The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
The Effect of Oxygen Dosage Rate on the Chemical and Sensory Changes Occurring During Micro-oxygenation of New Zealand Red Wine

Stuart Dykes

This thesis is submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Food Science, The University of Auckland, 2007

Academic Supervisor
Dr Paul A Kilmartin, Director of Wine Science, University of Auckland

Advisor
Dr Martin Pour Nikfardjam
LVWO Weinsberg
ABSTRACT

The technique of micro-oxygenation involves the deliberate addition of continuous, metered amounts of oxygen into a vessel of bulk wine during the maturation period (between the end of fermentation and bottling). The aim of the process is to improve the sensory properties of red wine, particularly the mouthfeel characteristics associated with the various polyphenol constituents. The success of the process appears to depend strongly on the ability to control the rate of oxygen dosage. The effect of dosage rate on the chemical and corresponding sensory changes of a red wine is the central theme of this thesis.

A method of dosing oxygen (at typical micro-oxygenation rates) into small volumes of wine (<100 litres) was developed using a dense polymer membrane diffuser. It was clearly demonstrated that wine could be reliably oxygenated at very low rates using a coiled length of FEP as the diffuser material. Oxygen dosage was regulated by adjusting the oxygen pressure inside the tube. The advantage with a dense polymer diffuser is that no bubbles are generated and the oxygenation efficiency is 100%. The diffuser was fully modeled and characterised for use in the laboratory scale trials detailed in Chapters Four and Six.

The small scale oxygenation equipment was used to conduct a fully replicated experiment to investigate the evolution of a Cabernet Sauvignon wine under four oxygenation treatments at dosage rates of 0, 10, 23 and 36 mg/L/mth. The total period of the trial was 105 days. HPLC analysis indicated that the rate change of low molecular weight polyphenols is directly related to the oxygen dosage rate. The concentration of the majority of the identifiable monomers, most notably the anthocyanins decreased throughout the course of the trial. The rate of decrease was directly related to oxygen dosage rate. Thiolyis results showed an increase in mDP for all treatments over the course of the trial until day 77 when they were observed to decrease for all treatments. The decrease in mDP coincided with an addition of SO₂ which was investigated in a subsequent trial. Spectrophotometric results indicated that the rate of formation of non-bleachable pigments was directly related to the rate of oxygen dosage with significant differences between the high rates (23 and 36 mg/L/mth) and the low rates (0 and 10 mg/L/mth). The trend for all treatments was for increased levels of stable pigments.
The sensory results show that the measured organoleptic temporal development exhibits a similar oscillatory behaviour compared to the anecdotally derived curve presented in figure 1-2. The distinction between the respective phases described in section 1.1.1 was, however less clear. The most significant factor in the model weighting was mouthfeel and astringency which correlates with the observed changes occurring in the wine polyphenols during maturation.

Overall the laboratory scale trial showed that the chemical polyphenol development was directly related to the oxygen dosage rate. The sensory evolution also appeared to be accelerated with higher oxygen dosage rates, although the oscillatory nature of the sensory response given a single linear input indicates a complex underlying mechanism driving the changes.

The effect of SO$_2$ on the development of wine polyphenols with and without oxygen was also investigated. The presence of SO$_2$ was found to have a significant effect on both mDP and the concentration of non-bleachable pigments. mDP was observed to decrease over the six week trial period irrespective of whether oxygen had been added or not. The mDP for the treatments without SO$_2$ increased steadily over the course of the trial. Similarly the formation of non-bleachable pigments was suppressed and even retarded with SO$_2$ present whereas for the treatments without SO$_2$ a steady increase was observed. The implication of these results is that SO$_2$ may have a much larger effect on tannin development than oxygen.

The use of electrochemical micro-oxidation (or ELMOX) was examined ostensibly to determine proof of concept and also compare the performance of glassy carbon and titanium as electrode materials against traditional micro-oxygenation. Notable transformations occurred with titanium showing higher levels of ethanal than the other treatments both chemically and by sensory measure. A greater rate of stable pigment formation was also observed for the titanium compared to the other treatments. The respective dosage rates for the glassy carbon ELMOX and traditional micro-oxygenation treatments were too low to be able to discriminate any significant differences compared to the control wine.
Gross oxygen consumption kinetics was measured using a device developed at the University of Auckland. Autocatalytic behaviour was observed in wines containing, even small quantities of yeast lees. Tightly filtered wines however exhibited first order kinetic behaviour. The result indicates that any residual yeast lees remaining in the wine dominate the consumption of dissolved oxygen effectively decreasing the net availability of oxygen for wine polyphenol reactions.

The computational fluid dynamics (CFD) analysis of the micro-oxygenation system showed that for a typical micro-oxygenation dosage rate there is very little mixing occurring in the tank. Localised flow loops form around the bubble plume and there is only slight lateral dispersion of the bubble column limiting the transport of the dissolved oxygen from the central plume. Despite some limitations in the method the ability to be able to visualise the physical system provides a powerful tool to help in analyzing and subsequently optimising the process.
In memory of
Ian Dykes
1941-2001
ACKNOWLEDGEMENTS

The work described in this thesis would not have been possible without the considerable help from a large number of people.

First and foremost I would like to acknowledge the support of my academic supervisor Dr Paul Kilmartin. Over the period of my research Paul has been fully supportive of my ideas and work giving me technical, logistical and financial assistance when required. Paul has also been a great mentor over the period of my post-graduate studies and someone I am honored and grateful to have as a supervisor.

I was fortunate enough to be awarded an AGMARDT scholarship, and this assisted me greatly in being able to carry out this research. Moreover, the support of the AGMARDT administration team was excellent throughout. Thanks also go to Dr Martin Pour Nikfardjam who was active in getting this project off the ground and for Lincoln University for providing much needed initial support.

