http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Applications of UV-visible spectral imaging in forensic science

John Harry Wagner

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy
University of Auckland

2008
Abstract

This study investigated the use of UV-visible spectral imaging for the location and enhancement of substances of forensic interest using targeted approaches based on the spectrum of the substance.

Spectral enhancement procedures were developed for blood with and without chemical enhancement, and for latent fingermarks after chemical enhancement. Focus was on substances whose spectrum exhibited a steep change in absorbance or fluorescence over a small wavelength range. Substances with such spectral features were able to be enhanced using arithmetic combinations of two or three spectral images taken at wavelengths near the steep spectral feature.

Some enhancement reagents do not react to produce a product with a steep spectral feature suitable for photographic enhancement. In such cases reagents that compliment spectral imaging can be developed. A tridentate ligand for iron(II), BBIDMAPP, which forms a complex with a narrow intense charge-transfer band, was synthesised and was used to visualise muddy shoemarks.

UV-visible spectral imaging systems based on a liquid crystal filter or a filter wheel were constructed to facilitate the acquisition of the spectral images and to perform the enhancement operations. A thorough characterisation of the imaging systems determined their limitations and sources of artefacts which could lead to complications in interpreting the enhanced images.

The spectral imaging procedure used to visualise blood was incorporated into a near-real-time, hand-held imaging system for the location of blood staining. This prototype imaging system is capable of acquiring two spectral images simultaneously, perform the enhancement procedure, and display the enhanced image within 5 s, which would make it suitable as a non-chemical presumptive screening test for blood at crime scenes.
Acknowledgements

Thank you to Dr Gordon Miskelly, whose door was always open, and for whose tireless dedication and patience I will always be grateful. It’s rare to find a mentor with such energy, enthusiasm and depth of knowledge, and rare to be able to work on a project as challenging and with such variety as this one. Gordon, thank you so much for all the support you have given me, I hope I have the opportunity to work with you again as a colleague.

Thank you to Dr Douglas Elliot, for providing me with alternative view points and advice which helped me view my research and my future, from a different perspective.

Thanks also to Dr Mark Andrews, for the crash course in computer programming, and advice on the subtleties of CCD camera operation.

To all the technical staff at the Auckland University Chemistry Department I thank you, especially Ron Bryant who didn’t even blink when I asked for help in wiring 150 LEDs to make a fancy flash for a camera!

To all the members of my group, present and past, thanks for all the support. Thanks especially to Lim and Chu who knew what I was going through because we were going through it together. To Chu, I wish you all the happiness life has to offer, you certainly deserve it, it’s been a pleasure going through this with you. To Lim, it takes courage and dedication to achieve what you have achieved, I have huge admiration for the sacrifices you have made and wish all the best for you, and for your family’s future.

To Corrina, who always encouraged me and helped me to keep focused, I can’t thank you enough. I’ve been very lucky to have had your love, support, patience, and above all, smoked chicken pasta to help get me through. Words can’t really express how grateful I am for everything.

Thanks Mum and Dad for believing in me, for understanding and for constant encouragement.
Table of contents

1 Introduction

1.1 General Introduction 1

1.2 Instrumentation 3

1.3 Methodologies and applications 6

1.3.1 Single wavelength methods 7

1.3.2 Two and three wavelength arithmetic combinations 8

1.3.2.1 Flatfield correction 9

1.3.2.2 Suppression of unwanted background signals from other species 10

1.3.2.3 Using image arithmetic for estimating physical parameters 13

1.3.3 Multivariate methods 14

1.4 Imaging and image enhancement in forensic science 15

1.5 Scientific Working Group on Imaging Technologies 22

1.6 Aims for this study 23

2 Imaging systems integration and evaluation 26

2.1 Introduction 26

2.1.1 Construction and control of imaging systems 26

2.1.2 Imaging systems performance and evaluation 27

2.1.2.1 The photon transfer curve (PTC) 27

2.1.2.2 Attenuation of light intensity by the QICAM+visible-VariSpec imaging system 31

2.1.2.3 Wavelength convolution of the QICAM+visible-VariSpec 31

2.1.2.4 Factors contributing to spatial non-uniformity of the imaging systems 31

2.1.2.5 Light source evaluation 33

2.1.2.6 Performance and limitations of auto exposure algorithm 33

2.1.2.7 Limit of detection of imaging systems towards blood 34

2.2 Equipment 34

2.2.1 Hardware 34

2.2.2 Software 37

2.3 Integration and control of the camera, LCTF and filter wheel 39

2.3.1 Physical integration of imaging systems 39

2.3.2 Computer control of the camera, LCTF and filter wheel using VPascal© 39

2.3.2.1 Image arithmetic in V++: 16-bit and 32-bit floating point formats 40

2.3.2.2 Programs and procedures in VPascal© 41

2.3.2.3 The basic structure of the instrument control programs 41

2.3.2.4 The LCTF and camera imaging operations and the graphical user interface 42
2.3.2.5 Exposure type
2.3.2.6 The camera and filter wheel ‘Imaging procedures’ Graphical user interface
2.3.2.7 Selecting the exposure time using the auto exposure procedure
2.3.2.8 Saving and presenting image information in XML format

2.4 Imaging systems evaluation: methods
2.4.1 Evaluation of the imaging sensors using the photon transfer curve
2.4.1.1 Extraction of blue pixels
2.4.2 Data collection: factors affecting data quality and acquisition time
2.4.2.1 Attenuation of light intensity by the QICAM+visible- (LCTF) imaging system
2.4.2.2 Wavelength convolution of the QICAM+visible-VariSpec(LCTF).
2.4.2.3 Exposure consistency
2.4.2.4 Evaluation of the auto exposure procedure
2.4.2.5 Factors contributing to spatial non-uniformity of the imaging systems
2.4.2.6 Light source evaluation
2.4.3 Limit of detection towards blood
2.4.3.1 Transmittance experiments
2.4.3.2 Reflectance experiments
2.4.3.3 Limit of detection calculation

