Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Model-based Strategies for Automated Segmentation of Cardiac Magnetic Resonance Images

Xiang Lin

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Auckland 2008
Abstract

Segmentation of the left and right ventricles is vital to clinical magnetic resonance imaging studies of cardiac function. A single cardiac examination results in a large amount of image data. Manual analysis by experts is time consuming and also susceptible to intra- and inter-observer variability. This leads to the urgent requirement for efficient image segmentation algorithms to automatically extract clinically relevant parameters. Present segmentation techniques typically require at least some user interaction or editing, and do not deal well with the right ventricle.

This thesis presents mathematical model based methods to automatically localize and segment the left and right ventricular endocardium and epicardium in 3D cardiac magnetic resonance data without any user interaction. An efficient initialization algorithm was developed which used a novel temporal Fourier analysis to determine the size, orientation and position of the heart. Quantitative validation on a large dataset containing 330 patients showed that the initialized contours had only ~ 5 pixels (modified Hausdorff distance) error on average in the middle short-axis slices.

A model-based graph cuts algorithm was investigated and achieved good results on the midventricular slices, but was not found to be robust on other slices. Instead, automated segmentation of both the left and right ventricular contours was performed using a new framework, called SMPL (Simple Multi-Property Labelled) atlas based registration. This framework was able to integrate boundary, intensity and anatomical information. A comparison of similarity measures showed the sum of squared difference was most appropriate in this context. The method improved the average contour errors of the middle short-axis slices to ~ 1 pixel. The detected contours were then used to update the 3D model using a new feature-based 3D registration method. These techniques were iteratively applied to both short-axis and long-axis slices, resulting in a 3D segmentation of the patient’s heart. This automated model-based method showed a good agreement with expert observers, giving average errors of ~ 1–4 pixels on all slices.
Acknowledgements

First I would like to thank my main supervisor Associate Prof. Alistair Young for his consistent encouragement, support and enthusiasm during the last 3 1/2 years. This thesis would not have been possible without his vision, inspiration and advice.

The same gratitude also goes to Associate Prof Brett Cowan. His experience, ideas and suggestions and scientific intuition have been extremely valuable and instructive for my thesis and future work.

I am also very grateful to my co-supervisor Prof. Reinhard Klette for driving this work and the invaluable advice I received. He not only initiated me into the area of image processing research five years ago but continued my interest in this area.

I am indebted to the New Zealand Tertiary Education Commission for financial support in the form of the Top Achiever Doctoral Scholarship over the first 3 years and the half-year scholarship from the University of Auckland.

Special thanks goes to the ONTARGET MRI Substudy investigators for the use of the ONTARGET dataset, Dr. Ralph Stewart from the University of Auckland for the use of the ZEST dataset, and Dr. Leo Chen for permission and assistance with using the heart model.

My sincere gratitude goes, of course, to my fellow colleagues at the Bioengineering Institute for the memorable time in my PhD study and all people in the Auckland MRI Research Group for their valuable assistance. Special thanks is due to Kieran O'Brien for proof-reading.

Finally, I would like to express my gratitude and love to my parents and all my family for their constant and priceless support. The great achievement of this thesis is theirs as well as mine.
Table of Contents

Abstract... iii
Acknowledgements .. iv
List of Figures .. vii
List of Tables .. xiii
Glossary of Abbreviations .. xiv

1 Introduction.. 1
 1.1 Motivation... 1
 1.2 Objectives .. 2
 1.3 Cardiac Anatomy and Function Parameters ... 2
 1.4 Data Acquisition... 6
 1.5 Construction of Heart Model .. 11
 1.6 CMR Image Segmentation ... 14
 1.7 Overview of the Thesis .. 24
 1.8 Achievements in the Thesis .. 26

2 Automated Detection of the Left Ventricle on 4D CMR Images 28
 2.1 Introduction ... 28
 2.2 Method .. 30
 2.3 Results .. 38
 2.4 Discussions ... 42
 2.5 Conclusions .. 45

3 Model-based Graph Cuts Method for Automated Segmentation 46
 3.1 Introduction ... 46
 3.2 Method .. 48
 3.3 Implementation ... 52
 3.4 Experiment ... 55
 3.5 Discussions and Conclusions .. 57

