Structural and functional characterisation of the Staphylococcal superantigen-like protein 11 (SSL11)

Matthew Craig Chung

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biological Sciences, The University of Auckland, 2008.
Abstract

Staphylococcus aureus is a human pathogen with significant socioeconomic impact. It is the causative agent of many life-threatening disease states, including sepsis, staphylococcal toxic shock syndrome and necrotizing pneumonia. *S. aureus* is associated with 1% of all hospital stays and estimated costs of US$9.5 billion / year (for 2000 and 2001) in the USA alone (Noskin *et al.*, 2005).

Recently, a novel family of virulence factors produced by *S. aureus* was identified, which share sequence and structural homology to the infamous superantigens (Arcus *et al.*, 2002; Williams *et al.*, 2000) – proteins that cause a range of symptoms, including food poisoning and toxic shock. This family of staphylococcal superantigen-like proteins (SSLs) includes 14 members, of which 11 (SSLs 1-11) are closely linked within a mobile genetic element, called a pathogenicity island (Kuroda *et al.*, 2001). To date, the literature suggests that the SSLs exhibit important host immune-evasion functions that are distinct from the superantigens. SSL5 has been reported to inhibit leukocyte rolling, a key process in their recruitment to sites of infection (Bestebroer *et al.*, 2006). SSL7 inhibits serum-mediated killing of bacteria (Langley *et al.*, 2005). This thesis describes the investigation into the structure and function of the related protein, SSL11.

The binding specificity of SSL11 has been identified as the trisaccharide Neu5Acα2-3Galβ1-4GlcNAc, where Neu5Ac is essential for interaction, whereas the NAc sidechain of GlcNAc is not, but is highly favoured. The interaction between the related carbohydrate, sialyl Lewis X (sLe^x^, or Neu5Acα2-3Galβ1-4[Fucα1-3]GlcNAc), and SSL11 has been characterised at an atomic level by X-ray crystallography. The dissociation constant of SSL11 binding to sLe^x^ was determined by surface plasmon resonance to be in the micromolar to sub-micromolar range. Investigation into the effects of SSL11 on neutrophils reveals that nanomolar concentrations of SSL11 inhibited neutrophil rolling on a P-selectin surface *in vitro*. Additionally, SSL11 was rapidly internalized, exhibited a cytoplasmic distribution and caused changes in actin, visible by 2-D gel analysis.

The characterization of the interaction between SSL11 and the previously-identified ligand, FcαRI (the myeloid immunoglobulin A receptor), is also described. The dissociation constant
of SSL11 binding to FcαRI was determined by surface plasmon resonance to be in the micromolar to sub-micromolar range and was found to be sialic acid-dependent. Binding of SSL11 to FcαRI inhibited the binding of its native ligand, IgA.

The sialic acid-dependent glycan-binding site of SSL11 is the sole site of interaction with the neutrophil surface, shown by neuraminidase treatment of cells and complete abrogation of binding by a site-directed functional knockout mutant. Residues involved in glycan binding were found to be conserved in SSLs 2-6, giving rise to a potential related function between this subset of the SSL family.
Acknowledgements

I owe gratitude to so many people that have contributed to this thesis in many different ways. I wish to start by thanking Professors Ted Baker and John Fraser for giving me the opportunity to work on this project. Thank you for your support, direction and enthusiasm. I have enjoyed this experience and am grateful for your guidance.

To the Fraser lab, past and present - It has been a blast. A particular mention goes to the “old school” PhDs – Jace, Lily, Natasha, Nikki and Amanda – thanks for the good times. It would have been far less enjoyable without your company. To the post-docs – Thomas, Birgit, Ries, Indira, Grant and Fiona – you guys have such broad experience and I have benefited greatly from that, so thank you. Thanks to Phil for teaching me the ways of the BIAcore and to Vanessa and Fiona for keeping the place up and running (and making sure I wear my labcoat).

