http:// researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

Approximability and Computational Feasibility of Dodgson's Rule

Supervisors: Dr A. Slinko, Dr G. Pritchard

John C. M ${ }^{c}$ Cabe-Dansted

June 7, 2006

http:// researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

Abstract

Condorcet ${ }^{1}$ proposed that a winner of an election is not legitimate unless a majority of the population prefer that alternative to all other alternatives. However such a winner does not always exist. A number of voting rules have been proposed which select the Condorcet winner if it exists, and otherwise selects an alternative that is in some sense closest to being a Condorcet Winner; a prime example is the rule proposed by Dodgson² ${ }^{2}$ (1876).

Unfortunately, Bartholdi et al. (1989) proved that finding the Dodgson winner is an NP-hard problem. Hemaspaandra et al. (1997) refined this result by proving that it is $\Theta_{2^{-}}^{p}$ complete and hence is not NP-complete unless $\Theta_{2}^{p}=$ NP. For this reason, we investigate the asymptotic behaviour of approximations to the Dodgson rule as the number of agents gets large.

Under the assumption that all votes are independent and equiprobable, the probability that the Tideman (1987) approximation picks the Dodgson winner does asymptotically converge to 1 , but not exponentially fast. We propose a new approximation that does exhibit exponential convergence, and we can quickly verify that it has chosen the Dodgson winner; this allows us to choose the true Dodgson winner with $\mathcal{O}(\ln n)$ expected running time for a fixed number of alternatives m and n agents.
M^{c} Garvey (1953) proved that all tournaments are the majority relations for some society. We have proved a generalisation of this theorem for weighted tournaments. We find that this generalisation is useful for simplifying proofs relating to rules which use the weighted majority relation.

Bartholdi et al. (1989) found that we can calculate the Dodgson Score using an ILP that requires no more than $m!m$ variables, we present an improved ILP that requires less than $(m-1)!e$ variables $(e \approx 2.71)$. We discover that we can solve this ILP in $\mathcal{O}(\ln n)$ arithmetic operations of $\mathcal{O}(\ln n)$ bits in size. Relaxing the integer constraints results in a new polynomial time rule. In 43 million simulations this new rule failed to pick the

[^0]Dodgson winner only once, and only given many (25) alternatives. Unlike the Dodgson rule, this rule can break ties in favor of alternatives that are in some sense fractionally better.

We show that Dodgson Score admits no constant error approximation unless P=NP, and admits no Polynomial Time Approximation Scheme (PTAS) for Dodgson Score unless $W[2]=F P T$.

Acknowledgements

I would first of all like to thank my sister, Kim Dansted, for her suggestions for improving the readability of my introduction and for her general support and assistance while I was going through the grueling process of turning a draft into a legible Thesis.

Dr Arkadii Slinko, my supervisor for much assistance with proof reading. Also, unlike most other Lecturers, he helped guide me through my developmental years, due to his work with the pre-tertiary International Mathematical Olympiad training camps. Indeed, this was why I sought him out as a supervisor.

Dr Geoff Pritchard, my co-supervisor, for assistance with the statistics. Thanks to Pritchard, I have a more rigorous proof that Tideman's approximation converges to Dodgson's rule, which makes proper use of the Multivariate Central Limit Theorem.

