involve removal trapping (or killing) of a large number of individuals using volatile 19 

compounds, and have the greatest potential to suppress low-density, isolated pest populations. 20 

2, 3 A wide range of insect taxa have been targeted by these tactics, including moths, 4, 5 21 

beetles, 6-8 flies, 9, 10 mealybugs 11 and thrips 12.  22 

 23 

Many factors have been investigated but the results have not been synthesised into a simple 24 

approach to the assessment of new mass trapping or lure and kill systems. Practical factors 25 

http://www.google.co.nz/search?hl=en&biw=682&bih=315&rlz=1R2SKPT_enNZ420&gs_sm=s&gs_upl=2703l2703l0l4109l1l1l0l0l0l0l437l437l4-1l1l0&q=Pseudococcus%20calceolariae&spell=1&sa=X
http://www.google.co.nz/search?hl=en&biw=682&bih=315&rlz=1R2SKPT_enNZ420&gs_sm=s&gs_upl=2703l2703l0l4109l1l1l0l0l0l0l437l437l4-1l1l0&q=Pseudococcus%20calceolariae&spell=1&sa=X
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influencing the outcome have included low efficiency of traps, saturation of traps, low trap 1 

selectivity, the frequent low attractiveness of lures, and the need for high trap density and 2 

hence high cost. Simulation modelling has shown that lure improvement makes a big 3 

difference to success.13 If simple theory can be validated from the spatial interaction between 4 

traps in a simple 4 by 4 array, then it should be possible to derive an estimated point source 5 

density where trap competition is greatest. Lure and kill can eventually be expected to reduce 6 

costs, since the infrastructure of traps is not needed. In fact, both concepts are also closely 7 

related to mating disruption because in all three systems, dispensers are competitive with 8 

females.14 Communication disruption is a component of these tactics where a proportion of 9 

females remains unmated because of the effect of false trail following or habituation of males 10 

to the odour. When males have been removed as well, this is likely to be more successful, 11 

since male recovery and multiple mating can work against mating disruption.15  12 

 13 

It is difficult to directly know the fate of insects with lure and kill, since point sources 14 

releasing pheromone can be disruptive to monitoring traps through point source competition, 15 

without causing mortality. 2 In fact, mass trapping can be a useful stepping stone towards a 16 

cost-effective control system, since it is possible to determine the number of males that need 17 

to be removed in order to achieve a reduction in damage (e.g. 5). Our recommended approach 18 

is to use mass trapping as a research tool to determine the effectiveness of lures and therefore 19 

the appropriate density of lures needed to achieve population suppression. The next challenge 20 

is to develop lower cost lure and kill systems to reproduce the required specifications more 21 

efficiently. Simulation models are a useful tool for identifying other key attributes needed for 22 

success in mass trapping. 13, 16 23 

 24 
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The key objective of mass trapping and lure and kill is to reduce reproduction by removing 1 

enough individuals in the specific control area, 3 which involves: (a) releasing attractants in 2 

the target area, (b) using lures that are able to attract insects as well or even more effectively 3 

than natural sources of attraction such as calling virgin females, mating aggregations, or food 4 

sources, (c) including efficient traps or stations or formulations for killing the attracted 5 

insects, (d) using lures and non-saturating traps that are effective during the entire period of 6 

adult emergence and mating, and (e) trapping or killing materials and labour cost less than 7 

economic benefits from other treatments.Mass trapping has been successfully used to manage 8 

even such ubiquitous pests as blow flies. 17 While the identification of new attractants can 9 

present opportunities for developing more environmentally-benign pest management tactics, 10 

standard methods for assessing the potential of a lure in the context of mass trapping are not 11 

available to facilitate this process. 12 

 13 

We chose four diverse model systems in different insect orders to explore a standard 14 

approach, based on trap competition, to assessing the potential for mass trapping. The sex 15 

pheromone of the apple leaf curling midge Dasineura mali (Diptera: Cecidomyiidae) was 16 

recently identified, 18 and shows promise for monitoring in pest management. 19, 20 The sex 17 

pheromone of citrophilous mealybug, Pseudococcus calceolariae a vector of grape vine 18 

leafroll viruses, was also recently identified and is being examined similarly. 21 A more 19 

attractive four component sex pheromone for Epiphyas postvittana 22 offered the opportunity 20 

to investigate lure strength as a factor affecting trap performance, compared with the earlier 21 

two component blend. Peach lactone was recently identified as a new kairomone for Thrips 22 

obscuratus (Thysanoptera: Thripidae).23 These four innovations were used to investigate 23 

methods to assess potential for mass trapping, and to test a potential rapid assessment 24 

approach to semiochemical screening.  25 
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 1 

We developed a simple theoretical approach, building on the work of earlier researchers, e.g. 2 