Thanks to the Baker group for putting up with me. In particular, special thanks to Heather for helping me so much with the crystallography side of things. Tom, Fasseli, Chris, David, Jerome and Ghader, thank you for your technical assistance.

To those people in far off places: Bruce Wines, thanks for your help, ideas and continual optimism. Thank you Chris Kirton, you were instrumental in helping me develop the rolling assays.

To my loving family, especially my parents, I couldn’t have done it without your continual and unwavering support. What more can I say but thank you for always being there for me. Mum and Dad, you must be glad that I’m finally on my way to joining the “real world”!

Go team toxin!

This research was funded by the Maurice Wilkins Centre for Molecular Biodiscovery
Table of Contents

Abstract ... I
Acknowledgements ... III
Table of Figures .. IX
Table of Tables ... X
Abbreviations ... XI

Chapter 1 - Introduction .. 1

1.1 Overview .. 1
1.2 *Staphylococcus aureus* ... 2
1.2.1 Staphylococci ... 2
1.2.2 Pathogenesis of *S. aureus* .. 2
1.2.3 The *S. aureus* genome and antibiotic resistance .. 2
1.3 Host defenses .. 3
1.3.1 The complement system ... 3
 i) The three activation pathways ... 4
 ii) Formation of the membrane attack complex (MAC) ... 5
 iii) The anaphylotoxins, C3a, C4a and C5a .. 5
1.3.2 Pro-inflammatory responses ... 6
1.3.3 Leukocyte recruitment to sites of inflammation ... 6
 i) Leukocyte tethering and rolling ... 7
 ii) Leukocyte adhesion .. 8
 iii) Extravasation / diapedesis ... 9
 iv) Paracellular migration .. 9
 v) Transcellular migration .. 10
1.3.4 Neutrophil killing of bacteria ... 11
1.3.5 Phagocytosis ... 11
1.3.6 Oxidative burst ... 12
1.3.7 Lactoferrin .. 12
1.3.8 Neutrophil extracellular traps (NETs) ... 13
1.4 Host evasion by *S. aureus* ... 13
1.4.1 Complement evasion by *S. aureus* ... 14
 i) Inhibition of the initiation of the complement system .. 14
 ii) Inhibition of C3 convertase ... 15
 iii) Inhibition of the complement cascade through C3b .. 15
 iv) Inhibition of chemotaxis by C5a .. 15
1.4.2 Evasion of neutrophil killing by *S. aureus* ... 16
 i) Factors that inhibit opsonophagocytosis of *S. aureus* .. 16
 ii) Factors that inhibit lysis of *S. aureus* in the phagolysosome .. 16
 iii) Toxins that lyse neutrophils .. 17
1.4.3 Other evasion mechanisms ... 17
1.5 Virulence factors produced by *S. aureus* ... 18
1.5.1 Exfoliative toxins ... 18
1.5.2 Panton-valentine leukocidin ... 18
1.5.3 Superantigens .. 19
 i) Three-dimensional structure of classical bacterial SAgs .. 21
Chapter 2 - Methods and Materials ...31