Paul Mooney, the winemaker at Mission Estate Wines in the Hawke’s Bay was heavily involved in my own and other research projects at the University of Auckland Wine Science Programme. Paul was a tremendous help through the course of my research either providing wine samples or as a source of insight and pragmatic comment on my work.

I am also extremely grateful to the University of Auckland Statistics department who gave me wise counsel in terms of experimental design and subsequent data analysis. I would like to acknowledge particularly the assistance of Associate Professor Chris Triggs and Dr Marti Anderson for providing me with many useful tools and ideas to examine and better interpret my data. Thanks also for the final chapter go to Professor Peter Hunter who gave me much guidance in terms of converting the equations into working code.

Jan Robinson, the University of Auckland Wine Science Programme Laboratory Manager, gave me significant support throughout the experimental phase of the study, particularly the winemaking and associated tasks over the harvest period.
Acknowledgement should also be made of the sensory panelists who made themselves available for often tedious training and data collection sessions purely on a voluntary basis. Their enthusiasm and dedication was tremendous and is very much appreciated.

Finally I would like to thank my long suffering family for the continued love and support in this endeavor. Particular thanks go to my wife who always managed to put things in perspective when I was not able to. I am also very much looking forward to getting to know my children a little better from now on.
TABLE OF CONTENTS

CHAPTER ONE Introduction & Literature Review 1
 1.1 Introduction 1
 1.1.1 Micro-oxygenation - Definition 1
 1.1.2 Rate Dependence of Micro-oxygenation 5
 1.2 Research Objectives 7
 1.3 Review of Oxygen Mass Transfer and Mass Transport Processes 8
 1.3.1 Oxygen Delivery Methods 8
 1.3.2 Micro-bullage 9
 1.3.3 Dense Polymer Membrane Oxygenation 15
 1.4 The Role of Oxygen in Winemaking 17
 1.4.1 Molecular Oxygen as the Primary Oxidant 17
 1.4.2 The Production and Role of Ethanal 22
 1.4.3 Direct Condensation of Flavanols and Anthocyanins 23
 1.4.4 The Effect of Oxidation on Colour Stability 24
 1.4.5 The effect of Oxygen on the Evolution of Sensory Properties 29

CHAPTER TWO Preliminary Commercial Trial and Method Development 31
 2.1 Introduction 31
 2.2 Trial Setup 31
 2.2.1 Grapes 31
 2.2.2 Wine Processing 31
 2.2.3 Wine Sampling 33
 2.3 Method Development 34
 2.3.1 Monomeric Polyphenols 34
 2.3.2 Chemometric Analysis of RP-HPLC data 36
 2.3.3 Peak Alignment Pre-Processing 37
 2.3.4 Sample Fractionation Procedure 40
 2.3.5 Thiolysis 41
 2.3.6 Optimising Hydrolysis Conditions 44
 2.3.7 Thiolysis Procedure 46
2.3.8 Sensory Analysis 49
2.3.9 Ethics Approval 50
2.3.10 Data Analysis 52

2.4 Results and Discussion 53
2.4.1 Sensory Analysis 53
2.4.2 Low Molecular Weight Polyphenol HPLC Results 60
2.4.3 Thiolyis Results 69

2.5 Discussion 70

CHAPTER THREE Development of a Method for Oxygenation of Small Volumes of Wine 73
3.1 Introduction 73
3.2 Trials using Micro-Bullage in Large Aspect Ratio Tanks 75
3.3 Polymer Membrane Oxygenation 77
3.3.1 PMO Mass Transfer Model 79
3.3.2 Sealed-End Oxygen Partial Pressure Model 81
3.4 Methods and Materials 86
3.4.1 Membrane Material Selection 86
3.4.2 Hollow Fibre Contactors 86
3.4.3 Test Vessel 87
3.5 Procedure 88
3.6 Results 90
3.6.1 Oxygen Pressure 91
3.6.2 Mixing 92
3.6.3 Diffuser Loop Diameter 92
3.6.4 Effect of Ethanol 93
3.6.5 Effect of Temperature 96
3.6.6 Membrane fouling 96
3.7 Discussion 97
3.7.1 Oxygen Partial Pressure 97
3.7.2 Mixing 97
3.7.3 Ethanol 101
3.7.4 Temperature 101
CHAPTER FIVE Effect of Sulfur Dioxide and Oxygen on the Tannin Development in Red Wine 155

5.1 Introduction 155

5.2 Materials and Methods 156

5.2.1 Grapes 156

5.2.2 Wine Processing 156

5.2.3 Experimental Treatment Setup 158

5.3 Chemical Analyses 158

5.3.1 Colour measurement 158

5.3.2 Thiolysis 159

5.3.3 SO₂ Measurements 159

5.3.4 Data Analysis 159

5.4 Results & Discussion 160

5.4.1 Colourmetric Results 160

5.4.2 Thiolysis Results 161

5.4.3 SO₂ Concentrations 163

5.4.3 Discussion 163

CHAPTER SIX Electrochemical Micro-oxidation of Red Wine 165

6.1 Introduction 165

6.2 Trial Setup 166

6.2.1 Grapes 166

6.2.2 Wine Processing 166

6.2.3 Experimental Design 167

6.2.4 Wine Sampling 171

6.2.5 Sulfur Dioxide Treatment 171

6.3 Chemical Analysis 172

6.3.1 Low Molecular Weight Polyphenol Analysis 172

6.3.2 Thiolysis 172

6.3.3 Colour measurement 172

6.3.4 Sensory Analysis 173

6.3.5 Ethanal Analysis 174

6.3.6 Data Analysis 174
APPENDICES

Appendix I HPLC Standard Curves – Low Molecular Weight Polyphenols 237
Appendix II HPLC Standard Curves – Thiolysis 237
Appendix III Thiolysis Molar Yield Curves 238
Appendix IV Sensory Analysis - Standard Data Collection Form 240
Appendix V Forms Required for Ethical Approval to Run a Sensory Panel 245
Appendix VI Experimental Oxygenation Tank Drawings 248
Appendix VII Discretisation and Solution Procedure for Volume Average Navier Stokes Equation 256
Appendix VIII Detailed Drawing of Oxygenation Cell 264

REFERENCES 272
LIST OF FIGURES

Figure 1-1 Analysis of overhead associated with barrel maturation compared to micro-oxygenation. Assumptions are: the barrels are amortised over 3 years, depreciation calculated on both the micro-oxygenation unit and the stainless steel tanks. Oak adjuncts are calculated using oak staves at 20% new wood equivalent. Labour overheads include all barrel operations including storage and laboratory monitoring.