24, 25 by quantifying trap competition and overlapping active spaces. We examined levels of 3 

trap interference achieved in diverse habitats including apple and peach orchards, vineyards 4 

and pine plantations. In each case, we investigated the spatial effects of trap catch using 5 

arrays of 4×4 traps to determine trap competition at different spacings and to thereby indicate 6 

the potential for mass trapping and surveillance.  7 

 8 

Field trials with 500 traps per ha achieved 96% communication disruption of apple leaf 9 

curling midge at 1 ha scale, indicating a potentially successful system. 20 Mass trapping 10 

experiments revealed very high levels of trap competition, evidenced by sub-sampling using 11 

transects of traps from the sides of the plot towards the centre. 26 The high catches on corners 12 

and low catches in plot centres led us to the hypothesis that square arrays of as few as 16 13 

traps could be used to measure trap competition by quantifying the difference in trap catches 14 

between corner and centre traps. In each 4×4 grid, there are four corner, four centre 15 

(=middle), and eight edge (= side) traps. We hypothesized trap competition would lead to a 16 

high ratio of catches in corner traps compared to centre ones, and a somewhat lower ratio of 17 

corner to edge and edge to centre catches. By replicating grids at different trap spacings, it 18 

should be possible to characterise distances affecting trap competition, and ultimately the 19 

optimum trap density for mass trapping. 20 

 21 

We adopted this approach to trap for lightbrown apple moth in vineyards and pine forests 22 

with lures of different strength and composition, and compared the results to control plots 23 

from an apple orchard study reported earlier with 16-trap arrays.27 We also used 16-trap 24 

arrays to investigate optimal trap spacing of citrophilous mealybug sex pheromone traps in 25 
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vineyards. We then calculated the communication disruption as a function of trap spacing for 1 

the mealybug and moth sex pheromone cases to generate inferences about mass trapping. 2 

Finally, we tested a powerful kairomone-based attractant for New Zealand flower thrips 23 3 

using the same approach in a peach orchard. This was the only kairomone. 4 

  5 

2.0 MATERIALS and METHODS  6 

2.1 Trapping theory 7 

We developed a simple model for trap competition with three basic assumptions. First, 8 

trappable insects arise (i.e. mature from non-trappable life stages, or simply are present at the 9 

time of trap deployment) uniformly across the landscape, the central part of which is trapped. 10 

Second, insects may be trapped only if they arise within the “attraction radius”, r, of at least 11 

one trap. The attraction radius therefore includes the effects of both insect dispersal and the 12 

plume characteristics of the lure. Third, insects arising within the attraction radius of more 13 

than one trap have an equal probability of being caught in each. (An alternative assumption, 14 

that insects arising within the attraction radius of more than one trap are always caught in the 15 

nearest one, led to very similar results). With these assumptions, the degree of competition 16 

between traps laid out in a square grid depends on the inter-trap spacing d relative to the 17 

attraction radius r. Attraction radii do not overlap, so there is no trap competition, when d/r ≥ 18 

2. Some competition occurs when d/r < 2, including competition between diagonally 19 

neighbouring traps when d/r < √2, and so on (Fig. 1). Successful mass trapping requires that 20 

all insects are with the attraction radius of at least one trap (which occurs when d/r < √2), but 21 

in practice should aim for multiple overlaps between traps (Fig. 1 b or c). Determining the 22 

appropriate trap spacing is a key requirement of successful mass trapping. 23 

  24 
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Depending on spacing, the traps located on the corners of a square grid should experience 1 

less competition than those centre traps that are surrounded by many other traps. The 2 

smallest trapping design that might allow such an effect to be measured in the field is a 4×4 3 

‘mini-grid’ of 16 traps (a 3×3 grid is less useful as it has no replication of the centre traps). 4 

We used numerical simulation in R,28 together with a series of inter-related field trials (Table 5 

1) to compare catches in corner, edge and centre traps to infer the attraction radius and 6 

thereby the appropriate trap spacing for mass trapping. 7 

 8 

2.2 Apple leaf curling midge Dasineura mali (Diptera: Cecidomyiidae)  9 

To determine the extent of trap to trap competition by altering trap density, the sex 10 

pheromone of D. mali, (8Z)-13-acetoxy-8-heptadecen-2-one 18, obtained from the Natural 11 

Resources Institute, Chatham Maritime, Kent (UK), was used as the lure in clear plastic oil-12 

based non-saturating Lynfield fruit fly traps. Lynfield traps baited with 2 µg loadings on 13 

rubber septa, with vegetable oil as the killing solution.20 14 

 15 

The experiment was conducted in apple orchards in Hawke’s Bay, New Zealand (39.6oS, 16 

176.8oE). Initially, four replicate plots were laid out with 750 traps per ha in 1 ha plots of cv. 17 

Pink Lady (n=2), cv. Royal Gala, and cv. Braeburn. Transects of traps were sub-sampled 18 

down the plot edges with traps at 0, 25, 40 and 50 m spacings from the corner to indicate 19 

corner-edge effects, while edge-centre transects at right angles were conducted at 0, 4, 7, 11 20 

m spacings towards the centre. Randomly-located traps sub-sampled the interior of each plot 21 

(n=4 centre traps per plot, >50 m from border). Corner traps were placed in all cases but other 22 

transect traps were deployed in a specific pattern in each replicate with two transects of each 23 

direction (towards side at and middle at above spacings) present at each orchard. A total of 29 24 

traps was cleared (of 750) in each of four replicate plots. This number was determined as 25 
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adequate in a related study which indicated sharp boundaries on the edge of plots, with rapid 1 

drop in catch inwards. 26 2 

 3 

In order to confirm the effect of mass trapping density on catch per trap, traps were next 4 

deployed in four replicate 1 ha orchard blocks at each of three trap densities over a constant 5 

area over the same period: 4, 16 and 750 per ha (Table 1). Catches from 7 February to 9 6 

