Table of Contents

HEADER ... 1
ABSTRACT ... 1
BACKGROUND .. 1
OBJECTIVES ... 2
METHODS ... 2
ACKNOWLEDGEMENTS .. 7
REFERENCES ... 7
APPENDICES .. 9
WHAT'S NEW ... 9
CONTRIBUTIONS OF AUTHORS .. 9
DECLARATIONS OF INTEREST ... 9
SOURCES OF SUPPORT .. 9
Myo-inositol for preventing gestational diabetes

Julie Brown, Tineke J Crawford, Jane Alsweiler, Caroline A Crowther

Liggins Institute, The University of Auckland, Auckland, New Zealand. Neonatal Intensive Care Unit, Auckland Hospital, Auckland, New Zealand. ARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and Gynaecology, The University of Adelaide, Adelaide, Australia

Contact address: Julie Brown, Liggins Institute, The University of Auckland, Park Rd, Grafton, Auckland, 1142, New Zealand. j.brown@auckland.ac.nz.

Editorial group: Cochrane Pregnancy and Childbirth Group.
Publication status and date: Edited (no change to conclusions), published in Issue 2, 2015.

Copyright © 2015 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ABSTRACT

This is the protocol for a review and there is no abstract. The objectives are as follows:

To assess if supplements of myo-inositol are safe and effective, for the mother and fetus, in preventing gestational diabetes.

BACKGROUND

Description of the condition

Gestational diabetes mellitus (GDM) is defined as any degree of glucose intolerance with onset or first recognition during pregnancy (Metzger 1998). This condition imposes several complications for affected women and their babies making it crucial for an early diagnosis and management.

Screening for GDM varies from country to country, with some countries selectively screening based on risk factors (NICE 2008), and other countries using universal screening of all pregnant women (Nankervis 2013). Screening is usually done using the oral glucose challenge test (OGCT) followed by an oral glucose tolerance test (OGTT) if the challenge test is failed, between 24 and 28 weeks of pregnancy. A number of risk factors are associated with developing gestational diabetes mellitus (Nankervis 2013):

- previous GDM;
- previously elevated blood glucose level;
- ethnicity: south and southeast Asian, Aboriginal, Pacific Islander, Maori, Middle Eastern, non-Caucasian African;
- age ≥ 40 years;
- family history of diabetes mellitus (first degree relative with diabetes mellitus or a sister with GDM);
- obesity, especially body mass index (BMI) greater than 35 kg/m²;
- previous macrosomia (baby with birthweight greater than 4500 g or greater than 90th percentile);
- polycystic ovarian syndrome;
- medications: corticosteroids, antipsychotics;
- pregnancy weight gain.

Several studies have reported an increasing pattern in GDM prevalence (Ferrara 2007). As many as 50% of women with GDM will develop type 2 diabetes within five years of the index pregnancy (Kim 2002). Gestational diabetes mellitus also doubles the risk of serious injury at birth, triples the likelihood of caesarean delivery, and quadruples the incidence of newborn intensive care unit (NICU) admission (Moore 2014). Infants of women with GDM are at increased risk of developing obesity, impaired glucose toler-
ance, and diabetes as children or young adults (Pettitt 1983; Pettitt 1988; Silverman 1998).

Description of the intervention

Both non-pharmacological and pharmacological interventions have been used to try and prevent gestational diabetes. A Cochrane review 'Dietary advice in pregnancy for preventing gestational diabetes mellitus' (Tieu 2008) concluded that while a low glycaemic index (GI) diet was beneficial for some outcomes for the mother (lower maternal fasting glucose concentration) and child (reduction in large-for-gestational-age infants, lower ponderal index), the evidence is limited. Similarly, the review 'Exercise for pregnant women for preventing gestational diabetes mellitus' concluded that there is limited evidence to currently support exercise during pregnancy for the prevention of glucose intolerance or GDM (Han 2012). Currently, a review is in progress to assess the effects of physical exercise in combination with dietary advice for pregnant women for preventing GDM, and associated adverse health consequences for the mother and her infant/child (Crane 2013).