2.1 Materials ...31
2.1.1 DNA analysis ...31
 i) Common buffers ..31
 ii) Oligonucleotides ..31
 iii) Plasmids ..31
 iv) Bacterial strains ...32
2.1.2 Protein analysis ...32
 i) Antibodies ...32
 ii) Buffers and solutions ..32
 iii) Media ..33
2.1.3 Cell analysis ...33
 i) Cell lines ...33
 ii) Cell culture media ..34
2.2 Methods ..34
2.2.1 DNA analysis ...34
 i) Purification of genomic DNA from S. aureus ..34
 ii) Purification of genomic DNA from E. coli ...34
 iii) Plasmid preparation by alkaline lysis ..35
 iv) Plasmid preparation for sequencing ..35
 v) Agarose gel electrophoresis ...36
 vi) Restriction endonuclease digestion of DNA ..36
 vii) Preparation of T-tailed plasmid ...36
 viii) Polymerase Chain Reaction (PCR) ..36
 ix) Purification of DNA from agarose gel ...37
 x) Ligation of DNA ..37
 xi) Site-directed mutagenesis by overlap PCR37
 xii) Production of chemically competent E. coli38
 xiii) Transformation of chemically competent E. coli38
2.2.2 Protein analysis ...38
 i) Production of IDA and GSH sepharose ..38
 ii) Protein expression and purification from E. coli39
 iii) Using the pGEX3C expression system ..39
 iv) Using the pET32a3C expression system ..40
 v) Large scale preparation of recombinant protein expressed by E. coli 40
 vi) Size exclusion chromatography ...41
 vii) Anion exchange chromatography ..41
 viii) Protein separation by SDS polyacrylamide gel electrophoresis (PAGE) 41
 ix) Coomassie Blue staining of proteins ..41
Chapter 3 – Investigating the interaction between SSL11 and FcαRI53

3.1 Introduction ...53
3.2 Analysis of ssl11 from clinical isolates of S. aureus53
3.3 Cloning, expression and purification of SSL11 ..57
3.4 Comparison between SSL11 from GL10 and US661059
3.5 Seroconversion to SSL11 ..59
3.6 Binding studies of SSL11 ..60
3.7 Cloning, expression and purification of biotin ligase (BirA)61
3.8 Biosensor analysis of human IgA binding to an FcαRI surface61
3.9 Steady state affinity of SSL11 binding FcαRI ..62
3.10 Carbohydrate inhibition of SSL11 binding to FcαRI64
3.11 SSL11 binding to FcαRI is Sia dependent ..67
3.12 SSL11-US6610 binds to leukocyte populations68
3.13 SSL11-GL10 inhibits IgA binding to neutrophils69
3.14 SSL11-US6610 but not SSL11-GL10 causes neutrophil aggregation70
3.15 Discussion ...72
Chapter 4 – The three-dimensional structure of SSL11 and its interaction with sLex ...74

4.1 Introduction ...74
4.2 Crystallization of SSL11-US6610...74
4.3 X-ray diffraction data from SSL11-US6610 crystals75
4.4 Determination and refinement of the SSL11-US6610 crystal structure76
4.5 The monomer structure of SSL11-US6610...78
4.6 Dimerisation of SSL11-US6610 ...81
4.7 Allelic variation in SSL11 ...83
4.8 Attempted co-crystallization of SSL11-US6610 with Sia or Fc\textalpha RI84
4.9 Sialyl Lewis X (sLex) ...84
4.10 Crystallization of SSL11-US6610 in complex with sLex85
4.11 Determination and refinement of the SSL11-US6610:sLex crystal complex ..85
4.12 The crystal structure of SSL11-US6610:sLex86
4.13 The sLex binding site ...89
4.14 The SSL11:sLex dimer ...93
4.15 Comparison of SLex binding site with other SSLs96
4.16 Flow cytometric analysis of SSL11 competition with an anti-sLex mAb98
4.17 Genetic analysis of SSL11 binding to sLex ..99
4.18 Competition binding studies with Fc\textalpha RI and sLex100

Chapter 5 – Investigating the binding specificity of SSL11 and its effect on neutrophils .. 104

5.1 Introduction ..104
5.2 Identification of SSL11 ligands ...104
5.3 Determination of the carbohydrate specificity of SSL11106
5.4 Confirmation of the sLex-binding site of SSL11-US6610 by site-directed mutagenesis ...111
5.5 Binding studies of SSL11-T168P ..112
5.6 In vitro neutrophil rolling assay ...113
5.7 Cellular internalisation of SSL11-US6610 ..114
5.8 Neutrophil two-dimensional gel electrophoresis ...116
5.9 Discussion ...119