March in four traps within each block were used for comparison between trap densities. A 7 

second series of 16 traps in four replicate 1 ha plots was deployed from 24-27 August - 25 8 

October 2007 (1st generation) and 11 December 2007 - 19 February 2008 (3rd generation).29 9 

These traps (33 m spacing) were designed to produce the corner to centre ratio and edge to 10 

centre ratio as above. Traps were operated over the first and much larger third generations in 11 

order to determine the reproducibility of the results, in case there was an effect of insect 12 

density. 13 

  14 

2.3 Light brown apple moth Epiphyas postvittana (Lepidoptera: Tortricidae)  15 

The four components of the sex pheromone of E. postvittana (E)-11-tetradecenyl acetate 16 

(E11-14Ac), (E,E)-9,11-tetradecadien-1-yl acetate (E9E11-14Ac), (E)-11-tetradecen-1-ol 17 

(E11-14OH), and ( E)-11-hexadecenyl acetate (E11-16Ac) (ratio 95:5:1:0.5) 22 were obtained 18 

from Plant Research International, Wageningen, The Netherlands. Lures were either prepared 19 

as a two component blend 30 or four component blend 22 applied to red rubber septa (West 20 

Pharmaceutical Services, Kearney, N.E., USA) in 200 μl of n-hexane GR (Merck Ltd, 21 

Auckland, New Zealand). The solvent was evaporated in a fume hood and the septa were 22 

stored in heat-sealed foil bags at -20ºC until ready for use. 23 

 24 
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The two component pheromone 30 was deployed at 10.5 and 105 µg loadings on rubber septa 1 

in red delta sticky traps operated for six weeks from 2 November 2006 until 11 January 2007, 2 

in a Pinus radiata plantation forest in Canterbury, New Zealand (Lat 43.5° S, Long 172.4° E) 3 

(Table 1). Traps were deployed in 16 trap arrays at spacings of 2, 4, 8, 16 and 32 m, 4 

replicated five times (400 traps for each lure). The catch from the greatest trap spacing 5 

distance was used for comparison of the effects of competing traps on communication 6 

disruption (i.e. assumed to be zero at 32 m for the four central traps). In the third case, we 7 

used the more active four component pheromone, 22 deployed at 1 mg loading on rubber septa 8 

in red delta sticky traps in 16 trap arrays operated for six weeks from 12/11/2012 to 7/1/2013 9 

in a vineyard in Canterbury, New Zealand at spacings of 2, 4, 8, 16 and 32 m (Lat 43.4° S, 10 

Long 172.4°E) (Table 1). These data were compared with corner to middle ratios calculated 11 

from total catch results from three replicate 16 trap arrays operated in an untreated apple 12 

orchard from 16 March - 25 May 1994. 27  13 

Table 1 14 

2.4 Citrophilous mealybug Pseudococcus calceolariae (Homoptera: Coccoidea)  15 

The racemic sex pheromone of Pseudococcus calceolariae, chrysanthemyl 2-acetoxy-3-16 

methylbutanoate21 was obtained from Jan Bergmann (Instituto de Química, Pontificia 17 

Universidad Católica de Valparaíso, Avda. Brasil 2950, Valparaíso, Chile). It was loaded at 2 18 

µg per rubber septum and deployed in red delta sticky traps operated in Hawke’s Bay, New 19 

Zealand vineyards (39.69° S and 176.92° E) in 4 × 4 trap arrays at four spacings (Table 1): 8 20 

× 8 m between traps (0.0256 ha), 16 × 16 m (0.1024 ha), 32 × 32 m (0.4096 ha) and 64 × 64 21 

m (1.64 ha), each replicated four times (256 traps in all). The catch from the greatest trap 22 

distance was used for comparison of the effects of trap interference (assumed to be zero at 64 23 

m). Traps were checked and counted weekly from 11 February to 8 March 2011.  24 

 25 
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An extension of the trial with the same method used spacings in the array of 1.6, 3.2 and 6 m. 1 

Traps were deployed from 23 February to 3 April 2012. The corner to centre ratio data were 2 

found to be continuous again as expected since the ratio is independent of density, and the 3 

two data sets were therefore considered together. 4 

  5 

2.5 New Zealand flower thrips, Thrips obscuratus (Thysanoptera: Thripidae) 6 

The 6-pentyl-2H-pyran-2-one (96 %), was obtained from Sigma-Aldrich Chemical Company 7 

(St Louis, MO, USA). It was dispensed into polyethylene bags (500 mg).23, 31 The catch in 8 

red delta traps was recorded in a peach orchard (‘Yumyeong’) near Lincoln, Canterbury 9 

(43.6°S, 174.48°E) over 1 wk in February 2010. Three replicate blocks of 16 trap arrays were 10 

operated at the distance between traps of one tree row spacing (4 m). Fruit were present but 11 

unripe (~4 weeks to harvest) and unattractive to thrips. 23 12 

 13 

2.6 Statistics and modelling 14 

Regression of catch on trap density was done after pooling the data for each time interval for 15 

each trap. Catch in the corner, edge and centre traps were compared to determine whether 16 

significant spatial effects were present. Ratios of trap catch were calculated on pooled data. 17 