2.5 Imaging systems evaluation: results
2.5.1 Evaluation of the imaging sensors using the photon transfer curve
2.5.2 Data collection: factors affecting data quality and acquisition time
2.5.2.1 Attenuation of light intensity by the QICAM+visible-VariSpec(LCTF) imaging system
2.5.2.2 Wavelength convolution of the QICAM+visible-VariSpec(LCTF)
2.5.2.3 Factors contributing to spatial non-uniformity of the imaging systems
2.5.2.4 Exposure consistency
2.5.2.5 Light source measurements
2.5.2.6 Evaluation of the auto exposure procedure
2.5.3 Limit of detection towards blood

2.6 Conclusions and overall evaluation

3 Materials and methods
3.1 Materials and reagents
3.1.1 Chemicals used
3.1.2 Bovine blood
3.1.3 Preparation of Ruhemann’s Purple complexes and selected metal derivatives
3.1.4 Preparation of 9-(1,8-diazafluoren-9-ylidene)amino-1,8-diazafluorene (DFYADF)
3.1.5 Preparation of malachite green
3.1.6 Synthesis of lanthanide complexes
3.1.6.1 Tris(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanediono) aquo-lanthanide(III): lanthanide = Eu$^{3+}$, Sm$^{3+}$, Nd$^{3+}$ 84
3.1.6.2 Tris(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanediono) monophenanthroline-lanthanide(III): lanthanide = Eu$^{3+}$, Sm$^{3+}$, Nd$^{3+}$ 84
3.1.6.3 Tris(propane-1-3-diono) (monophenanthroline)- terbium(III) 84
3.1.7 Enhancement reagent formulations 85

3.2 Spectral characterisation 86
3.2.1 UV-vis solution absorbance spectra 86
3.2.2 UV-vis solid state spectra 86
3.2.3 UV-vis solution fluorescence spectra 86
3.2.4 UV-vis solid state fluorescence spectra 86

3.3 Methods of sample preparation and chemical enhancement 87
3.3.1 Latent blood shoemark sample preparation 87
3.3.2 Blood shoemark sample treatment with leuco crystal violet and leuco malachite green. 87
3.3.3 Blood shoemark sample treatment using acid fuchsin (Hungarian Red) 88
3.3.4 Deposition of fingermarks on porous surfaces 88
3.3.5 Treatment of fingermarks on porous surfaces: ninhydrin, benzo(f)ninhydrin, DFO 89
3.3.6 Deposition of fingermarks on non-porous surfaces 89
3.3.7 Treatment of fingermarks on non porous surfaces: fuming and staining 90

3.4 Methods of data capture 90
3.4.1 Colour images 90
3.4.2 Single wavelength reflectance and fluorescence 90
3.4.3 Image cube: collection and storage 91
3.4.3.1 Reflectance mode image cube 91
3.4.3.2 Flatfield correction cube 91
3.4.3.3 Fluorescence image cube 91

3.5 Methods of data processing 92
3.5.1 Relative reflectance cube (flatfield corrected cube) 92
3.5.2 Background correction image processing 93
3.5.2.1 Three wavelength background correction procedure 94
3.5.2.2 Two wavelength background correction procedure 95
3.5.3 Principal components analysis 95

3.6 Samples used for imaging 96
3.6.1 Un-enhanced and enhanced blood shoemarks 96
3.6.1.1 Blood shoemarks treated with leuco crystal violet (LCV) 96
3.6.1.2 Blood shoemark treated with leuco malachite green (LMG) 97
3.6.1.3 Blood shoemark treated with acid fuchsin (Hungarian Red) 97
3.6.1.4 Shoemark imaging using sunlight 98
3.6.2 Fingermarks on porous surfaces 99
3.6.2.1 Latent fingermark treated with ninhydrin 99
3.6.2.2 Latent fingermark treated with benzo(f)ninhydrin and cadmium chloride 100
3.6.2.3 Latent fingermark treated with DFO 100
3.6.3 Fingermarks on non-porous surfaces 100
3.6.3.1 Latent fingermark dusted with Tb(acac)$_3$.phen 101
3.6.3.2 Latent fingermark, fumed, and stained with Nd(TTA)$_3$.phen 101
3.6.3.3 Latent fingermark dusted with Nd(TTA)$_3$.phen 101
3.6.3.4 Latent fingermark, fumed, and stained with Sm(TTA)$_3$.phen 102
3.6.4 Split fingermarks: comparison of Eu(TTA)$_3$.phen with Panacryl and Rhodamine 6G 102
3.6.4.1 Comparison of Eu(TTA)$_3$.phen and Panacryl for a strong fingermark 102
3.6.4.2 Comparison of Eu(TTA)$_3$.phen and Panacryl for a weak fingermark 103
3.6.4.3 Comparison of Eu(TTA)$_3$.phen and Rhodamine 6G for a weak fingermark 103

4 Results and discussion 104

4.1 Introduction 104

4.2 Un-enhanced and enhanced blood shoemarks 105
4.2.1 Unenhanced blood shoemarks 106
4.2.1.1 Solution and solid state spectra of unenhanced blood 106
4.2.1.2 Imaging of untreated blood 108
4.2.2 Blood shoemarks enhanced with leuco crystal violet 109
4.2.2.1 Solution and solid state spectra of crystal violet 109
4.2.2.2 Imaging of blood treated with leuco crystal violet 110
4.2.3 Leuco malachite green (LMG) and acid fuchsin (Hungarian Red) 113
4.2.3.1 Solution and solid state spectra of leuco malachite green (LMG) 113
4.2.3.2 Solution and solid state spectra of acid fuchsin (Hungarian Red) 114
4.2.3.3 Imaging of blood shoemarks treated with leuco malachite green (LMG) and Hungarian Red 115
4.2.4 Imaging untreated blood shoemarks under sunlight 117
4.2.5 Imaging of unenhanced and enhanced blood: summary of findings 121