Figure 1-2 Different phases of red wine under micro-oxygenation treatment, adapted from (Lemaire 1995)

Figure 1-3 The three processes of micro-oxygenation

Figure 1-4 a) Schematic representation of micro-bullage oxygen delivery system. b) close up photograph of a diffuser in water

Figure 1-5 Schematic representation of mass transfer across the bubble interface.

Figure 1-6 Measured values of mass transfer coefficient (K_v) versus bubble diameter (d_b) for O_2 dissolution into pure water, from (Motarjemi and Jameson 1978)

Figure 1-7 Bubble diameter at the diffuser as a function of pore size for a 12% v/v ethanol solution, adapted from (Gaddis and Vogelpohl 1986)

Figure 1-8 Terminal rise velocity as a function of bubble diameter based on model developed by (Jamialahmadi, Branch et al. 1994)

Figure 1-9 Proportion of O_2 transferred from bubbles containing pure O_2 only released at different depths from the surface of the liquid (pure water). The curves are for different initial bubble diameters (mm) from (Motarjemi and Jameson 1978).

Figure 1-10 Bubble terminal velocity and bubble diameter as a function of ethanol concentration, from (Jamialahmadi and Mueller-Steinhagen 1992)

Figure 1-11 Molecular orbital energy diagram for ground state ($3Σ_g^+$) dioxygen

Figure 1-12 Autoxidation of catechol with electron donation from the phenolate ion

Figure 1-13 Summary of overall chemical oxidation process in wines from (Danilewicz 2003)

Figure 1-14 Proposed mechanism for aldehyde induced condensation of Tannin-Tannin and Tannin-Anthocyanin reactions, adapted from (Cheynier 2000)

Figure 1-15 Proposed mechanism for the formation of vinyl linked pigments, from (Mateus et al. 2002)
Figure 1-16 Proposed reaction mechanisms for the T-A type direct condensation of anthocyanins and proanthocyanidins, from (Cheynier, Remy et al. 2000) 27

Figure 1-17 Proposed reaction mechanisms for the A-T type direct condensation of anthocyanins and proanthocyanidins, from (Cheynier, Remy et al. 2000) 28

Figure 2-1 Micro-oxygenation setup at Mission Estate Winery 33

Figure 2-2 HPLC traces for a Cabernet Sauvignon wine. Main peak are identified as: 1=gallie acid, 2 = t-caftaric acid, 3 = s-glutathionylcaftaric acid (GRP), 4 = cis-caftaric acid, 5 = t-caftaric acid, 6 & 7 = unknown flavonols possibly B3 and B1 respectively, 8 = catechin, 9 = caffeic acid, 10 = delphinidin-3-glucoside, 11 = epicatechin, 12 = petunidin-3-glucoside, 13 = peonidin-3-glucoside, 14 = malvidin-3-glucoside, 15 = unidentified (61.7 mins), 16 = p-coumaric acid, 17 = quercetin-3-glucoside, 18 & 19 = unknown flavonols, 20 = quercetin. 35

Figure 2-3 Process flow for time-wise alignment of chromatographic peaks 38

Figure 2-4 Nine unaligned chromatograms of red wine at 520nm using gradient elution described in table 2-1 38

Figure 2-5 The same nine chromatograms as in figure 2-4 after alignment 39

Figure 2-6 Data Matrix structure for PCA analysis of RP-HPLC results 40

Figure 2-7 Hydrolytic cleavage of a proanthycanidin 43

Figure 2-8 Nucleophilic addition of toluene-α-thiol to the extension unit of a condensed tannin after hydrolysis 44

Figure 2-9 Hydrolysis optimisation trial 45

Figure 2-10 280 nm HPLC chromatogram trace of thiolysed polymeric fraction of Cabernet Sauvignon wine sample. Identified peaks are: 1 = catechin, 2 = epicatechin, 3 = epicatechin-3-O-gallate, 4 = epigallocatechin-4-benzylthioether, 5 & 6 = catechin-4-benzylthioether, 7 = epicatechin-4-benzylthioether, 8 = epicatechin-3-O-gallate-4-benzylthioether. 47

Figure 2-11 The two stereoisomers of catechin-4-thioether as observed in figure 2-10 48

Figure 2-12 a) Mean sensory scores for each attribute and sampling date. Error bars represent 95% confidence intervals 55

Figure 2-12 b) Mean sensory scores for each attribute and sampling date. Error bars represent 95% confidence intervals 56

Figure 2-13 a) Separation of treatment means 14 days after the start of treatment. Ellipses represent 95% confidence regions of group means. Individual panelist scores are overlaid onto the projection 57
Figure 2-13 b) Separation of treatment means 28 days after the start of treatment. Ellipses represent 95% confidence regions of the group means. Individual panelist scores are overlaid onto the projection.

Figure 2-13 c) Separation of treatment means 42 days after the start of treatment. Ellipses represent 95% confidence regions of group means. Individual panelist scores are overlaid onto the projection.

Figure 2-13 d) Separation of treatment means 56 days after the start of treatment. Ellipses represent 95% confidence regions of group means. Individual panelist scores are overlaid onto the projection.