Contents

List of Tables ix
1 Introduction 1
1.1 Introduction 1
1.1.1 Borda's Objection to the Condorcet proposal 2
1.1.2 Impossibility Theorems 4
1.1.3 Complexity Classes for Algorithms 5
1.1.4 Impracticality Theorems 10
1.1.5 Simplifying Assumptions in Voting Theory 11
1.1.6 Tideman's Approximation to the Dodgson Rule 11
1.1.7 Our New Approximation, Dodgson Quick. 13
1.1.8 Linear Programs and Integer Linear Programs 16
1.1.9 Our New Approximation, Dodgson Relaxed \& Rounded 18
1.1.10 A Generalisation of the M^{c} Garvey Theorem 19
1.2 Social Choice Functions. 19
1.2.1 Fishburn's Classification System for Voting Rules 20
1.2.2 Advantages 22
1.2.3 Condorcet Winner 22
1.2.4 Scores 22
1.2.5 Impartial Culture Assumption 24
1.2.6 Pólya-Eggenberger Urn Model 25
1.3 Summary 25
2 A M ${ }^{\text {charvey Theorem for Weighted Tournaments }}$ 29
3 Simple Rules that Approximate the Dodgson Rule 35
3.1 Dodgson Quick, A New Approximation 35
3.2 Tideman's Rule 41
3.3 Numerical Results 53
3.3.1 Asymptotic Behaviour of Simpson's Rule 56
4 Formulation of Dodgson's Rule as an Integer Linear Program 59
4.1 Discussion of Variables 60
4.2 Preliminary Definitions 63
4.3 Definition of Integer Linear Program 64
4.4 Number of Variables 67
4.5 Size of the Linear Program 68
5 Dodgson Relaxed \& Rounded 71
5.1 Definition of Dodgson Relaxed Score 72
5.2 Complexity 77
6 Feasibility of Dodgson's Rule 79
6.1 Theoretical Worst-Case Results 80
6.2 Approximability Classes 81
6.3 Empirical Performance of Dodgson's Rule. 88
7 Conclusion 91
7.1 Methodological Issues 93
7.2 Further Work 94
A Preliminary Mathematics 97
A. 1 Probability Space 97
A. 2 Binomial Distribution 99
A. 3 Multinomial Distribution 101
A. 4 Multivariate Normal Distribution 106
A. 5 Multisets 107
B Code and Output 109
B. 1 Asymptotic Simpson's Rule 109
B.1.1 asymp.sh — wrapper script 109
B.1.2 asymp.c 110
B.1.3 Output 115
B. 2 Dodgson Quick vs Tideman vs Simpson 116
B.2.1 SiTiDQ.sh - wrapper script 116
B.2.2 SiTiDQ.c 116
B.2.3 Output 122
B. 3 Exact Dodgson Algorithm 125
Reference List 143
Index 147

List of Tables

3.1 Number of Occurrences per 1000 Elections with 5 Alternatives that the Dodgson Winner was Not Chosen 53
3.2 Number of Occurrences per 1000 Elections with 5 Alternatives that the Set of Tied Dodgson Winners was Not Chosen 54
3.3 Frequency that the DQ-Winner is the Dodgson Winner 55
3.4 Frequency that the Tideman Winner is the Dodgson winner 55
3.5 Frequency that the Simpson Winner is the Dodgson Winner 55
3.6 The Limit of the Number of Occurrences per 1000 Elections that the Simp- son Winner is Not the Dodgson Winner, as $n \rightarrow \infty$ 56
5.1 Example of Dodgson Score of d Differing from the Relaxed Score 73
5.2 Occurrences out of 80,000 that the Dodgson Relaxed Winner Differed from the Dodgson Winner after Tie-Breaking. 75
5.3 Occurrences out of 80,000 that the Set of Tied Dodgson Relaxed Winners Differed from the Set of Tied Dodgson Winners. 75
5.4 Occurrences out of 80,000 that the Set of Tied Dodgson Relaxed Winners were not a Subset of the Set of Tied Dodgson Winners. 76
6.1 Time in Milliseconds to Compute the Dodgson Winner (\#Alter/\#Voter,b=0) 88
6.2 Time in Milliseconds to Compute the Dodgson Winner (5 alternatives, $\mathrm{b}=0$) 88
6.3 CPU Time in Seconds to Calculate the Dodgson Winner in Impartial Cul- ture for Square Profile ($n=m=s$). 88