Chapter 6 - Discussion .. 124

6.1 SSL11 exhibits a high variation in primary sequence124
6.2 SSL11 is immunogenic ..125
6.3 Structural comparison of SSL11 with CHIPS ..125
6.4 Potential effects of glycan binding by SSL11 ..126
 i) Sia-recognising Ig-superfamily lectins (Siglecs)126
 ii) Selectins ...129
 iii) Gangliosides ...130
 iv) Sia-dependent adhesion of S. aureus ...132
6.5 Internalisation of SSL11 ...132
6.6 Future directions ..133
 i) Identifying a receptor for SSL11 on S. aureus133

- VII -
ii) Determining the interaction of SSL11 with other SSLs 133
iii) Designing inhibitory drugs against the SSLs 134
iv) Defining the role of SSL11 in phagocytosis 135
v) Determining the effect of SSL11 on actin 136

6.7 Conclusions ... 136

Chapter 7 - Appendix .. 137

7.1 Oligonucleotides ... 137
7.2 Plasmids .. 138
7.3 S. aureus strains .. 142
7.4 Serum samples from S. aureus-infected patients 142
7.5 Seroconversion ... 143
7.6 MALDI-MS Results ... 144
7.7 Glycan array v2.1 ... 149
7.8 QStar Results ... 156

Chapter 8 - Bibliography .. 160
Table of Figures

Figure 1.1 - The Complement system ..4
Figure 1.2 - Leukocyte recruitment ..7
Figure 1.3 - Diapedesis ..9
Figure 1.4 - Inhibition of the Complement system13
Figure 1.5 - Neighbour-Joining tree of SAgs and SSLs19
Figure 1.6 - The SAg fold ...22
Figure 1.7 - The OB fold ..23
Figure 1.8 - The β-Grasp / Ubiquitin fold ..23
Figure 1.9 - The ssl genes in pathogenicity island 225
Figure 1.10 - Evolution of the ssl genes in pathogenicity island 226
Figure 1.11 - Crystal structures of SSL5 and SSL729
Figure 3.1 - Amplification of ssl11 by PCR ..54
Figure 3.2 - N-J tree of SSL11 from S. aureus isolates55
Figure 3.3 - Variation between SSL11 alleles ..56
Figure 3.4 - The purification of SSL11-US6610 ..57
Figure 3.5 - SDS-PAGE of two alleles of SSL11 expressed using the pET32a3C system ..58
Figure 3.6 - Statistical analysis of seroconversion results60
Figure 3.7 - Expression and purification of BirA ...61
Figure 3.8 - Biosensor analysis of IgA binding to an FcαRI surface62
Figure 3.9 - Steady state curves of SSL11 binding FcαRI63
Figure 3.10 - The effect of carbohydrate on the interaction between SSL11 and FcαRI ..65
Figure 3.11 - Sialic acids ..66
Figure 3.12 - Western analysis of SSL11 binding to FcαRI67
Figure 3.13 - Flow cytometry of leukocytes ..68
Figure 3.14 - Inhibition of IgA and anti-FcαRI mAb binding to neutrophils by SSL11-GL10 ..69
Figure 3.15 - Neutrophil aggregation by SSL11-US661071
Figure 3.16 - Recombination in ssl11 ..72
Figure 4.1 - SSL11-US6610 crystals ...75
Figure 4.2 - The crystal structure of SSL11-US661079
Figure 4.3 - Structural variation between the four molecules of SSL11-US6610 ..80
Figure 4.4 - Dimerisation of SSL11 ...82
Figure 4.5 - Structural conservation of SSL11 ..83
Figure 4.6 - Chemical structure of sLex ..84
Figure 4.7 - Crystals of the SSL11-US6610:sLex complex85
Figure 4.8 - The citrate and sLex binding sites of SSL11-US661087
Figure 4.9 - Superposition of the SSL11 molecules88
Figure 4.10 - The sLex binding site of SSL11-US661089
Figure 4.11 - Interaction of ligands with the surface of SSL1190
Figure 4.12 - Hydrogen bonding of the sLex sugars92
Figure 4.13 - The SSL11 dimer in the crystal structure of SSL11:sLex94
Figure 4.14 - Amino acid sequence alignment of the SSLs96
Figure 4.15 - SSL5 can potentially bind sLex ..97
Figure 4.16 - Inhibition of anti-sLex mAb binding to neutrophils by SSL11-GL10 ..98
Figure 4.17 - Steady state curves of SSL11 binding to sLe99
Figure 4.18 - sLe regeneration of an FcαRI surface100
Figure 5.1 - Leukocyte pulldown by SSL11-US6610105
Figure 5.2 - Glycan array v2.1 ..106
Figure 5.3 - Steady state curves of SSL11 binding FcoRI ...112
Figure 5.4 - SSL11 inhibits neutrophil tethering ...113
Figure 5.5 - Neutrophils stained with SSL11-US6610-FITC ..114
Figure 5.6 - Confocal microscopy ...115
Figure 5.7 - 2-D gel analysis of neutrophils ...117
Figure 6.1 - Comparison of CHIPS to SSL11-US6610 ...126
Figure 6.2 - Binding specificities of siglecs ...128
Figure 6.3 - The binding site of sialoadhesin ...128
Figure 6.4 - Binding of E- and P-selectin to sLe\(^\alpha\) ...129
Figure 6.5 - Theoretical drug design against SSLs ..135