Percentage disruption of communication was calculated for each distance as 100 - 100 × 18 

(catch in centre set 4 traps at a given distance/catch in centre set of 4 of maximum-spaced 19 

traps), where catch in maximum-spaced traps was assumed to be without trap competition. 20 

This assumption was tested from graphical comparison of the ratio data with distance. 21 

Catches were normalized to relative trap catch for the appropriate corner or side trap in each 22 

transect, and the values used in regression with distance, due to population size variation. 23 

 24 

3.0 RESULTS  25 
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3.1 Predicted patterns 1 

The model (Supplementary Material) suggests that once the attraction radii of traps start to 2 

overlap (when d/r < 2) then trap catches should be depressed, with different rates of reduction 3 

for corner, edge and centre traps. For example, when trap spacing is equal to the radius of 4 

attraction, centre traps are predicted to capture about a third of the number of that for a non-5 

competing trap, while edge and corner trap catches are just below a half and two thirds, 6 

respectively (Fig. 2). Trap catch suppression is predicted to be similar in both large and small 7 

grids except when traps are very close to each other (d/r small). This relationship provides 8 

one method for estimating the attraction radius and therefore the appropriate trap spacing for 9 

mass trapping: complete coverage (d/r < √2) requires mass trapping to achieve at least 37%, 10 

27% and 18% suppression in trap catch for centre, edge and corner traps, respectively (Fig. 11 

2). 12 

 13 

In addition, the ratios of trap catches in outer versus centre traps are predicted to increase 14 

with decreasing trap spacing, because centre traps experience greater competition than those 15 

along edges or at corners of the trapping grid. When traps are sufficiently widely spaced that 16 

there is no competition (d/r ≥ 2, Fig. 1A) catches in all traps should be approximately equal. 17 

As the inter-trap distance shrinks, corner traps catch relatively more insects than edge traps, 18 

which in turn catch more than centre traps, resulting in increasing ratio of trap catches from 19 

corner/edge, edge/centre and particularly corner/centre traps (Fig. 2). In large grids, the ratios 20 

continue to increase with shrinking trap spacing, but in small grids the ratios decrease again 21 

as all traps eventually overlap with all others. In 4×4 minigrids, the corner/centre trap catch 22 

ratio is predicted to peak at ≈ 2.62 when d/r ≈ 0.6 (Fig. 2). This provides a second way to 23 

estimate the attraction radius: if the 4×4 minigrid spacing that maximizes the corner/centre 24 
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ratio is estimated from field experiments as d*, then the attraction radius can be estimated as 1 

d*/0.6, and mass trapping should aim for a trap spacing of not more than (√2/0.6)d* ≈ 2.3d*. 2 

Fig. 2  3 

3.2 Apple leaf curling midge Dasineura mali (Diptera: Cecidomyiidae) 4 

A total of 160,031 midges was caught across the four orchards in pheromone-baited oil traps 5 

operated at three densities (4, 16 or 750 per ha) from 7 February to 9 March 2007. There was 6 

a strong inverse relationship between log trap density and log catch per trap, with the lowest 7 

catch per trap predictably evident at the highest trap density (Fig. 3) (r2= 0.9978). Assuming 8 

that there was no trap competition at the widest trap spacing (d = 50 m), then inner trap catch 9 

at 23 m spacing was 20% of the value at 50 m. From Fig. 2A, this level of catch suppression 10 

in inner traps is expected to occur at relative trap spacing d/r ≈ 0.8. Knowing d = 23 m, we 11 

therefore estimate the attraction radius r as 23/0.8 = 29 m. Similarly, relative trap catch at 3.7 12 

m spacing was 0.9% of that at 50 m, with Fig. 2A suggesting d/r ≈ 0.15 and therefore r = 13 

3.7/0.15 = 25 m, which is very similar to the value estimated from 23 m spacings. 14 

Fig. 3 15 

At 750 traps per ha, very striking changes in trap catch occurred with trap position from the 16 

border into the block (Fig. 4), as expected from a case of high trap active space overlap 17 

between adjacent traps (Fig. 1d). Traps on the corner of each plot caught the highest numbers 18 

of midges, while intermediate catches were made on the edges of plots, depending on 19 

position. Central traps were uniformly low in catch, while edge and corner traps caught the 20 

highest numbers (Table 2, Fig. 4).  21 

Fig. 4  22 

Table 2 23 

The 16 trap arrays at 23 m spacing (Fig. 5) were operated in four apple orchards for two 24 

generations with different insect densities (Table 2), but as expected there was no significant 25 
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effect from insect density on the ratio of catch in the four corner to four centre traps; the ratio 1 

was 3.5 + 0.4 (SEM) (t = -0.25; P = 0.815; df = 5) (based on n=372,988 midges per replicate 2 

per generation). 3 

Fig. 5 4 

3.3 Light brown apple moth Epiphyas postvittana (Lepidoptera: Tortricidae) 5 

A total of 996, 391, and 1981 moths were caught in the three trials of 16 trap arrays with five 6 