4 Evaluation of Similarity Measures for Atlas-based Rigid-body Registration 59
 4.1 Similarity Measures ... 60
 4.2 SMPL Atlas-based Registration Framework ... 64
 4.3 Protocol for Evaluation .. 71
 4.4 Implementation ... 74
 4.5 Results .. 83
 4.6 Discussion .. 89
 4.7 Conclusions ... 92

5 Atlas-based Segmentation of Cardiac MR Images .. 93
 5.1 Introduction ... 93
 5.2 Atlas Construction .. 95
 5.3 Free-form Deformation for Non-rigid Registration 102
 5.4 Energy Function ... 105
 5.5 Optimisation .. 106
 5.6 Capture Range Analysis .. 109
 5.7 Large Dataset Analysis .. 114
List of Figures

Figure 1.1 Anatomy of heart in frontal and transverse views (adapted from [7])4
Figure 1.2 ECG, volume change and phases in a cardiac circle (adapted from [7]) 5
Figure 1.3 Manual planning of CMR acquisition. (a) definition of the three standard anatomical planes, (b) coronal image and planning for acquisition of an axial stack, (c) axial image and planning for acquisition of a single long axis oblique, (d) planning for acquisition of double oblique long axis scout, (e) planning for acquisition of SA cines and (f) middle SA slice and planning for acquisition of LA cines. .. 9
Figure 1.4 One SA slice and two LA slices with digitized points; green dots – epicardium, blue dots – RV endocardium and pink dots – LV endocardium..............12
Figure 1.5 Digitization of two endocardial and one epicardial surfaces; green dots – epicardium, blue dots – RV endocardium and pink dots – LV endocardium.................13
Figure 1.6 Three surfaces of the constructed model.. 14
Figure 1.7 Flow chart showing the contents of each chapter.....................................26
Figure 2.1 Flow chart of the LV localization...31
Figure 2.2 Manual definition of LV orientation. (a) centre of the LV on an apical SA slice, (b) centre of the LV on a basal SA slice, (c) RV insertion points for defining V_y and (d) right handed coordinate system..32
Figure 2.3 Temporal analysis of two pixels: (a) image showing a pixel near a moving boarder inside the heart (P_{in}) and a pixel near a stationary boarder (P_{out}), (b) pixel intensity change in the time sequence...33
Figure 2.4 Comparison between P_{in} and P_{out} in Figure 2.3 for their magnitude of (a) the first seven frequency components and (b) the DC components..33
Figure 2.5 Temporal Fourier Transforms for each pixel in the time sequence: (a) DC (average) image, (b) H1 (first harmonic) image and (c) standard deviation image for comparison to H1 image..33
Figure 2.6 Gaussian fitting and the cut for the 3D cylindrical ROI..............................35
Figure 2.7 Iterative approximation of the circular ROI for each SA slice of the H1 images (apex to base from left to right and the rows from top to bottom showing results after every 10 more iterations). ...35
Figure 2.8 Calculation of the threshold level for LV segmentation; (a) search line shown on the ROI image, (b) intensity for each pixel showing a local minimum for the septum S, (c) intensity gradient for each pixel showing the position of the maximum gradient (max)...36
Figure 2.9 Locating the LV blood pool (a) LV blood pool detected on the middle SA slice by thresholding, (b) convex hull applied to the middle SA slice, (c) projection of the LV blood pool onto an adjacent slice, (d) thresholding and selection of the most similar binary object as the detected LV blood pool, and (e) convex hull applied to the new slice. ..37
Figure 2.10 Example of the detected LV blood pool on all SA slices (apex to base from left to right) ..37
Figure 2.11 The failure due to the improper ROIs computed from the H1 images: top row – H1 images and the ROIs, bottom row – DC image with ROIs...39
Figure 2.12 Distance plots (mm) of automatic V_x relative to Observer A (worst case) on apical, middle and basal SA slices for the ONTARGET dataset (mean and standard
deviation shown for y and z directions under each plot). Dotted lines show limits of
goodness of fit (μ +/− 2 σ) ..40
Figure 2.13 Distance plots (mm) of automatic Vs relative to Observer A (worst case)
on apical, middle and basal SA slices for the ZEST dataset (mean and
standard deviation shown for y and z directions under each plot)..41
Figure 2.14 Distance plots (mm) of automatic Vs relative to Observer A (worst case)
on apical, middle and basal SA slices for the CINE-SCOUT dataset (mean and
standard deviation shown for y and z directions under each plot)..41
Figure 3.1 Graph structure constructed from a 9-pixels image..48
Figure 3.2 Intersection of LV model and middle SA slice..52
Figure 3.3 Example of using prior for LV endocardial segmentation................................53
Figure 3.4 Example of using a prior for LV epicardial segmentation...........................53
Figure 3.5 Results on ES, middle and ED frames of a middle SA slice. (a) initial
contours for spatial priors, (b) detected endocardium, (c) detected endocardium and
epicardium, (d) ground truth. ..56
Figure 3.6 Box plots of the MHD for 9 sets of parameters...57
Figure 4.1 Example of sampling in parameter space (3D view): two parameter lines
with M sampling points and the ground truth x0...72
Figure 4.2 (a) 1D Error surface from a parameter line and (b) the negative gradient
values on the left side of x_n,max and the positive gradient values on the right side of
x_n,max ... 72
Figure 4.3 (a) ED frame of a middle SA slice and (b) its atlas ..75
Figure 4.4 1D Error surface of a translation-only parameter line of radius 20 pixels
from the ground truth. ...76
Figure 4.5 Close look at the global maximal area in Figure 4.4. (a) Nearest neighbor,
linear, partial intensity interpolations and (b) partial volume interpolation...............76
Figure 4.6 MI performance using partial volume interpolation on 20 randomly selected
parameter lines. ..77
Figure 4.7 Performance of each parameter in six measures..78
Figure 4.8 ACC performance of six measures with M from 21 to 221..........................80
Figure 4.9 NOM performance of six measures with M from 21 to 211 when k = 20 and
k = 80 ..81
Figure 4.10 ACC performance of six measures with N from 20 to 600.82
Figure 4.11 NOM performance of six measures with N from 20 to 600 when k = 10
and k = 40. ..82
Figure 4.12 ACC Performance of six measures.. 83
Figure 4.13 Box plot of DOG performances of six measures at different k.................84
Figure 4.14 DOG performances of six measures when k = 10 and k = 40.85
Figure 4.15 Box plot of NOM performance of six measures at different k.................86
Figure 4.16 Comparison of NOM performances when k = 10 and k = 40.................87
Figure 4.17 Box plot of RON performance of six measures at different k.................88
Figure 4.18 Comparison of RON performances when k = 10 and k = 40.....................89
Figure 4.19 Computational cost of each measure in second..90
Figure 5.1 (a) model centre and V_x defined by the H1 volume, (b) V_y defined by the
collapsed H1 volume, (c) Initial estimate of the heart model based on the H1 volume.
...97
Figure 5.2 Histogram of a middle SA slice with and without initial model. (a) middle
SA slice and initial model, (b) histogram of the whole image, (c) histogram inside the
model. ..99
Figure 5.3 EM estimation of the histogram in Figure 5.2c. Red curve – histogram, green curve – initial estimation, cyan curve – two estimated Gaussian distribution and pink curve – combined distribution.