4.3 Fingermarks on porous surfaces 123
4.3.1 Ninhydrin and benzo(f)ninhydrin and their metal complexes 123
4.3.1.1 Solution and solid state spectra of Ruhemann’s purple complexes 124
4.3.1.2 Solution and solid state spectra of selected metal-RP(nin) and metal-RP(benzo(f)nin) 127
4.3.1.3 Repeatability of fingermark depositions 128
4.3.1.4 Imaging of fingermarks treated with ninhydrin+ zinc 129
4.3.1.5 Imaging of fingermarks treated with benzo(f)ninhydrin 131
4.3.1.6 Imaging of fingermarks treated with benzo(f)ninhydrin + cadmium 133
4.3.2 DFO 139
4.3.2.1 Spectra of the product obtained from DFO and amino acids (DFYADF) 139

Results and discussion 104
4.3.2.2 Imaging of fingermarks treated with DFO

4.3.3 Enhancement of fingermarks on non-porous surfaces: summary of findings.

4.4 Enhancement of fingermarks on non-porous surfaces

4.4.1 Enhancement of fingermarks using common fluorophores

4.4.1.1 Solution and solid state spectra of Panacryl and Rhodamine 6G

4.4.2 Enhancement of fingermarks using lanthanide dyes

4.4.2.1 Solution and solid state spectra of lanthanide complexes

4.4.3 Imaging of fingermarks on non-porous surfaces

4.4.3.1 Imaging of fingermarks dusted with Tb(acac)₃phen

4.4.3.2 Imaging of fingermarks treated with Nd(TTA)₃phen

4.4.3.3 Imaging of fingermarks treated with Sm(TTA)₃phen

4.4.3.4 Imaging of fingermarks treated with Eu(TTA)₃phen: comparison with commonly used fingerprint stains

4.4.4 Enhancement of fingermarks on non-porous surfaces: summary of findings.

4.5 Overall Conclusions

5 Development of enhancement reagent for shoemarks in soil

5.1 Introduction

5.1.1 Aims

5.2 Materials

5.2.1 Chemicals used

5.2.2 Synthesis of 2,6-Bis [1-(3,5-dimethoxybenzyl) benzimidazol-2-yl]-4-[4'- (dimethylamino) phenyl]pyridine (BBIDMAPP)

5.2.3 Synthesis and characterisation of [Fe(OH)₂]₂[OT₂]₂

5.2.4 Synthesis and characterisation of ferrihydrite

5.2.5 Characterisation of soil sample

5.2.6 Characterisation of soil shoemark

5.2.7 Reagent spray formulations

5.2.7.1 Potassium thiocyanate

5.2.7.2 BBIDMAPP

5.3 Methods

5.3.1 pKₐ determination of BBIDMAPP

5.3.2 Binding constant of [Fe(II)(BBIDMAPP)₂]²⁺

5.3.2.1 Determination of binding constant by pH titration

5.3.2.2 Determination of binding constant using solutions of varying BBIDMAPP concentration

5.3.3 Spectral broadening of Fe(II)(BBIDMAPP)₂⁺ on filter paper

5.3.4 Reagent spray formulation

5.3.5 Controlled shoemark depositions
5.3.6 Application of enhancement reagents

5.3.7 Comparison of BBIDMAPP with thiocyanate

5.3.7.1 Sequencing

5.3.8 Amenability of [Fe(II)(BBIDMAPP)2]2+ and iron(III)thiocyanate to spectral imaging methods

5.3.8.1 Data recording and processing

5.3.8.2 Sample preparation

5.4 Results and discussion

5.4.1 Synthesis of 2,6-Bis[1-(3,5-dimethoxybenzyl) benzimidazol-2-yl]-4-[4’-(dimethylamino)phenyl]pyridine (BBIDMAPP)

5.4.2 Spectral broadening of [Fe(II)(BBIDMAPP)2]2+ on filter paper

5.4.3 Determination of pKₐ values for BBIDMAPP

5.4.4 Determination of binding constant of [Fe(II)(BBIDMAPP)2]2+

5.4.4.1 Binding constant determination from pH titration

5.4.4.2 Binding constant determination using solutions containing BBIDMAPP

5.4.5 Analysis of iron content of soil and ferrihydrite shoemarks

5.4.6 Reagent spray formulation

5.4.7 Controlled shoemark depositions

5.4.8 Comparison of BBIDMAPP with thiocyanate

5.4.8.1 Sequencing

5.4.8.2 Shoemarks on coloured substrates

5.5 Conclusions

6 Near-real time snapshot blood imaging camera

6.1 Introduction

6.1.1 Review of real-time spectral imaging systems and applications

6.1.2 Aim

6.2 Materials

6.3 Initial design and performance considerations

6.3.1 Cameras

6.3.2 Lighting

6.3.3 Software

6.4 Design concepts for dual camera

6.4.1 Concept one

6.4.2 Concept two

6.4.3 Lighting

6.5 Design and construction of dual camera systems

6.5.1 Optical configuration for design one
7 Conclusions

7.1 Imaging systems performance overview

7.2 Analyte enhancement by suppressing substrate patterning

7.3 Complementing enhancement reagents with imaging methodologies

7.4 Development of real time imaging systems for location of blood staining at crime scenes

7.5 Human interpretation of spectral imagery: a forensic science perspective.

7.6 Incorporation of imaging procedures into standard operating procedures (SOPs) for forensic science laboratories.

References
List of Figures

Figure 2.1 Sketch of a photon transfer curve (PTC), assuming image is taken of a uniformly illuminated field at each exposure. 29
Figure 2.2 a) Camera and Thor Optics filter wheel, b) Camera and visible-VariSpec (LCTF) 39
Figure 2.3 Structures of programs and procedures in VPascal® 41
Figure 2.4 Basic structure of ‘LCTF and camera control’ program. Two external forms (GUI) are called: Imaging procedures and Configuration. 44
Figure 2.5 Calculations corresponding to the correction method options in the GUI in Figure 2.4 2.1 and 2.2 correspond to three wavelength absorbance corrections in arithmetic and geometric modes respectively. 45
Figure 2.6 GUI for controlling the camera + filter wheel imaging system. 46
Figure 2.7 Algorithm for the auto exposure procedure 47