trap spacings. There was a peak in the corner to centre ratio at the 8 m spacing (Fig. 6). The 7 

peak in ratio was consistent for trials conducted in both vineyard and pine plantation habitats 8 

and with different lure amounts and blends (Table 1), however, the magnitude of the peak 9 

differed between treatments. The values of corner to centre ratio were consistently highest at 10 

all spacings with the most attractive lure (four component, 1 mg loading).The earlier apple 11 

orchard results collected as part of another study 27 (n=1,426 moths) were only at a single 12 

spacing, but the corner to centre ratio was a close fit to the data generated in the pine 13 

plantation with the two lure strengths. From the modelling, this suggests the attraction radius 14 

r = 8/0.6 = 13 m, and mass trapping should aim for no more than 18 m between traps (Fig. 6). 15 

Fig. 6 16 

3.4 Citrophilous mealybug Pseudococcus calceolariae (Homoptera: Coccoidea)  17 

There was a strong spatial effect of trap position on catch below 8 m spacing between traps, 18 

with a consistent decline in corner to centre ratio with log distance between traps out to 64 m, 19 

where the ratio was close to unity, showing no competition (Fig. 7). There were no cases of 20 

empty traps. A total catch of over 533,545 male mealybugs was made, suggesting that the 21 

results with ratios should be highly robust. The ratio of catch in corner to centre traps peaked 22 

at 3.2 m spacings between traps. The trap spacing can be converted to the number of traps or 23 

other type of killing stations needed per ha for best predicted results. The peak in ratio of 24 

corner to centre trap catch was equivalent to a trap density of ~1,000 traps per ha, and the 25 
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trend suggests greater efficacy would generally result with high point source density. It is 1 

possible that the assumption of no effect of trap competition at 64 m was violated, which may 2 

explain the higher values than expected in the array (due to the difference between 16 and 3 

infinite numbers in a grid , which peaks about 3.0 in a 16 trap array). Communication 4 

disruption increased with reduced distance between traps, although the results were least 5 

dramatic for the moth case (Fig. 8). 6 

Fig. 7 7 

Fig. 8 8 

3.5 New Zealand flower thrips, Thrips obscuratus 9 

Despite high mobility and catches that can exceed 9,000 insects per trap at some locations,32 10 

total catch of 18,665 thrips in this short study, there was no significant effect of corner or 11 

centre between catches of thrips in traps in the 16 trap array. This is equivalent to a corner to 12 

middle ratio of 1:1 and indicates no trap competition at one tree spacing. Therefore the active 13 

space must be closer than the tree spacing, making mass trapping impractical. The mean 14 

catch per trap in the week was 393 + 47.9 (mean + SEM), and no empty traps occurred. 15 

  16 

4.0 DISCUSSION 17 

Our model suggests that the ratio of catch in traps in the corner and centre traps of a 16 trap 18 

array offers a simple approach to evaluate the potential for trap interference of novel 19 

odourants for a species dependent on inter-trap distance, although other geometric 20 

arrangements might also work.24, 33, 34 For example, a nine trap array has an advantage of 21 

using fewer traps but has no pseudoreplicates of the inner traps. For the aforementioned sex 22 

pheromone case studies, the corner traps caught more insects than center traps. The effect of 23 

trap competition changed with distance and spatial relationship with competing traps. Close 24 

spatial arrangements of traps proved very effective at detecting trap interference, although the 25 
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peak competition distance apparently varied between species. This result, which is expected 1 

by our model, indicates the potential of this approach to assess trap competition in a number 2 

of ways. 3 

 4 

With a high trap density, the pheromone concentration within the plots will have been 5 

greater, making it harder for the male moths to discriminate between odour sources until the 6 

density of traps decreased or the moths made it to the edge of the array allowing them to find 7 

discrete sources 33, or pheromone concentrations may have been so great as to exceed the 8 

upper threshold for behavioural response of the moths 35, leading to a depression of catch in 9 

the centre traps compared with the corner traps. The assumption of no trap competition at the 10 

greatest spacing (64 m for mealybugs and 32 m for moths) enabled the comparison of two of 11 

the systems for likely efficacy in mass trapping on a common parameter, d. Weak 12 

competition may have still been present even at these distances especially when taking into 13 

account wind direction, speed and orientation of traps down or across planted rows 34, but this 14 

bias is low level and in favour of showing less treatment effect.  15 

  16 

In the case of arrays with only 16 traps, the four traps in the centre reveal the greatest effect 17 

of trap competition, and it seems that there is a trade-off with efficiency of using such a small 18 

grid and consequent loss of scale of effect. The apple leaf curling midge male removal 19 

operating at the high trap density with 25:1 ratio of corner to centre catch may have had an 20 

advantage in level of communication disruption due to the high number of traps involved. 21 

Changing spatial scale can affect the level of communication disruption due to edge effects.36  22 

 23 

The method used for the mealybug and moth, with 16 traps at a series of spacings, was less 24 

trap intensive than with the midges (750/ha). In comparison, communication disruption of the 25 
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mealybug reached higher levels than with the moth, independent of lure. For the moth, a 1 

more attractive blend (4-component at 1 mg loading) did not materially change the outcome 2 

of communication disruption with distance than the less attractive two component cases at 3 