Figure 2-14 PCA projection of the LMW Polyphenol HPLC data.

Figure 2-15 PCA loading plots for the LMW polyphenol HPLC data.

Figure 2-16 Schematic representation of coding for loadings plot interpretation.

Figure 2-17 a) Evolution of individual phenolic compounds over the course of the trial. Concentrations of B4 and unidentified compounds at 61.8 and 88.4 minutes are expressed as catechin equivalents.

Figure 2-17 b) Evolution of individual phenolic compounds over the course of the trial. Concentrations of t-caftaric acids and the two isomers of couteric acid are expressed as caffic and coumaric acid equivalents respectively. The concentration of the unidentified compound at 83.8 minutes is expressed as quercetin equivalents.

Figure 2-17 c) Evolution of individual phenolic compounds over the course of the trial. All compounds are expressed in terms of chromatogram peak area (mAu•s).

Figure 2-17 d) Evolution of individual phenolic compounds over the course of the trial. All compounds are expressed in terms of chromatogram peak area (mAu•s).

Figure 2-18 Evolution of mDP for treatment and control wines through the course of the trial. The labels above points represent the significance of the difference between the control and treatment wines and the sampling date as determined by ANOVA (P<0.05).

Figure 3-1 High aspect ratio tanks mounted in a large warehouse facility.

Figure 3-2 Schematic representation of the solute concentration gradients across a liquid-membrane-gas configuration.

Figure 3-3 Different types of polymer membranes.

Figure 3-4 Schematic representation of bi-directional solute fluxes in a sealed end membrane.

Figure 3-5 Photograph of the actual FEP diffuser used for the main trial.
Figure 3-6 Oxygen partial pressure as a function of distance from supply end to the opposite diameter for different feed pressures. 85

Figure 3-7 Dissolved Oxygen Meter Cradle; a) shows the component pieces, including the dissolved oxygen probe and b) is the components assembled and ready for installation into the tank. 87

Figure 3-8 Experimental setup shown as a schematic diagram and a photograph of the actual experimental apparatus 88

Figure 3-9 Typical dissolved oxygen accumulation for the following experimental parameters: bulk liquid = deionised water, gas = O₂ (food grade), O₂ feed pressure = 446.0 kPa, membrane specific area = 0.685 m⁻¹, stirring rate = 350 rpm, temperature = 15°C 90

Figure 3-10 Regression analysis used to calculate K_L for the trial described in figure 3-9, $K_L = 0.323 \times 10^{-9}$ ms⁻¹. 90

Figure 3-11 Variation in local mass transfer coefficient with oxygen partial pressure (feed pressure corrected using the model derived in section 3.3.2). Experimental parameters: bulk liquid = deionised water, gas = O₂ (food grade), membrane specific area = 0.685 m⁻¹, stirring rate = 350 rpm, temperature =20°C. 91

Figure 3-12 Variation in local mass transfer coefficient with mixing. Experimental parameters: bulk liquid = deionised water, gas = O₂ (food grade), O₂ pressure = 441 kPa, membrane specific area = 0.685 m⁻¹, temperature =15°C. 92

Figure 3-13 Variation in local mass transfer coefficient with diffuser diameter. Experimental parameters: bulk liquid = deionised water, gas = O₂ (food grade), O₂ pressure = 441 kPa, mixing rate 350 rpm, temperature =15°C. 93

Figure 3-14 Variation in local mass transfer coefficient with ethanol concentration. Experimental parameters: gas = O₂ (food grade), O₂ feed pressure = 441 kPa, mixing rate 350 rpm, membrane specific area = 0.685 m⁻¹, temperature =15°C. 94

Figure 3-15 Mass transfer coefficient as a function of increasing surface tension (from decreasing ethanol concentration). Experimental parameters as figure 3-14 95

Figure 3-16 Relationship between K_L (10% ethanol) and K (0% ethanol) for different oxygen feed pressures 95

Figure 3-17 Variation in local mass transfer coefficient with temperature. Experimental parameters: Bulk phase = de-ionised water, gas = O₂ (food grade), O₂ pressure = 441 kPa, mixing rate 350 rpm, membrane specific area = 0.685 m⁻¹, temperature =15°C. 96

Figure 3-18 Diffuser condition after 15 weeks in Cabernet Sauvignon wine 97
Figure 3-19 Tangential velocity profile assuming Rankine’s Combined vortex (adapted from Nagata (1975)). 99

Figure 3-20 Radial and axial velocity profiles for unbaffled stirred tank (adapted from Nagata (1975)) 100

Figure 3-21 K_L as a function of theoretical tangential velocity 100

Figure 3-22 Dosage rate curve for FEP membrane diffuser 102

Figure 4-1 Summary of processing steps 107

Figure 4-2 Schematic representation of experimental arrangement 108

Figure 4-3 Sampling apparatus 110

Figure 4-4 Sampling procedure and process flow 110

Figure 4-5 Canonical variates analysis plots of sensory results for sampling dates at 7 and 21 days after the start of treatment. Bold symbols represent treatment mean scores. Other symbols are individual panelist data. The circles surrounding treatment means indicate 95% confidence regions for the respective treatment group means. 118

Figure 4-6 Canonical variates analysis plots of sensory results for sampling dates at 35 and 49 days after the start of treatment. Bold symbols represent treatment mean scores. Other symbols are individual panelist data. The circles surrounding treatment means indicate 95% confidence regions for the respective treatment group means. 119

Figure 4-7 Canonical variates analysis plots of sensory results for sampling dates at 63 and 77 days after the start of treatment. Bold symbols represent treatment mean scores. Other symbols are individual panelist data. The circles surrounding treatment means indicate 95% confidence regions for the respective treatment group means. 120