Figure 2.8 Photon transfer curve for the QICAM camera at 415 nm with gain = 1, offset = 0, exposure time = 100 ms. 59
Figure 2.9 Plot of variance vs brightness for QICAM at 415 nm with gain = 1, offset = 0, exposure time = 100 ms. 59
Figure 2.10 (—) theoretical 3200 K blackbody intensity distribution, (—) response of QICAM+visible-VariSpec(LCTF) to a blackbody emitter at 3200 K, (—) A sensitivity correction factor based on these curves (on logarithmic scale). 65
Figure 2.11 (—) Output of mercury-argon source as measured by a spectrophotometer with 0.5 nm bandwidth, (—) Uncorrected response from QICAM+visible-VariSpec(LCTF) imaging system, (---) Corrected response of QICAM+visible-VariSpec(LCTF) imaging system. All spectra have been normalised to a value of 1 at 546 nm. 66
Figure 2.12 Contributions to image non-uniformity from different sources. All images have been contrast adjusted to enhance variation in the original image: a) Fixed pattern noise, b) Photo response non-uniformity, c) 415 / 435 nm image with half angle of acceptance 23°, d) 415 / 435 nm image with half angle of acceptance 9°, e) Degraded 440 nm bandpass filter, f) Reference Image, g) 415 / 435 nm image effect from non-registration of images, h) 415 / 435 nm image after registration procedure has been applied. 69
Figure 2.13 Images showing loss of focus at short wavelengths due to chromatic aberration at two aperture settings, using the QICAM+visible-VariSpec(LCTF) imaging system (25 mm lens) at a distance of 20 cm approximately. 70
Figure 2.14 Variation in exposure consistency for varying exposure times and mean brightness levels for the 10-bit QICAM using the Polilight® for illumination. 71
Figure 2.15 Relative spectral output of light sources investigated in this study: (—) xenon, (—) fluorescent, (—) metal halide, (—) tungsten halogen 72
Figure 2.16 Absorbance vs hemoglobin concentration for transmittance experiments using the QICAM 76
Figure 2.17 Plot relating relative concentration of blood in solution to concentration of hemoglobin in mg cm$^{-2}$ on filter paper soaked in blood.

Figure 2.18 Absorbance vs hemoglobin concentration for reflectance experiments using the QICAM.

Figure 3.1 VPascal© algorithm for measuring spectra from an image cube.

Figure 3.2 VPascal© algorithm for selecting the exposure time for fluorescence images.

Figure 3.3 VPascal© algorithm for creating a relative reflectance cube.

Figure 3.4 VPascal© algorithm for producing a three wavelength background corrected image cube.

Figure 4.1 (─) Absorbance spectrum of fresh blood; (---) absorbance spectrum of blood treated with K$_3$Fe(CN)$_6$, both 1000 times diluted with water.

Figure 4.2 (---) Reflectance spectrum of blood on filter paper aged for one year, (─) reflectance spectrum of fresh blood on filter paper. Both prepared with blood diluted 50 times with water.

Figure 4.3 (─) Absorbance of crystal violet (3.20 x 10$^{-6}$ mol L$^{-1}$ in water); (---) in situ reflectance measurement of shoemark one(b) from an area of the shoemark exhibiting strong colour development.

Figure 4.4 (---) Absorbance of malachite green (3.0 x 10$^{-6}$ mol L$^{-1}$ in ethanol); (···) in situ reflectance measurement from an area of shoemark five(b) exhibiting strong colour development.

Figure 4.5 (─) Absorbance of Hungarian Red (BVDA Cat. No. B-88001) 10,000 times dilution from stock. (2.0 x 10$^{-5}$ mol L$^{-1}$ in ethanol) (---) in situ reflectance measurement from an area of shoemark six(b) exhibiting strong colour development.

Figure 4.6 (─) Ruhemann’s Purple (ninhydrin) 4.4 x 10$^{-5}$ mol L$^{-1}$ in ethanol; (---) Ruhemann’s Purple (benzo(f)ninhydrin) 4.0 x 10$^{-5}$ mol L$^{-1}$ ethanol. Insert: the structure of Ruhemann’s Purple (nin).

Figure 4.7 (─) Ruhemann’s Purple (ninhydrin) (---) Ruhemann’s Purple (benzo(f)ninhydrin) on filter paper. Insert: the structure of Ruhemann’s Purple (benzo(f)nin).

Figure 4.8 a) Latent fingermark on copier paper with the left side treated with ninhydrin and the right side treated with benzo(f)ninhydrin; b) latent fingermark on copier paper left side initially treated with ninhydrin and the right side initially treated with benzo(f)ninhydrin, then treated with a metal salt. Arrow in a) indicates area of the fingermark which has become lighter in colour.

Figure 4.9 (─) 2.2 x 10$^{-5}$ mol L$^{-1}$ Zn-RP(nin); (---) 2.0 x 10$^{-5}$ mol L$^{-1}$ Cd-RP(benzo(f)nin). Insert: a generalised structure of metal Ruhemann’s Purple complex proposed by Lennard (121)

Figure 4.10 (─) Reflectance spectrum of Zn-RP(nin); (---) reflectance spectrum of Cd-RP(benzo(f)nin).

Figure 4.11 Reflectance spectra of colours from the newsprint substrate used for fingermark two and the reflectance spectrum of Cd-benzo(f)nin taken from Figure 4.9. Newsprint substrate is printed using a four colour printing process.
Figure 4.12 (─) Absorbance and (---) reflectance spectra of DFYADF

Figure 4.13 (---) Excitation and (─) emission spectra of DFYADF 2.76 x 10^{-6} mol L^{-1} in ethanol. (em_λ = 625 nm, ex_λ = 480 nm) (—) emission of DFYADF on filter paper. Insert: structure of DFYADF.