Table of Tables

Table 3.1 - Detection of reactive sera against SSL5 and SSL11 by ELISA60
Table 4.1 - Refinement statistics ...77
Table 4.2 - Similarity between the three-dimensional structures of SSL11-US6610, SSL5 and SSL7 ..80
Table 4.3 - Similarity between the structure of SSL11-US6610 from the sLe\(^\alpha\) complex, with SSL11-US6610 from the native structure, SSL5 and SSL7 ..88
Table 4.4 - Summary of hydrogen bonds formed by sLe\(^\alpha\) ..93
Table 4.5 - Summary of kinetic data of SSL11 ...103
Table 5.1 - Summary of hits from protein identification by MALDI-MS106
Table 5.2 - Summary of concentration-dependent analysis by glycan array v2.1110
Table 5.3 - Summary of proteins identified by QStar ...116
Abbreviations

SI prefixes
n nano- \((10^{-9}) \)
μ micro- \((10^{-6}) \)
m milli- \((10^{-3}) \)
k kilo- \((10^3) \)

SI units
Å Ångström \((10^{-10} \text{ m}) \)
s second
min minute
h hour
L litre
g gram

Other units / abbreviations
°C degrees Celsius
2-D two-dimensional
Abs absorbance
ADP adenosine diphosphate
APES 3-aminopropyl triethoxyilane
ATP adenosine triphosphate
bp base pair
BSA bovine serum albumin
CD cluster of differentiation
CFG Consortium for Functional Glycomics
CHAPS 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate
CHIPS chemotaxis inhibitory protein of \(S. \) aureus
CHO Chinese hamster ovary
cv column volume
Da Dalton
DAPI 4’,6-Diamidino-2-phenylindole dihydrochloride
DNA deoxyribonucleic acid
dNTP deoxynucleotide triphosphates
dTTP deoxythymidine triphosphate
DTT dithiothreitol
EDTA ethylenediaminetetraacetic acid
ELISA enzyme-linked immunosorbent assay
ET exfoliative toxin
Fc immunoglobulin crystallizable fragment
FcαRI myeloid immunoglobulin A Fc receptor
FCS fetal calf serum
FITC fluoroscein isothiocyanate
FPLC fast performance liquid chromatography
Fuc fucose
g gravity
Gal galactose
Glc glucosamine
Gp glycoprotein
GSH reduced glutathione
GST glutathione-S-transferase
HEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid
HRP horseradish peroxidase
IAM iodoacetamide
ICAM intercellular adhesion molecule
IDA iminodiacetic acid
IEF isoelectric focusing
Ig immunoglobulin
IL interleukin
IMAC immobilized metal affinity chromatography
INF interferon
IPTG isopropylthio-β-galactosidase
JAM junction adhesion molecule
K kelvin
kb kilobase
K_D dissociation constant
LAD leukocyte adhesion deficiency
LB Luria-Burtani
LFA lymphocyte function-associated antigen
LPS lipopolysaccharide
M Molar
mAb monoclonal antibody
Mac-1 macrophage-1 antigen
MAC membrane attack complex
MALDI-MS matrix assisted laser desorption/ionization-mass spectrometry