Metformin is an oral anti-diabetic drug in the biguanide class. Metformin is the first-line drug of choice for the treatment of type 2 diabetes. Metformin has been used to prevent GDM in high-risk pregnancies (women with polycystic ovary syndrome - PCOS) and yielded contrasting results (Glueck 2008; Nestler 1999). Myo-inositol is a nutrient in the vitamin B complex and is a naturally occurring sugar found in the human body (NCI). It is an isomer of inositol, one of the intracellular mediators of the insulin signal and is correlated with insulin sensitivity in type 2 diabetes (Kennington 1990; Suzuki 1994). Inositol is commonly found in cereals, corn, legumes and meat.

Due to its role as a second messenger, myo-inositol has many benefits. When used as a co-treatment, it ensured euthyroidism (normal production of thyroid hormone) in subclinical hypothyroidism patients with autoimmune thyroiditis (Nordio 2013). Also, myo-inositol has proven to be efficacious in treating premenstrual dysphoric disorder (PMDD), a mood disorder disrupting the social and/or occupational life of affected women (Carlomagno 2011). PCOS, a medical condition characterised by insulin resistance has been successfully treated with myo-inositol and folic acid (Papaloe 2007). Inositol has been reported to improve insulin sensitivity and ovulatory function in young women affected by PCOS in the D-chiro-inositol isomer (Nestler 1999) or in the myo-inositol isomer (Genazzani 2008). Furthermore, myo-inositol has shown to improve hyperandrogenism in women with PCOS (Minozzi 2008) and pregnancy outcomes in infertile women with poor oocyte quality (Unfer 2011).

How the intervention might work

Given the above beneficial effects on improving insulin sensitivity, myo-inositol may be useful for women with gestational diabetes. In a small randomised controlled trial of myo-inositol in 69 women with gestational diabetes, markers of insulin resistance were improved in the study group (n = 24) compared to the control group (n = 45) (Corrado 2011). A retrospective review of 46 pregnant women treated with myo-inositol compared to 37 controls described it as safe during the pre-pregnancy and early pregnancy period when used in insulin-resistant conditions (D’Anna 2011). No women in either of these studies reported side effects of treatment.

Why it is important to do this review

GDM is an increasing problem worldwide. Identification of effective preventive measures for GDM is of great importance.

OBJECTIVES

To assess if supplements of myo-inositol are safe and effective, for the mother and fetus, in preventing gestational diabetes.

METHODS

Criteria for considering studies for this review

- **Types of studies**
 All published and unpublished randomised controlled trials and cluster-randomised trials as well as conference abstracts assessing the effects of myo-inositol for the prevention of gestational diabetes mellitus (GDM) will be included. We will exclude quasi-randomised trials and cross-over trials.

- **Types of participants**
 Pregnant women who are at risk of GDM (as defined by trialists) will be included. Women with pre-existing type 1 or type 2 diabetes will be excluded.

- **Types of interventions**
 The intervention will include administration of any doses of myo-inositol in pregnancy. We will include studies where such intervention is compared with those who received no treatment, placebo or another intervention.
Types of outcome measures

Primary outcomes

Maternal outcomes
1. Incidence of GDM (diagnostic criteria as defined in individual trials)
2. Pre-eclampsia
3. Caesarean section

Neonatal outcomes
1. Large-for-gestational age (birthweight greater than the 90th centile; or as defined by individual trial)
2. Perinatal mortality
3. Death or morbidity composite (variously defined by trials, e.g. infant death, shoulder dystocia, bone fracture or nerve palsy)

Secondary outcomes

Maternal outcomes
1. Postnatal weight retention
2. Body mass index (BMI)
3. Development of type 2 diabetes mellitus
4. Development of type 1 diabetes mellitus
5. Impaired glucose tolerance (as defined in individual trials)
6. Insulin sensitivity (as defined in individual trials)
7. Incidence of pregnancy hyperglycaemia not meeting GDM diagnostic criteria (diagnostic criteria as defined in individual trials)
8. Induction of labour
9. Mode of birth (caesarean section, vaginal birth)
10. Perineal trauma
11. Pre-eclampsia (as defined by individual trials)
12. Weight gain during pregnancy
13. Adiponectin levels
14. Gestational age at screening for GDM
15. Postpartum haemorrhage
16. Postpartum infection
17. Placental abruption
18. Polyhydramnios
19. Compliance with treatment
20. Breastfeeding at discharge, six weeks postpartum
21. Women’s sense of well-being and quality of life (as defined in individual trials)
22. Women’s view of intervention