Figure 4.14 (---) Excitation and (—) emission spectra of Panacryl 1.27 x 10^{-5} mol L^{-1} in ethanol (em_λ = 525 nm, ex_λ = 400 nm) (····), emission from a Panacryl-stained fingerprint measured with QICAM+visible-VariSpec(LCTF), ex_λ = 400 nm with Polilight©. Insert: structure of Panacryl.

Figure 4.15 (---) Excitation and (—) emission spectra of Rhodamine 6G 1.8 x 10^{-7} mol L^{-1} in ethanol (em_λ = 575 nm, ex_λ = 500 nm) (····), emission from a Rhodamine 6G-stained fingerprint on filter paper measured with QICAM+visible-VariSpec(LCTF) imaging system, ex_λ = 500 nm with Polilight©. Insert: structure of Rhodamine 6G.

Figure 4.16 Excitation and emission of lanthanide complexes in ethanol: (─)Tb(acac)_3.phen (4.39 x 10^{-4} mol L^{-1}) (excitation wavelength used to acquire emission spectrum = 300 nm, emission wavelength used to acquire excitation spectrum = 500 nm); (—)Sm(TTA)_3.phen (1.39 x 10^{-4} mol L^{-1}) (excitation wavelength used to acquire emission spectrum = 400 nm, emission wavelength used to acquire excitation spectrum = 570 nm); (—)Eu(TTA)_3.phen (9.61 x 10^{-6} mol L^{-1}) (excitation wavelength used to acquire emission spectrum = 340 nm, emission wavelength used to acquire emission spectrum = 615 nm). Insert: a generalized structure of a lanthanide tris-

Figure 4.17 (—) Emission spectrum of Eu(TTA)_3.phen in solution measured using a spectrofluorometer, (····) emission spectrum of cyanoacrylate fingerprint stained with Eu(TTA)_3.phen measured with the QICAM+visible-VariSpec(LCTF) imaging system ex_λ = 365 Polilight©.

Figure 4.18 Emission of Nd(TTA)_3.phen (2.40 x 10^{-4} mol L^{-1} in ethanol) measured with Rolera + near-IR-VariSpec(LCTF) (3 min integration time per wavelength measurement) Excitation at 350 nm.

Figure 4.19 (―) Emission spectrum of Sm(TTA)_3.phen; (---) emission spectrum of an area of the soda can represented by a square in Image 4.18e. Both spectra acquired by LCTF.

Figure 5.1 Structures of iron (II) chromophores discussed in this section

Figure 5.3 Molar absorptivity of [Fe(II)(BBIDMAPP)_2]^{2+} in ethanol (—), molar absorptivity of iron(III)thiocyanate (---), log(1/R) of [Fe(II)(BBIDMAPP)_2]^{2+} on filter paper (— — —)

Figure 5.4 Spectra of BBIDMAPP 3.12 x 10^{-5} mol L^{-1} in ethanol:H_2O (7:3) at five pH values (0.1 mol L^{-1} NaCl, 25° C)

Figure 5.5 Experimental and calculated absorbance values at 370 nm for pH titration of BBIDMAPP in ethanol:H_2O (7:3) (0.1 mol L^{-1} NaCl, 25° C)

Figure 5.6 Measured (○) and least squares fit for [Fe(II)(BBIDMAPP)_2]^{2+} titration using FeSO_4.7H_2O as the source of Fe^{3+}

Figure 5.7 Measured (○) and least squares fit for [Fe(II)(BBIDMAPP)_2]^{2+} titration using Fe(OH)_3[OTs]_2 as the source of Fe^{3+}.

xiv
Figure 5.8 Experimental and calculated absorbance values for solutions of [Fe(II)(BBIDMAPP)₂]²⁺ in 7:3 ethanol:water 194

Figure 5.9 Experimental and calculated absorbance values for solutions of [Fe(II)(BBIDMAPP)₂]²⁺ in 7:3 acetonitrile:water 195

Figure 6.1 Diagram of optical configuration of design one 225

Figure 6.2 Image of optical configuration of design one 225

Figure 6.3 Diagram of optical configuration for design one 228

Figure 6.4 Image of optical configuration of design one 228

Figure 6.5 Image of LED light source mounted to the front of the dual camera system (design two) 230

Figure 6.6 Schematic of dual camera systems. (Schematic is the same for design one and design two) 231

Figure 6.7 a) Dual camera (design two) showing with all components assembled b) Dual camera being operated by hand (design one) 231

Figure 6.8 Algorithm for image capture with dual camera systems 232

Figure 6.9 Relative spectral output of LEDs: (—) 415 nm LED dashed line (---) 435 nm LED 239

Figure 6.10 a) Pattern formed by 415 nm LEDs. b) Ratio (415 nm / 435 nm) contrast adjusted to highlight differences in the spatial pattern between 415 nm and 435 nm. 240

Figure 6.11 a) Image of stopwatch counting upwards taken with a) QICAM, b) Retiga (mirrored) showing synchronisation between the two cameras 241

Figure 6.12 a) Vignetting caused by beamsplitter and LED mount. b) Image showing front of design one showing increased hole in LED mount (compared to Figure 6.5) and beamsplitter with front plate removed. 242

Figure 6.13 Image of an A4 size printed target at four different f-stops: a) f = 26, b) f = 10, c) f = 5.0, d) f = 2.5. 243
List of Images

Image 4.1 Shoemark one (50 times blood dilution) and shoemark two (500 times blood dilution) on wooden packing crate: a) colour image of shoemark one; b) colour image of shoemark two; c) 415 nm image of shoemark one; d) 415 nm image of shoemark two; e) 415 / 440, nm image of shoemark one; f) 415 / 440, image of shoemark two

Image 4.2 Blood shoemark one(b) (50 times blood dilution) and shoemark two(b) (500 times blood dilution) each treated with LCV: a) colour image of shoemark one(b); b) colour image of shoemark two(b); c) 590 nm image of shoemark one(b); d) 590 nm image of shoemark two(b); e) 590 / 630, image of shoemark one(b); f) 590 / 630, nm image of shoemark two(b).