10.5 or 105 µg loadings, but the ratio values were higher with the four component 4 

pheromone. The attraction radius of the pheromone-baited moth traps was estimated from the 5 

model at 13m. It was assumed that all insects were arising in the plot and once inside the 6 

attraction radius of a trap would be trapped, although the probability of being trapped may be 7 

related to the distance from the attractant once within the area of influence 24, 37. The moth 8 

data showed that the peak of the ratio of corner to centre traps occurred at 8m, even though 9 

different lure strengths and blends of pheromones were used (Fig. 6). The increased corner to 10 

centre ratio in the 4-component, 1mg loaded lures probably represents an improved 11 

probability of catch in a trap once a moth was within the attraction radius. Corner traps had 12 

less competition from neighbouring traps, thus an improved catch probability would lead to 13 

the observed difference in the ratio of catch to centre traps than a less effective lure at the 14 

same distance between traps. Had the attraction radius increased with lure strength, then we 15 

would have expected to see a corner to centre ratio peak at a distance greater than 8m with 16 

the stronger lure. 17 

 18 

Close range behaviours may have contributed to the difference between the model predictions 19 

and some insect catches at close spacings (e.g. moth cases). The phenomenon of trap 20 

competition that was visible for D. mali in a mass trapping plot at 1 ha scale, with high 21 

catches in corner traps (peaking at 25-fold for corner to centre ratio) was successfully 22 

reproduced in much smaller grids of only 16. The change to 16 trap arrays reduced this ratio 23 

to five-fold, but provided a potentially significant saving in traps in determining the effect. 24 

 25 
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The 16-trap array system proved capable of identifying two cases (D. mali and P. 1 

calceolariae), where mass trapping should lead to strong performance at suppression, based 2 

on the ratio of catch in the corner to centre traps. The approach showed the effects of changes 3 

in either trap spacing or density over a fixed area, which caused a drop in grid efficiency with 4 

increase in d, the distance between traps. Improvements in efficacy of control could result 5 

from a decrease in spacing distance d, or an increase in r, the radius of attraction of individual 6 

traps, since the goal is to maximise overlap between traps or killing stations, in the case of 7 

lure and kill systems. 2  8 

 9 

The transects into the treated area with traps for D. mali at 3.7 m spacings showed a rapid 10 

change in catch with a short distance, with communication disruption evident from reduced 11 

catches in the central area of the treated blocks. This transect-based approach represents one 12 

method of determining potential effects from mass trapping or lure and kill. 38 Suppression of 13 

D. mali appears promising from these tests but other factors can be very important to the 14 

outcome, such as multiple mating by males, which is known to be an issue because it dilutes 15 

the population suppression effect from a reduced impact in the mating rate of females. 20 16 

High density and reproductive rate as well as female dispersal into the plots at 750 traps/ ha 17 

likely led to shoot damage reductions of only by ~50%, 26 which supports the need for area-18 

wide treatment. Treating larger areas with male removal should solve immigration 19 

problems.39 20 

 21 

For the citrophilous mealybug, P. calceolariae, further investigation of mass trapping or lure 22 

and kill systems appears warranted, although the optimum spacing is likely to need to be 23 

close and up to 1,000 points per ha may be needed for optimum results at high insect density. 24 

This is likely to require the development of different technology for control, offering cost-25 
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effective delivery of high point source density. It is likely that the efficiency of synthetic 1 

pheromone will be competitive with females due to longer hours of release for the synthetic 2 

lures than for the female.21 Consideration of multiple mating needs to be made in future 3 

assessments of population reduction in this species. 4 

 5 

Mass trapping of tortricid moths has been attempted previously using sex pheromone on 6 

several species, with the best results from high density trapping. 4, 15 In the case of E. 7 

postvittana, the lure strength was shown to have a major role to play in determining trap and 8 

grid efficiency, assessed as the corner to centre ratio. A new four component blend 22 was the 9 

most attractive lure and had the highest ratios of corner to centre, but lure strength and 10 

components did not affect the distance for maximum trap competition, at 8 m. Comparison of 11 

communication disruption from trap interference experiments suggested that spatial effects 12 

were possibly performing differently in the moth case compared with the mealybug. There 13 

was a tendency for trapping in central traps to coalesce. It is known that tortricid moths will 14 

track upwind lures in sequence 33, but it is not known how an array of competing traps are 15 

perceived by such moths. Our results suggest that this may indicate greater difficulty in 16 

achieving success with mass trapping of moths, although dispersal distance is also likely to 17 

be important. In practice mating disruption is already available, and mass trapping is not 18 

widely used against Lepidoptera, although there have been many tests.40 19 

 20 

For the case of the flower thrips, we are reporting negative results with our trapping array 21 

experiment, despite hundreds of catches in each trap. The lack of evidence for trap 22 

competition at one tree spacing offers little hope for mass trapping of this species with a 23 

kairomone, and potentially shows how the system can be used to screen prospective 24 

alternative lures. This negative result does not rule out other IPM strategies using the new 25 
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kairomone 31 but the sheer abundance of this highly mobile pest presents very significant 1 

challenges. 2 

  3 

Communication distances, like atmospheric pheromone concentration studied in mating 4 

disruption, will vary as a function of wind speed, vertical leaf area density, canopy form and 5 

other factors, 41 but recent evidence suggests that plant volatiles can operate over attraction 6 

distances as much as 8 m, as in the case of a range of arthropod taxa in soybeans.42 Several 7 

authors have considered adequate separation to avoid interference between such plant volatile 8 

treatments to be between 10 to 35 m. 43-45 For sex pheromones, inter-trap communication 9 

distances of up to 80 m were recorded for gypsy moth in forest under light wind speeds, using 10 