Infant outcomes
1. Macrosomia (as defined in individual trials)
2. Birthweight and z-score
3. Head circumference and z-score
4. Length and z-score
5. Small-for-gestational age (as defined in individual trials)
6. Neonatal hypoglycaemia requiring treatment (as defined in individual trials)
7. Gestational age at birth
8. Preterm birth (less than 37 weeks gestational age)
9. Shoulder dystocia
10. Bone fracture
11. Nerve palsy
12. Respiratory distress syndrome
13. Hyperbilirubinaemia requiring treatment (as defined in individual trials)
14. Apgar scores (less than seven at five minutes)
15. Ponderal index
16. Fetal adipocytosis (as defined in individual trials)
17. Neonatal glucose concentration
18. Infant mortality (fetal, neonatal, perinatal)

Childhood outcomes
1. Weight
2. Height
3. Head circumference
4. Body mass index
5. Adipocytosis (fat mass/fat free mass (variously measured))
6. Blood pressure
7. Impaired glucose tolerance (as defined in individual trials)
8. Development of type 1 diabetes mellitus
9. Development of type 2 diabetes mellitus
10. Insulin sensitivity
11. Dyslipidaemia or metabolic syndrome
12. Neurodisability
13. Educational achievement

Adulthood outcomes
1. Weight
2. Height
3. BMI
4. Adipocytosis (fat mass/fat-free mass (variously measured))
5. Blood pressure
6. Impaired glucose tolerance (as defined in individual trials)
7. Development of type 1 diabetes mellitus
8. Development of type 2 diabetes mellitus
9. Insulin sensitivity (as defined in individual trials)
10. Dyslipidaemia or metabolic syndrome
11. Educational achievement
Health services cost
1. Number of hospital visits or health professional visits (e.g. midwife, obstetrician, physician, dietitian)
2. Antenatal visits for mother
3. Direct costs to families in relation to the management provided
4. Length of postnatal stay (mother)
5. Admission to neonatal ward/ neonatal intensive care unit
6. Length of postnatal stay (baby)
7. Cost of maternal care
8. Cost of offspring care

Data collection and analysis

Selection of studies
Two review authors will independently assess for inclusion all the potential studies we identify as a result of the search strategy. We will resolve any disagreement through discussion or, if required, we will consult a third person.
We will create a Study flow diagram to map out the number of records identified, included and excluded.

Data extraction and management
We will design a form to extract data. For eligible studies, two review authors will extract the data using the agreed form. We will resolve discrepancies through discussion or, if required, we will consult a third person. We will enter data into Review Manager software (RevMan 2014) and check for accuracy. When information regarding any of the above is unclear, we will attempt to contact authors of the original reports to provide further details.

Assessment of risk of bias in included studies
Two review authors will independently assess risk of bias for each study using the criteria outlined in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011). We will resolve any disagreement by discussion or by involving a third assessor.

(1) Random sequence generation (checking for possible selection bias)
We will describe for each included study the method used to generate the allocation sequence in sufficient detail to allow an assessment of whether it should produce comparable groups.
We will assess the method as:
- low risk of bias (any truly random process, e.g. random number table; computer random number generator);
- high risk of bias (any non-random process, e.g. odd or even date of birth; hospital or clinic record number);
- unclear risk of bias.

(2) Allocation concealment (checking for possible selection bias)
We will describe for each included study the method used to conceal allocation to interventions prior to assignment and will assess whether intervention allocation could have been foreseen in advance of, or during recruitment, or changed after assignment.
We will assess the methods as:
- low risk of bias (e.g. telephone or central randomisation; consecutively numbered sealed opaque envelopes);
- high risk of bias (open random allocation; unsealed or non-opaque envelopes, alternation; date of birth);

Search methods for identification of studies
The following methods section of this protocol is based on a standard template used by the Cochrane Pregnancy and Childbirth Group.