Figure 4-8 Canonical variates analysis plots of sensory results for sampling dates at 91 and 105 days after the start of treatment. Bold symbols represent treatment mean scores. Other symbols are individual panelist data. The circles surrounding treatment means indicate 95% confidence regions for the respective treatment group means. 121

Figure 4-9 Unconstrained PCA of the mean sensory scores for each treatment and sample date. Data labels indicate sample date and dosage rate as “days since start of treatment”/“oxygen dosage rate” e.g. 7/23 = 7 days from start of treatment and 23 mg/L/mth dosage rate. The lines indicate the evolution of each treatment chronologically. 123
Figure 4-10 Principal Response curves for the three oxygenation treatments relative to the control wine. Sensory attribute weights are presented in the linestack plot to the right of the actual PRC plot. 124

Figure 4-11 Development of mean Folin-Ciocalteu polyphenol index for each treatment over the course of the trial. Error bars indicate standard deviation ($n=3$) 127

Figure 4-12 Development of mean visual intensity for each treatment over the course of the trial. Error bars indicate standard deviation ($n=3$) 129

Figure 4-13 Development of mean hue for each treatment over the course of the trial. Error bars indicate standard deviation ($n=3$) 130

Figure 4-14 PCA projection of UV-vis spectral data from all treatments and observation dates. Data labels indicate observation dates 133

Figure 4-15 Corresponding loadings plot vs wavelength for the PCA presented in figure 4-15 133

Figure 4-16 Results of bleached pigment assay for all treatments and observation dates. Data point represent mean values for each treatment and error bars indicate standard deviation ($n=3$) 134

Figure 4-17 PCA projection of HPLC chromatograms (280, 320, 365 and 520nm) 136

Figure 4-18 Loadings plots corresponding to the PCA scores projection shown in figure 4-18. The numbers adjacent to each peak correspond to the peak number from table 4-12 137

Figure 4-19 Evolution of individual phenolic compounds for each treatment through the course of the trial 139

Figure 4-20 Evolution of individual phenolic compounds for each treatment through the course of the trial 140

Figure 4-21 Evolution of individual phenolic compounds for each treatment through the course of the trial 141

Figure 4-22 Evolution of individual phenolic compounds for each treatment through the course of the trial. Error bars indicate standard deviation ($n=3$) 142

Figure 4-23 Evolution of individual phenolic compounds for each treatment through the course of the trial. Error bars indicate standard deviation ($n=3$) 143

Figure 4-24 spectral distribution of two unidentified flavolan at 61.8 and 69.6 minutes. While the peak absorbance is at 280 nm for both cases there is notable absorbance at 520-530 nm for both compounds. 144
Figure 4-25 Evolution of mDP for each treatment through the course of the trial. Error bars indicate standard deviation ($n=3$)

Figure 4-26 Principal Components Analysis of the relative proportions of proanthocyanidin subunits after thiolysis. Score data labels refer to the observation day. Abbreviated attribute labels refer to: cat = catechin, epi = epicatechin, ECG = epicatechin-3-O-gallate, EGC-TE = epigallocatechin-4-benzylthioether, cat-TE(i) = (2R,3R,4S)-catechin-benzylthioether, cat-TE(ii) = (2R,3R,4R)-catechin-benzylthioether, epi-TE = epicatechin-4-benzylthioether, ECG-TE = epicatechin-3-O-gallate-4-benzylthioether.

Figure 4-27 Correlation loadings plot of summary data matrix

Figure 4-28 Summary PCA for all sensory and chemical attributes discussed above. The data labels for the scores refer to observation date/dosage rate. The abbreviated attributes refer to: bleach = 520nm absorbance after addition of SO$_2$ (figure 4-17), FP1 and FP2 = the unidentified flavanol compounds eluting at 61.8 and 69.6 mins respectively (table 4-12), AP1 and AP2 = unidentified pigmented compounds eluting at 75 and 86 mins respectively (figure 4-12), quer-3-glu = quercetin-3-glucoside, mv-3-glu = malvidin-3-glucoside, del-3-glu = delphinidin-3-glucoside, pet-3-glu = petunidin-3-glucoside, peo-3-glu = peonidin-3-glucoside, cy-3-glu = cyanidin-3-glucoside

Figure 5-1 Proposed reaction mechanism for nucleophilic addition of bisulfite ion as a competing reaction for tannin-tannin condensation.

Figure 5-2 Summary of wine-making processing steps

Figure 5-3 Results of the bleaching assay. Error bars indicate standard deviation ($n=3$)

Figure 5-4 mDP as measured by thyolysis. Error bars indicate standard deviation ($n=3$)

Figure 5-5 SO$_2$ concentrations (bound and free) for treatment with oxygen

Figure 5-6 SO$_2$ concentrations (bound and free) for treatment without oxygen

Figure 6-1 Schematic representation of experimental arrangement

Figure 6-2 Modifications made for provision of a titanium electrode into the 15 litre research vessels

Figure 6-3 Galvanostats used for the ELMOX trial described in this trial

Figure 6-4 Scores plot from PCA analysis of HPLC chromatograms (280, 320, 365 and 520 nm). The data labels for each score refer to the “treatment”/ “days since start of treatment”. The respective key is: control = C, Micro-
oxygenation = MOX, ELMOX-titanium = Ti and ELMOX-glassy carbon = GC.

Figure 6-5 Loading plot from PCA analysis of HPLC chromatograms (280, 320, 365 and 520 nm). The red and blue traces correspond to the PC1 and PC2 loadings respectively. The number adjacent to the peaks refer to the peaks listed in table 6-3.