6 by 6 grids of traps, which showed lower catches in the centre of the array. 46  In another 11 

study with a forest system, effects were seen at even greater distances. 47  Bark beetles 12 

trapped with pheromones in 7×7 trap arrays showed higher catches on corners in many plots 13 

48 similar to the results seen here, and apparently predictable by the geometry as in our case 14 

with the 4×4 array. In an open field situation with Oriental fruit moth, active flight distances 15 

of up to 80 m were observed to a sex pheromone lure35, and for Cydia nigicana the attraction 16 

range of males to their sex pheromone was estimated at 200 m with stimulation (response to 17 

but not necessarily directed movement towards the odour source) from 400 m away.49 These 18 

values suggest that our estimates of the maximum distances with nil effect at 32 or 64 m may 19 

be underestimates, rendering our estimates of communication disruption also underestimates. 20 

 21 

The use of 16-trap arrays to determine whether there is a pattern of higher catch in the 22 

corners of the block is a relatively easy process, although the size of the ratio between catches 23 

in corner and centre traps was reduced in this array compared with the plots with high trap 24 

density. The size of the ratio also varied with species, trap density and pheromone loading. 25 
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Future assessments of the potential for mass trapping of new semiochemicals could follow a 1 

simple protocol of testing for trap competition at four or five spacings, and compare the 2 

corner to centre ratio to determine the optimum spacing. The edge to centre ratio is logically 3 

less sensitive than the corner to centre ratio but may have other advantages in calculating the 4 

active space of traps. 5 

 6 

More work is needed to determine guidelines for estimating values for these ratios, but the 7 

corner to centre ratio and the determination of a peak in this parameter at a certain trap 8 

spacing would appear to represent a useful basis for optimising spacing. Trap competition 9 

was clearly a spatially determined phenomenon, since apple and peach orchard, vineyard and 10 

forest habitats were employed in the various trials and the effect was apparent in all 11 

ecosystems. 12 

  13 

The greater communication disruption achieved with the mealybug sex pheromone mass 14 

trapping trials compared with the moth case suggest that this tactic may have better promise 15 

against the mealybugs. The lack of any trap competition present in the case of New Zealand 16 

thrips in a peach orchard suggests that cases that fall into this category may not be suitable 17 

for mass trapping. 18 

 19 

It is worth briefly considering the possible extension of our approach to derive estimates of 20 

trap efficiency and optimal spacing of equivalent killing systems to vertebrate pests. In fact, 21 

there are similarities between mass trapping of insects and trapping or poisoning of 22 

vertebrates. Poisoning has been widely used to eradicate pests such as rats on islands. 50 The 23 

similarity is most obvious with ground-based operations, with regularly-spaced stations. For 24 

example, ground treatment for Rattus rattus in New Zealand’s Pureora Forest used 25 
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brodifacoum at 31 m spacings, with an 8×8 grid arrangement.51 Unfortunately, spatially 1 

explicit records are not available, so any effects of trap competition on the corner or middle 2 

positions cannot be assessed for this case, but other records likely exist with vertebrates that 3 

could be analysed spatially. Subsequently, aerial operations have predominated in such 4 

forests, 51 where access can be difficult due to terrain, so data collection of this type was 5 

prevented. One recent New Zealand operation targeted removal of 13 invasive mammal 6 

species, 52 relying heavily on aerial methods. However, ground-based removal of cats (Felis 7 

catus) has been successful on a Mexican island 53 with bait stations at 20 m intervals after 8 

tracks were cut. It is possible that our approach to mass trapping, developed cost-effectively 9 

with large data sets for insects, may offer useful ideas for vertebrate pests to reduce the cost 10 

of developing new odourant-based tools and understanding the effects of spacing. 11 

  12 

However, the lessons from failing to eradicate rats in one tropical island case 53 identifies the 13 

need to understand the complexities such as relative attractiveness of baits and alternative 14 

foods, which can change seasonally. Here, we have developed an approach to determining the 15 

potential for novel semiochemicals against arthropods and other targets, as well as the 16 

framework for assessing the efficacy of a trapping grid, particularly at high trap densities that 17 

could be considered for mass trapping. Further work is needed to determine whether the 18 

corner to centre ratio can be developed into a predictive tool for success at mass trapping, as 19 

the current work tends to suggest. 20 

 21 
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Legends 1 

Figure 1 Theoretical trap framework for assessing trap competition, showing active spaces 2 

with a) no overlap, which might be expected in surveillance trapping,  b) partial overlap, c), 3 