Electronic searches
We will contact the Trials Search Co-ordinator to search the Cochrane Pregnancy and Childbirth Group's Trials Register.
The Cochrane Pregnancy and Childbirth Group's Trials Register is maintained by the Trials Search Co-ordinator and contains trials identified from:
1. monthly searches of the Cochrane Central Register of Controlled Trials (CENTRAL);
2. weekly searches of MEDLINE (Ovid);
3. weekly searches of Embase (Ovid);
4. monthly searches of CINAHL (EBSCO);
5. handsearches of 30 journals and the proceedings of major conferences;
6. weekly current awareness alerts for a further 44 journals plus monthly BioMed Central email alerts.
Details of the search strategies for CENTRAL, MEDLINE, Embase and CINAHL, the list of handsearched journals and conference proceedings, and the list of journals reviewed via the current awareness service can be found in the 'Specialized Register' section within the editorial information about the Cochrane Pregnancy and Childbirth Group.
Trials identified through the searching activities described above are each assigned to a review topic (or topics). The Trials Search Co-ordinator searches the register for each review using the topic list rather than keywords.
In addition, we plan to search ClinicalTrials.gov and WHO ICTRP for planned, ongoing or unpublished trials. The search terms we plan to use are given in Appendix 1.

Assessment of risk of bias in included studies
Two review authors will independently assess risk of bias for each study using the criteria outlined in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011). We will resolve any disagreement by discussion or by involving a third assessor.

(1) Random sequence generation (checking for possible selection bias)
We will describe for each included study the method used to generate the allocation sequence in sufficient detail to allow an assessment of whether it should produce comparable groups.
We will assess the method as:
- low risk of bias (any truly random process, e.g. random number table; computer random number generator);
- high risk of bias (any non-random process, e.g. odd or even date of birth; hospital or clinic record number);
- unclear risk of bias.

(2) Allocation concealment (checking for possible selection bias)
We will describe for each included study the method used to conceal allocation to interventions prior to assignment and will assess whether intervention allocation could have been foreseen in advance of, or during recruitment, or changed after assignment.
We will assess the methods as:
- low risk of bias (e.g. telephone or central randomisation; consecutively numbered sealed opaque envelopes);
- high risk of bias (open random allocation; unsealed or non-opaque envelopes, alternation; date of birth);

Searching other resources
We will search reference lists of retrieved studies. We will not apply any language or date restrictions.
• unclear risk of bias.

(3.1) Blinding of participants and personnel (checking for possible performance bias)
We will describe for each included study the methods used, if any, to blind study participants and personnel from knowledge of which intervention a participant received. We will consider that studies are at low risk of bias if they were blinded, or if we judge that the lack of blinding would be unlikely to affect results. We will assess blinding separately for different outcomes or classes of outcomes.
We will assess the methods as:
• low, high or unclear risk of bias for participants;
• low, high or unclear risk of bias for personnel.

(3.2) Blinding of outcome assessment (checking for possible detection bias)
We will describe for each included study the methods used, if any, to blind outcome assessors from knowledge of which intervention a participant received. We will assess blinding separately for different outcomes or classes of outcomes.
We will assess methods used to blind outcome assessment as:
• low, high or unclear risk of bias.

(4) Incomplete outcome data (checking for possible attrition bias due to the amount, nature and handling of incomplete outcome data)
We will describe for each included study, and for each outcome or class of outcomes, the completeness of data including attrition and exclusions from the analysis. We will state whether attrition and exclusions were reported and the numbers included in the analysis at each stage (compared with the total randomised participants), reasons for attrition or exclusion where reported, and whether missing data were balanced across groups or were related to outcomes. Where sufficient information is reported, or can be supplied by the trial authors, we will re-include missing data in the analyses which we undertake.
We will assess methods as:
• low risk of bias (e.g. no missing outcome data; missing outcome data balanced across groups);
• high risk of bias (e.g. numbers or reasons for missing data imbalanced across groups; ‘as treated’ analysis done with substantial departure of intervention received from that assigned at randomisation);
• unclear risk of bias.

(5) Selective reporting (checking for reporting bias)
We will describe for each included study how we investigated the possibility of selective outcome reporting bias and what we found.
We will assess the methods as:
• low risk of bias (where it is clear that all of the study’s pre-specified outcomes and all expected outcomes of interest to the review have been reported);
• high risk of bias (where not all the study’s pre-specified outcomes have been reported; one or more reported primary outcomes were not pre-specified; outcomes of interest are reported incompletely and so cannot be used; study fails to include results of a key outcome that would have been expected to have been reported);
• unclear risk of bias.