Image 4.3 Blood shoemark three(b) (5000 times dilution on wood) and shoemark four(b) (500 times dilution on blue cardboard) each treated with LCV: a) colour image of shoemark three(b); b) colour image of shoemark four(b); c) 590 nm image of shoemark three(b), d) 590 nm image of shoemark four(b), e) 590 / 630, nm image of shoemark three(b); f) 590 / 630, nm image of shoemark four(b).

Image 4.4 Blood shoemark five(b) (treated with LMG) and shoemark six(b) (treated with Hungarian Red): a) colour image of shoemark five(b); b) colour image of shoemark six(b); c) 650 nm image of shoemark five(b); d) 550, nm of shoemark six(b); e) 650 / 690, image of shoemark five(b); f) 550 / 580, nm image of shoemark six(b).

Image 4.5 Blood shoemark seven, 50 times diluted blood, using the sun as the only source of light. a) colour image. b) 415 nm image taken using QICAM+visible-VariSpec(LCTF), c) 400 nm image using Rolera+filter wheel. d) 415/450 image (images taken with QICAM+visible-VariSpec(LCTF), e) 415/450 image (images taken with Rolera+filter wheel without registration, f) 415/450 image (images taken with Rolera+filter wheel with registration. Arrowed shadow in b) is the camera tripod.

Image 4.6 a) Blood shoemark eight, 500 times diluted blood on raw wood and blood shoemark nine, raw blood on asphalt. a) 415 nm image of shoemark eight b) 415 / 440 nm image of shoemark eight, c) colour image of shoemark nine, d) 415 nm image of shoemark nine, e) 415 / 440 nm image of shoemark nine, f) 415 / 460 nm image of shoemark nine. All spectral images were acquired with the QICAM+visible-VariSpec(LCTF) imaging system with the sun as the only source of light.

Image 4.7 Shoemark nine, raw blood on asphalt. 440 / 460 nm image.

Image 4.8 Fingermark one(b) Zn-RP(nin): a) Colour image of fingermark one before zinc treatment; b) 485 nm image, c) 485*2/470 + 500; d) 2*485/460 + 510; e) 485/550; f) 485/420; g) Principal component image 2; h) enlargement from f, i) enlargement from g.

Image 4.9 Fingermark two RP(benzo(f)nin, principal components analysis: a) colour reflectance image, b) reflectance at 440 nm, c) 440 / 400*480, d) PC 4 from 60 frame input image, e) PC 5
from 60 frame input image, f) PC 6 from 60 frame input image, g) colour image generated from d, e, and f, h) PC 5 from 5 frame subset image taken from 60 frame image cube (400, 440, 500, 600, 700 nm) i) colour image generated from PC 3 PC 4 and PC 5 from 5 frame input image.

Image 4.10 Fingermark two(b) Cd-RP(benzo(f)nin) enhanced using a three wavelength correction: a) 550 nm image b) $\frac{550}{\sqrt{555*545}}$, c) $\frac{550}{\sqrt{565*535}}$, d) $\frac{550}{\sqrt{570*530}}$, e) $\frac{550}{\sqrt{575*525}}$, f) $\frac{550}{\sqrt{580*520}}$, g) $\frac{550}{\sqrt{585*515}}$, h) $\frac{550}{\sqrt{590*510}}$, i) $\frac{550}{\sqrt{595*505}}$. 135

Image 4.11 Fingermark two(b) Cd-RP(benzo(f)nin): Enhanced using a two wavelength correction.: a) 550/505 nm; b) 550/515 nm; c) 550/525 nm; d) 550/535 nm; e) 550/545 nm; f) 550/555 nm; g) 550/565 nm; h) 550/575 nm; i) 550/585 nm. 136

Image 4.12 Fingermark two(b), Comparison between geometric and arithmetic average a) $\frac{550}{\sqrt{570*530}}$, b) $\frac{2*550}{570+530}$, c) ratio of images: $\frac{4.11a}{4.11b}$. 138

Image 4.13 Fingermark three: a) 570 nm reflectance image b) 605 nm reflectance image; c) 570,605

Image 4.14 Fingermark three a) 580 nm fluorescence image; b) 605 nm fluorescence image; c) 550 nm reflectance image of a section of copier paper; d) (580,630) fluorescence images; e) (580/630) fluorescence images; f) (580,630)/(550,).

Image 4.15 Fingermark four, strong fingermark (not fumed) dusted with Tb(acac),phen: a) colour reflectance image, b) colour fluorescence image (ex 300 nm); c) colour fluorescence image (ex 365 nm); d) emission at 550 nm, e) $550-\frac{540+560}{2}$, f) $\frac{2*550}{540+560}$. 152

Image 4.16 Fingermark five, strong fingermark stained with Nd(TTA),phen a) emission at 880 nm; b) fixed pattern noise(FPN) for 3 min exposure time; c) emission at 880 nm image - FPN image; d) emission at 850nm - FPN e) 880 nm – 850 nm(corrected for FPN); f) 880 nm/850 nm (corrected for FPN) 153

Image 4.17 Fingermark six strong fingermark (not fumed) dusted with Nd(TTA),phen excitation 365 nm: a) colour image b) 880 nm . c) 880 nm – 850 nm, d) 880 nm / 850 nm) 155

Image 4.18 Fingermark seven: Sm(TTA),phen treated fingerprint on soda can: a) 566 nm image; b) $566-\frac{546+586}{2}$; c) $\frac{2*566}{546+586}$; d) 604 nm image, e) $604-\frac{584+624}{2}$, f) $\frac{2*604}{584+624}$. 156

