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ABSTRACT

Blind Mexican cave fish (Astyanax fasciatus) lack a functioning visual system, and are
known to use self-generated water motion to sense their surroundings; an ability termed
hydrodynamic imaging. Nearby objects distort the flow field created by the motion of the
fish. These flow distortions are sensed by the mechanosensory lateral line. Little is known
about the fluid mechanics involved in hydrodynamic imaging, or how the behaviour of the

fish might influence their ability to sense the world around them.

Automated image analysis was used to study the effects of swimming kinematics on the
ability of the fish to sense their surroundings when introduced into a novel environment. The
fish reacted to avoid head-on collisions with a wall at a remarkably short mean distance of
4.0 £ 0.2 mm. The ability of the fish to react, was dependent on whether they were beating
their tail as they approached the wall. When following surfaces, such as a wall, the fish
changed their swimming kinematics significantly and used both tactile and hydrodynamic
information. Measuring the tendency of the fish to follow a tightening curve showed the fish

to be moderately thigmotactic.

The flow fields around freely swimming fish were experimentally measured using Particle
Image Velocimetry (PIV). A new algorithm was developed to calculate the pressure field
around the fish based on the velocity field measured using PIV. The algorithm was validated

against analytical and computational fluid dynamic (CFD) solutions.

The flow fields around gliding fish and the stimuli to the lateral line of the fish were calculated
using CFD models, validated against the experimental PIV data. The flow fields changed in
characteristic ways as the fish approached a wall head-on or swam parallel to a wall. At0.10
body lengths from a wall, the stimulus to the lateral line was estimated to be sufficient for
the fish to be able to detect the wall, but this decreased rapidly with increasing distance from
the wall. The CFD models suggested that the velocity of the fish does not affect the distance

at which they detect an object.

Hydrodynamic imaging is a short range sensory ability and blind cave fish require their
sensitive lateral line and fast reactions in order to be able to use it to sense the world
around them and avoid collisions. The information gained about the fluid mechanics of
hydrodynamic imaging, and the flow measurement and modelling techniques developed here

will be useful for further study of this remarkable ability.
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CHAPTER 1: Blind Cave Fish and
Hydrodynamic Imaging

1.1 Chapter Summary

The hypogean form of Astyanax fasciatus, commonly known as the blind Mexican cave
fish is found in subterranean caves in Mexico. As these fish lack eyes they have prompted
researchers to investigate how they manage to move about their environment without a visual
system. It has been found that they use hydrodynamic imaging, whereby the fish detect their
surroundings by sensing distortions in the flow field created by their own swimming motion.
Cave fish can then use this to build up a cognitive map of their surroundings. It appears that
cave fish can also actively enhance their ability to sense their surroundings by increasing

their swimming speed.

A. fasciatus use their lateral line to measure the flow field around them. The lateral line is
a mechanosensory system found in fish which is composed of haircell based sense organs
known as neuromasts which make up two sensory subsystems. The superficial neuromasts
are on the surface of the skin and encode largely velocity information. The canal neuromasts
are located in canals under the skin surface with pores opening to the surrounding fluid and
primarily encode pressure gradient information. The lateral line system of the hypogean
form of A. fasciatus is typical of many teleost fish, except that there are a large number
of superficial neuromasts. This is not dissimilar to the numbers of neuromasts found in
some closely related non-cave species. It has been found that the cupula of the superficial
neuromasts of the cave fish are longer than those of the sighted river population of the
same species, which may serve to increase their sensitivity to flow. The relationship of
this observation to hydrodynamic imaging is unclear since it has been demonstrated that the
canal system (rather than the superficial system) is principally involved in this behaviour.
Overall, we know that blind cave fish use their lateral line to gain information about their
surroundings and we have a general idea as to how this might work using hydrodynamic
imaging. But we do not have a good understanding of the flow field around the fish and
how this is altered by external objects or by changes in the fish’s swimming behaviour. How
these factors influence the fish’s ability to sense the world around them using hydrodynamic

imaging is an open question.




1.2 Structure of Chapter

This chapter introduces blind cave fish and the research that has been conducted into their
ability to sense their surroundings using hydrodynamic imaging. The structure and properties

of the lateral line system are also reviewed.
The chapter is arranged in the following structure:

1.3 Blind Cave Fish

Introduces blind Mexican cave fish and briefly overviews the habitat where they are found.

1.4 Hydrodynamic Imaging

Describes hydrodynamic imaging and what is known about it.

1.5 The Lateral Line

Reviews the morphology and function of the lateral line.

1.6 The Lateral Line of Blind Cave Fish

Reviews what is known about the lateral line of blind cave fish.

1.7 Conclusions

Summarises the conclusions that can be drawn from this chapter.