(6) Other bias (checking for bias due to problems not covered by (1) to (5) above)
We will describe for each included study any important concerns we have about other possible sources of bias.
We will assess whether each study was free of other problems that could put it at risk of bias:
• low risk of other bias;
• high risk of other bias;
• unclear whether there is risk of other bias.

(7) Overall risk of bias
We will make explicit judgements about whether studies are at high risk of bias, according to the criteria given in the Handbook (Higgins 2011). With reference to (1) to (6) above, we will assess the likely magnitude and direction of the bias and whether we consider it is likely to impact on the findings. We will explore the impact of the level of bias through undertaking sensitivity analyses - see Sensitivity analysis.
The quality of the evidence will be assessed using the GRADE approach (Schunemann 2009) in order to assess the quality of the body of evidence relating to the following outcomes for the main comparisons.
1. Incidence of GDM (diagnostic criteria as defined in individual trials)
2. Pre-eclampsia
3. Mode of birth
4. Large-for-gestational age (birthweight greater than the 90th centile; or as defined by individual trial)
5. Perinatal mortality
6. Fetal adiposity
7. Impaired glucose tolerance as a child/adult
GRADE profiler (GRADE 2014) will be used to import data from Review Manager 5.3 (RevMan 2014) in order to create 'Summary of findings' tables. A summary of the intervention effect and a measure of quality for each of the above outcomes will be produced using the GRADE approach. The GRADE approach uses five considerations (study limitations, consistency of effect, imprecision, indirectness and publication bias) to assess the quality
of the body of evidence for each outcome. The evidence can be downgraded from 'high quality' by one level for serious (or by two levels for very serious) limitations, depending on assessments for risk of bias, indirectness of evidence, serious inconsistency, imprecision of effect estimates or potential publication bias.

Measures of treatment effect

Dichotomous data
For dichotomous data, we will present results as summary risk ratio with 95% confidence intervals.

Continuous data
For continuous data, we will use the mean difference with 95% confidence intervals if outcomes are measured in the same way between trials. We will use the standardised mean difference to combine trials that measure the same outcome, but use different methods; these will also be presented with 95% confidence intervals.

Unit of analysis issues

Cluster-randomised trials
We will include cluster-randomised trials in the analyses along with individually-randomised trials. We will make adjustments using the methods described in the Handbook [Section 16.3.4 or 16.3.6] using an estimate of the intracluster correlation co-efficient (ICC) derived from the trial (if possible), from a similar trial or from a study of a similar population. If we use ICCs from other sources, we will report this and conduct sensitivity analyses to investigate the effect of variation in the ICC. We will consider it reasonable to combine the results from both cluster-randomised trials and individually-randomised trials if there is little heterogeneity between the study designs and the interaction between the effect of intervention and the choice of randomisation unit is considered to be unlikely.

Multiple pregnancy
There may be unit of analysis issues that arise when the women randomised have a multiple pregnancy. We will present maternal data as per woman randomised and neonatal data per infant.

Multiple arm studies
Where a trial has multiple intervention arms we will avoid 'double counting' of participants by combining groups to create a single pair-wise comparison if possible. Where this is not possible we will split the 'shared' group into two or more groups with smaller sample size and include two or more (reasonably independent) comparisons.

Dealing with missing data
For included studies, we will note levels of attrition. We will explore the impact of including studies with high levels of missing data in the overall assessment of treatment effect by using sensitivity analysis.

For all outcomes, we will carry out analyses, as far as possible, on an intention-to-treat basis, i.e. we will attempt to include all participants randomised to each group in the analyses, and all participants will be analysed in the group to which they were allocated, regardless of whether or not they received the allocated intervention. The denominator for each outcome in each trial will be the number randomised minus any participants whose outcomes are known to be missing.

Assessment of heterogeneity
We will assess statistical heterogeneity in each meta-analysis using the Tau², I² and Chi² statistics. We will regard heterogeneity as substantial if an I² is greater than 30% and either a Tau² is greater than zero, or there is a low P value (less than 0.10) in the Chi² test for heterogeneity.