MHC II major Histocompatibility complex class II
MOPS 3-(N-morpholino)propanesulfonic acid
MPO myeloperoxidase
MRSA meticillin-resistant S. aureus
MSSA meticillin-sensitive S. aureus
NAc N-acetyl
NET neutrophil extracellular trap
nH Hill coefficient
N-J Neighbour-Joining
NTA nitrilotriacetic acid
OB oligosaccharide- / oligonucleotide- binding
PBS phosphate buffered saline
PCR polymerase chain reaction
pdb protein data bank
PE phycoerythrin
PECAM platelet / endothelial cell adhesion molecule
PEG polyethyleneglycol
pI isoelectric point
PMSF phenylmethylsulfonyl fluoride
PSGL-1 P-selectin glycoprotein ligand-1
PVL panton-valentine leukocidin
RBC red blood cell
Req response at equilibrium
RFU relative fluorescence units
rmsd root mean square difference
rpm revolutions per minute
<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute medium-1640</td>
</tr>
<tr>
<td>rsFcαRI</td>
<td>recombinant soluble myeloid immunoglobulin A Fc receptor</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>RU</td>
<td>response units</td>
</tr>
<tr>
<td>SAg</td>
<td>superantigen</td>
</tr>
<tr>
<td>Sak</td>
<td>staphylokinase</td>
</tr>
<tr>
<td>SCIN</td>
<td>staphylococcal complement inhibitor</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulphate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SE</td>
<td>staphylococcal enterotoxin</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>SET</td>
<td>staphylococcal exotoxin-like toxin</td>
</tr>
<tr>
<td>Sia</td>
<td>sialic acid – N-acetylneuraminic acid / Neu5Ac</td>
</tr>
<tr>
<td>sIgA</td>
<td>secretory immunoglobulin A</td>
</tr>
<tr>
<td>sLeα</td>
<td>sialyl Lewis X / Neu5Aα2-3Galβ1-4(Fucα1-3)GlcNAc</td>
</tr>
<tr>
<td>SpA</td>
<td>staphylococcal protein A</td>
</tr>
<tr>
<td>Spe</td>
<td>Streptococcus pyrogenic enterotoxin</td>
</tr>
<tr>
<td>SSL</td>
<td>staphylococcal superantigen-like</td>
</tr>
<tr>
<td>SSM</td>
<td>secondary structure matching</td>
</tr>
<tr>
<td>SSSS</td>
<td>staphylococcal scalded skin syndrome</td>
</tr>
<tr>
<td>TBS</td>
<td>tris buffered saline</td>
</tr>
<tr>
<td>TcR</td>
<td>T cell receptor</td>
</tr>
<tr>
<td>TCRS</td>
<td>two component regulatory system</td>
</tr>
<tr>
<td>TNFα</td>
<td>tumor necrosis factor alpha</td>
</tr>
<tr>
<td>Tris</td>
<td>2-amino-2-(hydroxymethyl)propane-1-3-diol</td>
</tr>
<tr>
<td>TrxA</td>
<td>thioredoxin</td>
</tr>
<tr>
<td>TSST-1</td>
<td>toxic shock syndrome toxin-1</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>VCAM</td>
<td>vascular cell adhesion molecule</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
</tbody>
</table>