Figure 6-6 Evolution of individual phenolic compounds for each treatment through the course of the ELMOX trial ($n = 3$)

Figure 6-7 Evolution of individual phenolic compounds for each treatment through the course of the ELMOX trial ($n = 3$)

Figure 6-8 Evolution of individual phenolic compounds for each treatment through the course of the ELMOX trial ($n = 3$)

Figure 6-9 Evolution of individual phenolic compounds for each treatment through the course of the ELMOX trial ($n = 3$)

Figure 6-10 Evolution of mDP for each treatment through the course of the ELMOX trial. Error bars indicate standard deviation ($n = 3$)

Figure 6-11 Development of mean visual intensity for each treatment over the course of the ELMOX trial. Error bars indicate standard deviation ($n = 3$)

Figure 6-12 Development of mean visual hue for each treatment over the course of the ELMOX trial. Error bars indicate standard deviation ($n = 3$)

Figure 6-13 Results of the bleached pigment assay for all treatments and observation dates. Data point represent mean values for each treatment and error bars indicate standard deviation ($n = 3$)

Figure 6-14 Canonical variates analysis plots of sensory results for sampling dates at 7 (a) and 14 (b) days after the start of treatment. Bold symbols represent treatment mean scores. Other symbols are individual panelist data. The circles surrounding treatment means indicate 95% confidence regions for the respective group means.

Figure 6-15 Canonical variates analysis plots of sensory results for sampling dates at 21 (a) and 35 (b) days after the start of treatment. Bold symbols represent treatment mean scores. Other symbols are individual panelist data. The circles surrounding treatment means indicate 95% confidence regions for the respective group means.

Figure 6-16 Principal Response curves for the three treatments relative to the control wine. Sensory attribute weights are presented in the linestack plot to the right of the actual PRC plot.
Figure 6-17 Ethanal concentration for all treatments and observation dates. Data point represent mean values for each treatment and error bars indicate standard deviation ($n=3$) 195

Figure 6-18 Ethanal treatment means from sensory data the x-axis labels indicate the observation date (e.g. d07 = 7 days since the start of the trial) followed by the treatment information. The error bars indicate 95% confidence intervals. 196

Figure 7-1 Schematic representation of the string coupling between factors affecting a bubble plume performance (adapted from Darmana 2005). k_i = interphase mass transfer coefficient; a_i = bubble-wine interfacial surface area and d_b = bubble diameter. 200

Figure 7-2 Representation of interphase mass transfer of O$_2$ and CO$_2$ on an individual bubble level 206

Figure 7-3 Schematic representation of time marching approach 207

Figure 7-4 Schematic representation of liquid to bubble phase mapping method, the notation accompanies equation [7.23] adapted from (Darmana, Deen et al. 2005) where S is the bubble position in space at time t 211

Figure 7-5 Schematic representation of the boundary conditions adapted from (Darmana, Deen et al. 2005) 212

Figure 7-6 Computational flow of bubble plume model 213

Figure 7-8 Photograph of Oxygenation cell described in section 7.4.1. 215

Figure 7-9 The oxygen consumption rate data for treatment T4c (table 7-2). The red circles represent the raw data. The blue line represents the fitted curve (using equation [7.25] and the dashed blue lines either side of the solid blue line represent the 95% confidence interval bands. 220

Figure 7-10 The oxygen consumption rate data for treatment T5 (table 7-3). The red circles represent the raw data. The blue line represents the fitted curve (using equation [7.28] and the dashed blue lines either side of the solid blue line represent the 95% confidence interval bands. 220

Figure 7-11 Oxygen consumption rate for Cabernet Sauvignon (T5 and T5b in table 7-3) including a repeated saturation (T5b) 221

Figure 7-12 Comparison of the oxygen consumption rates of the same wine after different filtration treatments (refer table 7-1) 221

Figure 7-13 Visualisation of CFD simulation 1 (refer table 7-4) with an oxygen dosage rate of 25 mg/L/mth and a bubble size of 670 µm at $t=120$ seconds; a) shows the bubble position, b) represents a diagonal slice of the wine phase
velocity field and c) represents the dissolved oxygen concentration in mg/L.

Figure 7-14 Visualisation of CFD simulation 4 (refer table 7-4) with an oxygen dosage rate of 200 mg/L/mth and a bubble size of 670 μm at t=120 seconds; a) shows the bubble position, b) represents a diagonal slice of the wine phase velocity field and c) represents the dissolved oxygen concentration in mg/L.

Figure 7-15 Visualisation of CFD simulation 4 (refer table 7-4) with an oxygen dosage rate of 1000 mg/L/mth and a bubble size of 670 μm at t=120 seconds; a) shows the bubble position, b) represents a diagonal slice of the wine phase velocity field and c) represents the dissolved oxygen concentration in mg/L.

Figure 7-16 Visualisation of CFD simulation 4 (refer table 7-4) with an oxygen dosage rate of 25 mg/L/mth and a bubble size of 310 μm at t=120 seconds; a) shows the bubble position, b) represents a diagonal slice of the wine phase velocity field and c) represents the dissolved oxygen concentration in mg/L.

Figure 7-17 Visualisation of CFD simulation 4 (refer table 7-4) with an oxygen dosage rate of 25 mg/L/mth and a bubble size of 1000 μm at t=120 seconds; a) shows the bubble position, b) represents a diagonal slice of the wine phase velocity field and c) represents the dissolved oxygen concentration in mg/L.