Assessment of reporting biases
If there are 10 or more studies in the meta-analysis, we will investigate reporting biases (such as publication bias) using funnel plots. We will assess funnel plot asymmetry visually. If asymmetry is suggested by a visual assessment, we will perform exploratory analyses to investigate it.

Data synthesis
We will carry out statistical analysis using the Review Manager software (RevMan 2014). We will use fixed-effect meta-analysis for combining data where it is reasonable to assume that studies are estimating the same underlying treatment effect: i.e. where trials are examining the same intervention, and the trials’ populations and methods are judged sufficiently similar. If there is clinical heterogeneity sufficient to expect that the underlying treatment effects differ between trials, or if substantial statistical heterogeneity is detected, we will use random-effects meta-analysis to produce an overall summary if an average treatment effect across trials is considered clinically meaningful. The random-effects summary

Myo-inositol for preventing gestational diabetes (Protocol)
Copyright © 2015 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
will be treated as the average of the range of possible treatment effects and we will discuss the clinical implications of treatment effects differing between trials. If the average treatment effect is not clinically meaningful, we will not combine trials. If we use random-effects analyses, the results will be presented as the average treatment effect with 95% confidence intervals, and the estimates of τ^2 and I^2.

Subgroup analysis and investigation of heterogeneity

If we identify substantial heterogeneity, we will investigate it using subgroup analyses and sensitivity analyses. We will consider whether an overall summary is meaningful, and if it is, use random-effects analysis to produce it.

We plan to carry out the following subgroup analyses.

1. Polycystic ovary syndrome (PCOS) women versus non-PCOS women
2. Obese women versus non-obese women
3. Dosage - high versus low dose
4. Timing of myo-inositol - pre-pregnancy versus first trimester

The following outcomes will be used in subgroup analysis.

Maternal outcomes

1. Incidence of GDM (diagnostic criteria as dened in individual trials)
2. Mode of birth (normal vaginal birth, operative vaginal birth, caesarean section)
3. Pre-eclampsia

Neonatal outcomes

1. Large-for-gestational age
2. Perinatal mortality

We will assess subgroup differences by interaction tests available within RevMan (RevMan 2014). We will report the results of subgroup analyses quoting the Chi2 statistic and P value, and the interaction test I^2 value.

Sensitivity analysis

If there is evidence of significant heterogeneity, we will explore this by using the quality of the included trials for the primary outcomes. We will compare trials that have low risk of bias for allocation concealment with those judged to be of unclear or high risk of bias.

ACKNOWLEDGEMENTS

Dahineswari Rajamanickam assisted the review authors in preparing the first draft of the protocol.

As part of the pre-publication editorial process, this protocol has been commented on by five peers (an editor and four referees who are external to the editorial team) and the Group’s Statistical Adviser.

REFERENCES

Additional references

Carlomagno 2011

Corrado 2011

Crane 2013

D’Anna 2011

Ferrara 2007

Genazzani 2008

Glueck 2008

GRADE 2014

McMaster University. GRADEpro. [Computer program on wwwGRADEpro.org], 2014. McMaster University, 2014.
Han 2012

Higgins 2011

Kennington 1990

Kim 2002

Metzger 1998

Minozzi 2008

Moore 2014

Nankervis 2013

NCI

Nestler 1999

NICE 2008

Nordio 2013

Papaloe 2007

Petitt 1983

Petitt 1988

RevMan 2014

Schunemann 2009

Silverman 1998

Suzuki 1994

Tieu 2008

Unfer 2011

* Indicates the major publication for the study
APPENDICES

Appendix 1. Search terms

ClinicalTrials.gov and WHO ICTRP
gestational diabetes AND myoinositol

WHAT’S NEW

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 February 2015</td>
<td>Amended</td>
<td>Corrected typographical error in Methods section.</td>
</tr>
</tbody>
</table>

CONTRIBUTIONS OF AUTHORS

Julie Brown, Tineke Crawford, Jane Asweiler and Caroline Crowther all contributed to the preparation of the protocol and Jane Asweiler provided the clinical perspective. All review authors commented and contributed to the preparation of the protocol.

DECLARATIONS OF INTEREST

None known.

SOURCES OF SUPPORT

Internal sources

• None, Other.

External sources

• None, Other.