Image 4.19 Fingermark eight, left side treated with Eu(TTA),phen, right side treated with Panacryl: a) colour reflectance image, b) colour fluorescence image (ex 365 nm), c) single wavelength image, Eu = 615 nm, Panacryl = 510 nm, d) Eu = 615– $\frac{605+625}{2}$, Panacryl =
\[510 - \frac{485 + 535}{2} \]
\[e) \quad \text{Eu} = \frac{2 \times 615}{605 + 625}, \quad \text{Panacryl} = \frac{2 \times 510}{485 + 535}; \quad f) \quad \text{Eu} = \frac{2 \times 615}{605 + 625}, \quad \text{Panacryl} = \frac{2 \times 510}{475 + 545} \]

Image 4.20 Fingermark nine, left side treated with Panacryl, right side treated with Eu(TTA)$_3$.phen, a) colour reflectance image, b) colour fluorescence image (ex 365 nm) c)

\[
\text{Eu} = 615 \text{ nm}, \quad \text{Panacryl} = 510 \text{ nm}, \quad d) \quad \text{Eu} = 615 - \frac{605 + 625}{2}, \quad \text{Panacryl} = \frac{510}{485 + 535},
\]

\[f) \quad \text{enlargement of images c, d and e where the area of enlargement is indicated by a rectangle in each image.} \]

Image 4.21 Fingermark ten, left hand side treated with Rhodamine 6G, right hand side treated with Eu(TTA)$_3$.phen a) Colour fluorescence image; b) single wavelength image, Eu = 615 nm

\[\text{Rhodamine 6G} = 560 \text{ nm}, \quad c) \quad \text{Eu} = 615 - \frac{605 + 625}{2}, \quad \text{Rhodamine 6G} = 560 - 590, \quad d) \quad \text{Eu} = \frac{2 \times 615}{605 + 625}, \quad \text{Rhodamine 6G} = 560/590. \]

Image 5.1 Reflectance image at 615 nm of the 20 pieces of filter paper as dipped in ferrihydrite and treated with BBIDMAPP and ascorbic acid; layout according to Table 5.5. The numbers on the filter paper are for identification purposes only.

Image 5.2 Two ferrihydrite shoemarks; shoemark one has been treated with thiocyanate and shoemark two has been treated with BBIDMAPP spray solution. The dashed square on shoemark one shows the area used to measure the average reflectance of the ferrihydrite shoemark depositions as discussed in section 5.4.7.

Image 5.3 Same two ferrihydrite shoemarks as in Image 5.2; shoemark one has been subsequently treated with BBIDMAPP spray solution and shoemark two has been subsequently treated with thiocyanate spray solution.

Image 5.4 Image set of a single shoemark treated first with thiocyanate (left) and then with BBIDMAPP (right). (a) White light image of shoemark treated with thiocyanate, (b) White light image of shoemark treated with BBIDMAPP after thiocyanate (c) single wavelength image (480 nm) (d) Single wavelength image (620 nm) of BBIDMAPP treated shoemark.

Image 5.5 Image set of a single shoemark treated first with thiocyanate (left) and secondly with BBIDMAPP (right). (a) Two wavelength division of thiocyanate shoemark (480/550 nm) (b) Two wavelength division of BBIDMAPP treated shoemark (615/640), arrow shows where loss of detail has occurred. (c) second principal component image of thiocyanate treated shoemark (d) second principal component image of BBIDMAPP treated shoemark.

Image 5.6 Image set of soil shoemark on polished wooden floor. (a) Shoemark treated with thiocyanate. (b) Shoemark treated with BBIDMAPP.
Image 5.7 Image set for a shoemark on polished wooden floor treated first with thiocyanate and then with BBDIMAPP. (a) Two wavelength correction (480/580) for thiocyanate shoemark. (b) Two wavelength correction (620/640) for the BBDIMAPP treated shoemark. (c) Two wavelength correction of thiocyanate treated shoemark (480/525). (d) Three wavelength correction of BBDIMAPP treated shoemark (620/(600+640)/2)). The arrow in b shows where loss of detail has occurred.

Image 5.8 Image set for a shoemark on colour wrapping paper treated with BBDIMAPP only. (a) White light image of shoemark (arrow shows example of pigment which shows high contrast with a three wavelength correction). (b) Single wavelength of shoemark (620 nm). (c) Two wavelength correction (620/640) (d) Three wavelength correction 620/640.

Image 5.9 –log(1/R) of red pigment on wrapping paper, indicated by an arrow in figure 5.8a

Image 6.1 415 nm image of blood dilutions taken with QICAM+visible-VariSpec(LCTF) imaging system, 16 mm lens f = 5.0 exp = 1172 ms. Dilutions as shown in Image 6.2

Image 6.2 Two wavelength division of blood dilutions on filter paper, (415 nm/ 435 nm) taken with QICAM+visible-VariSpec(LCTF) imaging system, the numbers refer to the dilution level.

Image 6.3 Colour image of shoemark in 10x diluted blood on wood taken with Canon D30 (24-85 mm zoom lens)

Image 6.4 415 nm image of shoemark in 10x diluted blood on wood taken with QICAM+visible-VariSpec(LCTF) imaging system. Insert shows tread pattern superimposed over the wood grain

Image 6.5 Two wavelength division (415 nm / 435 nm) of shoemark in 10x diluted blood taken with the QICAM+visible-VariSpec(LCTF) imaging system. Insert shows tread pattern in good focus and a reduction in the wood grain pattern.

Image 6.6 Image of blood dilutions design one ‘bench top mode’. Arrows point to non-uniformity in illumination caused by differences in 415 nm and 435 nm LED pattern. exp = 20 ms. Dilutions as shown in Image 6.2

Image 6.7 Image of blood dilutions design one handheld exp = 20 ms. Dilutions as shown in Image 6.2.

Image 6.8 Image of shoemark in 10x diluted blood on wood design one ‘bench top mode’ insert shows tread detail is in good focus. f = 4.0 exp = 20 ms

Image 6.9 Image of shoemark in 10x diluted blood on wood design one ‘handheld mode’ insert shows tread detail is slightly out of focus. f = 4.0 exp = 20 ms

Image 6.10 Two wavelength division (415 nm/ 435 nm) taken with design two in bench top mode. f = 5.0, exp for QICAM = ms, exp for 1900 Retiga = 1500 ms. Dilutions as shown in Image 6.2.