Figure 7-18 Oxygen mass fraction remaining in the bubble as a function of fluid column height above the diffuser.
LIST OF TABLES

Table 1-1 Summary of published Micro-oxygenation dosage rates 6
Table 2-1 Gradient elution profile for evaluation of monomeric polyphenols where: A = H2O, B = H2O +5% CH3COOH and C= CH3CN. 36
Table 2-2 Summary of thiolysis conditions in recently published studies 44
Table 2-3 Gradient elution profile for thiolysis run 46
Table 2-4 Summary of proanthocyanidin constitutive units used to calculate from degree of polymerization 48
Table 2-5 Summary of sensory attributes 51
Table 2-6 Univariate Sensory Analysis Results 53
Table 2-7 Table of results from a single factor MANOVA 54
Table 2-8 Major peaks from PCA loadings plot Figure 2-15 63
Table 2-9 Molar proportion of individual extension and terminal units after thiolysis. The significance of the difference between the treatment and control wines is indicated. 72
Table 3-1 Limitations of commercial trials 74
Table 3-2 Comparison of corrected oxygen partial pressure vs feed pressures 85
Table 3-3 Gas permeability values of fluoropolymers based on 100µm film thickness at 23°C using ASTM D1434 for gases and DIN53122 for water vapour. Adapted from (Seiler 1997) 86
Table 3-4 Experimental design matrix 89
Table 4-1 Oenological parameter of the Cabernet Sauvignon must 106
Table 4-2 Dosage Rate Summary 108
Table 4-7 Summary of sensory attributes 116
Table 4-8 Results of single factor MANOVA for each sample date 122
Table 4-9 mean (n=3)ab mean Folin-Ciocalteu polyphenol index (mg/L gallic acid equivalent) for all treatments and observation dates. 128
Table 4-10 mean (n=3)ab raw visual intensity (420+520+620nm) for all treatments and observation dates. 129
Table 4-11 mean (n=3)ab raw hue (420/520nm) for all treatments and observation dates. 130
Table 4-12 mean (n=3)ab absorbance at 520nm after bleaching with bisulphite for all treatments and observation dates. 134
Table 4-13 Major peaks from PCA loadings plot Figure 4-19 138
Table 4-14 mean (n=3)ab degree of polymerisation after thiolysis and quantification with HPLC. 146
Table 5-1 Oenological parameters of the Cabernet Sauvignon must

Table 5-2 Experimental Design

Table 5-3 Mean (n=3)ab results of bleaching assay for all treatments and observation dates.

Table 5-4 Mean (n=3)ab results of mDP for all treatments and observation dates.

Table 6-1 Summary of oenological parameters of the wine used for the ELMOX trial

Table 6-2 Summary of respective treatments

Table 6-3 Major peaks identified from PCA loading plot figure 6-5

Table 6-4 Mean (n=3)ab degree of polymerisation after thiolyis and quantification with HPLC.

Table 6-5 Mean (n=3)ab intensity (420+520+620 nm) for all treatments and observation dates

Table 6-6 Mean (n=3)ab hue (420/520 nm) for all treatments and observation dates

Table 6-7 Mean (n=3)ab absorbance at 520 nm after bleaching with bisulfite for all treatments and observation dates.

Table 6-8 Results of single factor MANOVA for each sample date

Table 6-9 Mean (n=3)ab ethanal monomer concentrations for all treatments and observation dates

Table 7-1 Experimental treatments for oxygen consumption measurements described in section 7.4.1

Table 7-2 Curve fitting results for oxygen consumption rate curves exhibiting first order behaviour

Table 7-3 Curve fitting results for oxygen consumption rate curves exhibiting autocatalytic behaviour

Table 7-4 Summary of the CFD simulation parameters

Table 7-5 Model parameters and values

Table A-1 Standard curves for commercially available phenolic compounds. Used in Chapters Two, Four and Six

Table A-2 Standard curves for commercially available phenolic compounds. Used in Chapters Two, Four, Five and Six
NOMENCLATURE

CHAPTERS ONE through SIX

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>specific area (contact area divided by the volume of fluid being aerated) ((1/m))</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>(A-T)</td>
<td>anthocyanin – tannin condensation product</td>
</tr>
<tr>
<td>(b)</td>
<td>attribute weighting factor</td>
</tr>
<tr>
<td>(c)</td>
<td>response pattern</td>
</tr>
<tr>
<td>(C)</td>
<td>concentration ((\text{mol/L}))</td>
</tr>
<tr>
<td>CFD</td>
<td>computational fluid dynamics</td>
</tr>
<tr>
<td>COW</td>
<td>correlation optimised warping</td>
</tr>
<tr>
<td>CRZ</td>
<td>cylindrical rotating zone</td>
</tr>
<tr>
<td>CVA</td>
<td>canonical variates analysis</td>
</tr>
<tr>
<td>(d)</td>
<td>bubble diameter</td>
</tr>
<tr>
<td>DO</td>
<td>dissolved oxygen</td>
</tr>
<tr>
<td>(E^\circ)</td>
<td>standard electrode potential ((V))</td>
</tr>
<tr>
<td>ELMOX</td>
<td>electrochemical micro-oxidation</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionisation</td>
</tr>
<tr>
<td>FEP</td>
<td>fluorinated ethylene-propylene co-polymer</td>
</tr>
<tr>
<td>FP1</td>
<td>unidentified flavanol at 61.8 minutes</td>
</tr>
<tr>
<td>FP2</td>
<td>unidentified flavanol at 69.6 minutes</td>
</tr>
<tr>
<td>FVZ</td>
<td>free vortex zone</td>
</tr>
<tr>
<td>(H)</td>
<td>Henry’s law coefficient ((\text{Pa}\cdot\text{m}^3/\text{mol}))</td>
</tr>
<tr>
<td>HPLC-DAD</td>
<td>high performance liquid chromatography – diode array detector</td>
</tr>
<tr>
<td>(I)</td>
<td>electrical current ((A))</td>
</tr>
<tr>
<td>(j)</td>
<td>mass flux ((\text{kg/s}))</td>
</tr>
<tr>
<td>(k)</td>
<td>individual phase mass transfer coefficient – (\text{ms}^{-1})</td>
</tr>
<tr>
<td>(K_l)</td>
<td>overall mass transfer coefficient ((\text{m/s}))</td>
</tr>
<tr>
<td>(K_a)</td>
<td>acid dissociation constant</td>
</tr>
<tr>
<td>(l_e)</td>
<td>effective membrane thickness ((\text{m}))</td>
</tr>
<tr>
<td>LC-MS</td>
<td>liquid chromatography mass spectrometry</td>
</tr>
<tr>
<td>LMW</td>
<td>low molecular weight</td>
</tr>
<tr>
<td>MANOVA</td>
<td>multivariate analysis of variance</td>
</tr>
<tr>
<td>MLF</td>
<td>malo-lactic fermentation</td>
</tr>
<tr>
<td>MOX</td>
<td>micro-oxygenation</td>
</tr>
<tr>
<td>(n_e)</td>
<td>number of electrons</td>
</tr>
<tr>
<td>(P)</td>
<td>pressure</td>
</tr>
<tr>
<td>(p)</td>
<td>permeability ((\text{mol/m}\cdot\text{s}\cdot\text{Pa}))</td>
</tr>
<tr>
<td>PET</td>
<td>polyethylene terephthalate</td>
</tr>
<tr>
<td>PMO</td>
<td>polymer membrane oxygenation</td>
</tr>
<tr>
<td>PCA</td>
<td>principal components analysis</td>
</tr>
<tr>
<td>PC1</td>
<td>principal component 1</td>
</tr>
<tr>
<td>PC2</td>
<td>principal component 2</td>
</tr>
<tr>
<td>PRC</td>
<td>principal response curve</td>
</tr>
<tr>
<td>(Q)</td>
<td>charge ((\text{coulomb}))</td>
</tr>
<tr>
<td>(r)</td>
<td>radius</td>
</tr>
</tbody>
</table>
R = ideal gas constant - J·mol⁻¹
RDA = redundancy analysis
ROTE = roll on tamper evident
RP-HPLC = reversed phase high performance liquid chromatography
s = fibre length (m)
S = membrane partition coefficient
t = time
T = temperature (K)
T = treatment effect
T - A = tannin – anthocyanin condensation product
TOF = time of flight
UV-VIS = ultra violet - visible
v = velocity (m/s)
v/v = volume per volume
w/v = weight per volume