increasing overlap, d) extensive overlap needed for mass trapping. 4 

 5 

Figure 2 Predicted changes in trap catch (top) and trap catch ratios (bottom) in (a) full sized 6 

and (b) 4×4 arrays as trap spacing d varies relative to the radius of attraction r. Vertical lines 7 

denote the maximum trap spacing compatible with mass trapping. 8 

 9 

Figure 3 Mean catch per trap of male apple leafcurling midge Dasinuera mali in 1 ha apple 10 

orchard plots (n=4), at three densities of oil-filled plastic Lynfield traps baited with sex 11 

pheromone, with 4, 16 or 750 traps per ha. 12 

 13 

Figure 4 Mean catch per trap of male apple leafcurling midge Dasinuera mali in 1 ha apple 14 

orchard plots (n=4), with 750 oil-filled plastic Lynfield traps baited with sex pheromone per 15 

ha and sub-sampled spatially as shown.  16 

 17 

Figure 5 Mean catch per trap in a labour-saving array with a 4 x 4 array of sex pheromone 18 

traps for apple leafcurling midge (Dasinuera mali), at 25 m spacing in 1 ha apple orchard 19 

plots (n=4). 20 

 21 

Figure 6 Relationship between trap spacing and the ratio of corner to centre catch in arrays of 22 

16 traps of light brown apple moth, Epiphyas postvittana with two component (at 10 or 100 23 

µg) or four component blends (at 1 mg) of female sex pheromone. The apple orchard data 24 

(triangle) were first reported in another study.27 25 
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 1 

Figure 7 Pheromone trap competition in citrophilous mealybug Pseudococcus calceolariae 2 

from corner to centre traps in an array of 16 traps at different spacings in vineyards in 3 

Hawke’s Bay, New Zealand, expressed as inter-trap spacings. Line is best fit by least-squares 4 

regression. 5 

 6 

Figure 8 Communication disruption as a function of trap spacing in citrophilous mealybug 7 

Pseudococcus calceolariae and light brown apple moth, Epiphyas postvittana, calculated 8 

from four centre traps in a replicated 16 trap array at each distance. Lines show best fit by 9 

least-squares regression. 10 

  11 
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Tables 1 

 2 

Table 1. Trap spacing and other parameters used for comparing trap competition to assess 3 

potential for mass trapping, using trap arrays with insects from three different orders. 4 

Insect species 

(Order: Family) 

Crop Experiment/ 

spacing (m) 

Number 

of traps 

per plot 

Lure and trap type 

Apple leaf curling midge 

Dasineura mali  (Diptera: 

Cecidomyiidae) 

Apple 

orchards 

Expt. 2.3.1: 

3.7, 23, 50 m 

750, 16, 

4 

 

2 µg of  sex pheromone (8Z)-

13-acetoxy-8-heptadecen-2-

one18, septa in oil traps20 

.. .. Expt. 2.3.2 16 .. 

Light brown apple moth 

Epiphyas postvittana 

(Lepidoptera: Tortricidae) 

Pine 

plantation 

Expt. 2.5.1: 

2, 4, 8, 16, 32 m 

 

16 10.5 and 105 µg, (E11-14Ac/ 

E9E11-14Ac) 30, septa in 

sticky traps 

.. Grape 

vines 

Expt. 2.5.2: 

2, 4, 8, 16, 32 m 

16 1mg, (E11-14Ac/ E9E11-

14Ac/ E11-14OH /E11-

16Ac), septa in sticky traps22 

.. Apple 27 

orchard 

17.6 m 16 105 µg, (E11-14Ac/ E9E11-

14Ac)30, septa in sticky traps 

Citrophilous mealybug 

Pseudococcus calceolariae   

(Homoptera: Coccoidea) 

 

Grape 

vines 

Expt. 2.4.1: 

8, 16, 32, 64 m 

16 1 mg, chrysanthemyl 2-

acetoxy-3-methylbutanoate, 

sex pheromone 21, septa in 

sticky traps 

.. .. Expt. 2.4.2: 

1.6, 3.2, 6 m 

16 .. 

New Zealand flower thrips 

Thrips obscuratus 

(Thysanoptera: Thripidae) 

Peach 

orchard 

Expt. 2.6 

4 m 

 

16 500 mg of 6-pentyl-2H-

pyran-2-one, polyethylene 

bags in sticky traps23 

 5 

 6 

  7 
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Table 2. Effect of corner or edge to centre trap position on mean catch of apple leaf curling 1 

midge Dasinerua mali (Cecidomyiidae) in a 1 ha block, at two trap densities. 2 

  Trap density 750 traps /ha 16 traps /ha 

Generation Corner Edge Centre Corner Edge Centre 

1 Mean midges /ha 9,207 1,843 358 23,600 14,125 4,575 

 Ratio of position: centre 25.8 5.2 .. 5.2 3.1 .. 

3 Mean midges /ha    58,541 41,090 22,375 

 Ratio of position: centre    2.6 1.8 .. 

 3 

  4 
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Fig. 1. 2 
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Fig 2  2 
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Fig. 3.  2 
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Fig.4  2 
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Fig. 5  4 
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Fig. 6 2 
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Fig. 7 5 
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Fig. 8 4 
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