Image 6.11 Two wavelength division (415 nm/ 435 nm) taken with design two in handheld mode f = 5.0 exp = 30 ms. Dilutions as shown in Image 6.2.
Image 6.12 Image of blood shoemark in 10x diluted on wood ‘design two’ benchtop insert shows tread pattern in reasonable focus. Lower arrow indicates effect of slight misalignment of images. $f = 5.0$ exp for QICAM = 2800ms, exp for Retiga = 2200 ms.

Image 6.13 Image of blood shoemark in 10x diluted blood on wood ‘design two’ handheld. Insert shows that tread pattern is very out of focus. $f = 5.0$ exp = 30 ms

Image 6.14 Colour image of a boxing ring blood stain. Taken with Canon D30 (zoom lens)

Image 6.15 415 nm image of blood stain taken with Rolera + filter wheel system. The white square represents the area used to measure pixel brightness values

Image 6.16 Two wavelength division 415 nm / 435 nm taken with Rolera + filter wheel system

Image 6.17 Two wavelength division 415 nm / 435 nm taken with Dual camera system design one $f= 4.0$ exp =20ms.
List of Tables

Table 2.1 List of cameras, their specifications and parameters measured by the photon transfer curve. All cameras performed within manufacture’s specifications. 63

Table 2.2 Table showing the number of iterations taken to reach the target brightness, and percentage deviation of the actual brightness from the target brightness. In curly brackets, the average number of iterations taken to reach the target brightness level, in curved brackets, the average percentage deviation of the actual brightness to the target brightness.
The number of repeats for each experiment was ten. 74

Table 2.3 Calculation of mass of hemoglobin on filter paper used to generate calibration graph in Figure 2.17 76

Table 2.4 Limits of detection towards hemoglobin in transmittance mode and reflectance mode for the cameras available during this study. 78

Table 3.1 Calculated and measured elemental data for the Ln(β-diketonate),phen complexes. 85

Table 3.2 Enhancement reagent formulations used in this study. 85

Table 4.1 Table of blood shoemark samples discussed in this section 105

Table 4.2 Table of fingermarks on porous surfaces used in this study 123

Table 4.3 Table of fingermarks on non-porous surfaces used in this study. 145

Table 5.1 Composition of the titration solutions used to determine the binding constant of [Fe(II)(BBIDMAPP)_2]^{2+} 180

Table 5.2 Composition of the solutions used to determine the binding constant of [Fe(II)(BBIDMAPP)_2]^{2+} in 7:3 ethanol:water 181

Table 5.3 Composition of the solutions used to determine the binding constant of [Fe(II)(BBIDMAPP)_2]^{2+} in 7:3 acetonitrile:water 182

Table 5.4 Calculated binding constants for [Fe(II)(BBIDMAPP)_2]^{2+} 196

Table 5.5 Reflectance values of filter paper dipped in ferricydrite and treated with BBIDMAPP 198
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABA</td>
<td>Auckland Boxing Association</td>
</tr>
<tr>
<td>ADU</td>
<td>Analogue to Digital Unit</td>
</tr>
<tr>
<td>ASCLD/LAB</td>
<td>American Society of Crime Laboratory Directors-Laboratory Accreditation Board</td>
</tr>
<tr>
<td>BBIDMAPP</td>
<td>2,6-Bis [1-(3,5-dimethoxybenzyl) benzimidazol-2-yl]-4-[4’-(dimethylamino) phenyl]pyridine</td>
</tr>
<tr>
<td>CCD</td>
<td>Charge Coupled Device</td>
</tr>
<tr>
<td>Cd-RP(benzo(f)nin)</td>
<td>Cadmium complex of Ruhemann’s purple (derived from benzo(f)ninhydrin)</td>
</tr>
<tr>
<td>CJS</td>
<td>Criminal Justice System</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>DFYADF</td>
<td>9-(1,8-diazafluoren-9-ylidene)amino-1,8-diazafluorene</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-dichloro-5-6-dicyano-1-4 benzoquinone</td>
</tr>
<tr>
<td>DFO</td>
<td>1,9-Diazafluorene-9-one</td>
</tr>
<tr>
<td>DLL</td>
<td>Dynamic Linked Library</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>ESR</td>
<td>Environmental and Scientific Research Ltd</td>
</tr>
<tr>
<td>FBI</td>
<td>Federal Bureau of Investigation</td>
</tr>
<tr>
<td>FPN</td>
<td>Fixed Pattern Noise</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full Width at Half Maximum</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organisation</td>
</tr>
<tr>
<td>JPEG</td>
<td>Joint Photographic Experts Group</td>
</tr>
<tr>
<td>LCTF</td>
<td>Liquid Crystal Tuneable Filter</td>
</tr>
<tr>
<td>LCV</td>
<td>Leuco Crystal Violet</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LMG</td>
<td>Leuco Malachite Green</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>RP(benzo(f)nin)</td>
<td>Ruhemann’s purple (derived from benzo(f)ninhydrin)</td>
</tr>
<tr>
<td>RP(nin)</td>
<td>Ruhemann’s purple (derived from ninhydrin)</td>
</tr>
<tr>
<td>PTC</td>
<td>Photon Transfer Curve</td>
</tr>
<tr>
<td>PRNU</td>
<td>Photo Response Non-Uniformity</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedures</td>
</tr>
<tr>
<td>SWGIT</td>
<td>Scientific Working Group on Imaging Technologies</td>
</tr>
<tr>
<td>TIFF</td>
<td>Tagged Image File Format</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
<tr>
<td>Zn-RP(nin)</td>
<td>Zinc complex of Ruhemann’s purple (derived from ninhydrin)</td>
</tr>
</tbody>
</table>