Greek Symbols

ε = error term in principal response model
φ = diameter (m)
Γ = diffusion coefficient (m²/s)
λ = wavelength (nm)
Λ = Wilks lambda statistic
μ = viscosity (kg/ms)
ω = rotational velocity (rad/s)
ρ = density (kg/m³)
σ = surface tension (N/m)
σ² = variance
Σg = triplet spin state
χ² = chi-squared test statistic

Subscripts

e = cylinder
d = treatment index
e = effective
ext = external
g = gas phase
G = gas phase
GO = bulk gas phase
GI = interfacial gas phase
int = internal
k = attribute index
l = liquid phase
L = liquid phase
LI = interfacial liquid phase
LO = bulk liquid phase
CHAPTER SEVEN

\(a \) = bubble wine interfacial area (m²)
\([A]\) = concentration of reactant A (kg/m³)
\([B]\) = concentration of product B (kg/m³)
\(C \) = bubble force coefficient (dimensionless)
\(c \) = solute concentration (kg/m³)
\(\text{CFD} \) = computational fluid dynamics
\(d \) = bubble diameter (m)
\(e \) = exponential operator
\(\text{E-E} \) = Euler-Euler two phase model
\(\text{E-L} \) = Euler Lagrange two phase model
\(F \) = force (N)
\(g \) = acceleration vector due to gravity (m/s²)
\(\text{GAE} \) = gallic acid equivalent
\(H \) = Henry’s law coefficient (Pa·m³/mol)
\(I \) = identity tensor
\(j \) = mass flux
\(k \) = reaction rate constant
\(K_{L} \) = interphase mass transfer coefficient (m/s)
\(m \) = mass (kg)
\(\text{NTU} \) = nephelometric turbidity units
\(P \) = pressure (Pa)
\(r \) = radius (m)
\(R^2 \) = quality control parameter from regression
\(\text{Re} \) = Reynolds number
\(\text{RMSE} \) = root mean squared error
\(S \) = source and sink terms for the transport equation
\(Sc \) = Schmidt number, \(Sc = \mu / \rho \Gamma \)
\(Sh \) = Sherwood number, \(Sh = k_{L}d / \Gamma \)
\(\text{SSE} \) = sum of square due to error
\(t \) = time (s)
\(u \) = liquid phase velocity vector (m/s)
\(v \) = bubble phase velocity vector (m/s)
\(V \) = volume (m³)

Greek Symbols
\(\alpha \) = coefficient in the autocatalytic rate equation
\(\beta \) = coefficient in the autocatalytic rate equation
\(\delta t \) = time increment
\(\varepsilon \) = volume fraction (dimensionless)
\(\xi \) = volume fraction of bubble included in a cell (dimensionless)
\(\phi \) = interphase coupling term (N/m³)
\(\Gamma \) = diffusion coefficient (m²/s)
\(\lambda \) = interpolation factor (dimensionless)
\(\mu \) = viscosity (kg/ms)
\(\omega \) = Lagrangian quantity
\(\Omega \) = Eulerian quantity
\(\rho \) = density (kg/m³)
\(\tau \) = viscous stress tensor (N/m³)
\(\nabla \) = gradient operator (1/m)

Subscripts

\(b \) = bubble
\(bub \) = time increment for bubble phase momentum calculation
\(b \rightarrow l \) = bubble to liquid
\(CO_2 \) = carbon dioxide
\(\text{Drag} \) = drag force
\(D \) = sink
\(\text{equivalent} \) = equivalent volume
\(\text{flow} \) = time increment for liquid phase momentum calculation
\(g \) = gas phase
\(L \) = source
\(l \) = liquid phase
\(l \rightarrow b \) = liquid to bubble
\(\text{Lift} \) = lift force
\(P \) = pressure force
\(O_2 \) = oxygen
\(\text{V-M} \) = virtual mass force
\(0 \) = initial (i.e. at time = 0)

Superscripts

\(* \) = interfacial property
\(\kappa \) = iteration counter