LIST OF TABLES

Notations

- $x^{+}: 0$ if $x<0, x$ otherwise.
- $\operatorname{sgn}(x)$: The sign of $x, 1$ if $x>0,-1$ if $x<0,0$ if $x=0$.
- ไx \lfloor : Floor of x, the largest integer that is less than or equal to x.
- $\lceil x\rceil$: Ceiling of x, the smallest integer that is greater than or equal to x.
- $|x|$: Absolute value of x, that is x if $x>0,-x$ otherwise.
- \sum_{i} : Summation over each i.
- \prod_{i} : Product over each i.
- m !: The factorial of m, i.e. $m!=(1)(2)(3) \cdots(m)=\prod_{i=1}^{m} i$.
- $A \wedge B: A$ and B, e.g. A and B will occur.
- $A \vee B: A$ or B, e.g. A or B will occur.
- $\neg A$: The negation of A, i.e. the statement " A is false".
- $P(E)$: The probability of event E, a real number in $[0,1]$.
- $P(A \mid B)$: The probability of event A will occur given B has occurred or will occur.
- $\operatorname{var}(X)$: variance of random variable X.
- $E[X]$: mean of random variable X.
- $A \xrightarrow{D} B: A$ converges in distribution to B.
- $N(\mu, \Omega)$: A multivariate normal distribution with means of μ and matrix of correlations Ω.
- $\mathcal{L}(\mathcal{A})$: The set of all linear orders on the set of alternatives A.
- \mathbb{Z} : The set of integers.
- $2 \mathbb{Z}$: The set of even numbers.
- \mathbb{N} : The set $\{1,2,3, \ldots\}$ of natural numbers. (also known as positive integers)
- \mathbb{R} : The set of real numbers, e.g. $0,1, \pi, \sqrt{2}$.
- \mathbb{R}^{+}: The set of positive real numbers.
- \mathbb{R}^{k} : The set of real valued k-dimensional vectors.
- $[x, y]$: The range of real numbers from x to y inclusive.
- $[x, y)$: The range of real numbers from x to y, including x but not y.
- $a \mathbf{v} b$: Alternative a is ranked before b in linear order \mathbf{v}.
- $\overline{\mathbf{v}}$: The opposite of a linear order \mathbf{v}, i.e. $a \mathbf{v} b \Leftrightarrow b \overline{\mathbf{v}} a$.
- $n_{b a}$: The number of linear orders in our profile \mathcal{P} where alternative b is ranked above alternative a.
- $\operatorname{adv}(b, a)$: The advantage of b over a, defined as $\left(n_{b a}-n_{a b}\right)^{+}$.
- $\mathbf{1}_{k}$: A k-dimensional vector with all subscripts equaling 1.
- M^{T} : The transpose of M, i.e. $M_{i j} \equiv\left(M^{T}\right)_{j i}$.
- \#(S): The cardinality of the set S, i.e. the number of elements in S.
- $F(x) \in \mathcal{O}(G(x))$: Function F is of order G, i.e. there exists $N \in \mathbb{N}$ and $c>0$ such that for all n greater than $N, F(x) \leq c G(x)$.
- $\mathbf{x} \leq \mathbf{y}$: vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is less than vector $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. That is, $x_{i} \leq y_{i}$ for all i in $\{1,2, \ldots, n\}$.
- $\mathbf{x} \geq 0$: vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is positive. That is, $x_{i} \geq 0$ for all i in $\{1,2, \ldots, n\}$.
- $A \subseteq B: A$ is a subset/submultiset of B.
- $x^{n}: n$ instances of x, e.g. $\left\{a, b^{2}, c\right\}$ is a multi set with one instance of a and c and two instances of b.
- $\ln x$: The natural \log of x, i.e. $\log _{e} x$.

[^0]: ${ }^{1}$ Marie-Jean-Antoine-Nicolas de Caritat, Marquis de Condorcet. (1743-1794)
 ${ }^{2}$ Charles Lutwidge Dodgson (1832-1898), better known as Lewis Carroll.