Figure 5.4 An example used for showing artefact of linear interpolation; (a) middle SA image, green rectangle – region for atlas translation, red dot – ground truth of gravity centre; (b) atlas, red dot – gravity centre.

Figure 5.5 Artefact of linear interpolation in error surface; (a) shift one pixel each time, (b) shift half pixel each time.

Figure 5.6 Resampling at sub-pixel level; green dots – the pixel centres, red and blue dots – the new locations of the atlas points after sub-pixel resampling.

Figure 5.7 Artefact reduced by sub-pixel sampling in comparison to Figure 5.5.

Figure 5.8 Definitions of T_x, T_y and R and examples with single maximal values. (a) $\nabla T_x = +30$, (b) $\nabla T_y = +30$ and (c) $\nabla R = +60$.

Figure 5.9 An example of the registration process. The initial pose was formed with a large rotation error. 20 loops occur between two neighbouring images.

Figure 5.10 Changes in the energy function and its individual terms from the example shown in Figure 5.9. E – energy function, ES – smoothing term, EI – intensity term including LV term EL, RV term ER and myocardium term EM.

Figure 5.11 Examples of atlas-based registration results. Top row - starting positions, bottom row – positions after registration. (a) $\nabla T_x =22$, $\nabla T_y =10$, $\nabla R =20$; (b) $\nabla T_x =10$, $\nabla T_y =-26$, $\nabla R =20$; (c) $\nabla T_x =18$, $\nabla T_y =-18$, $\nabla R =-20$; (d) $\nabla T_x =-18$, $\nabla T_y =-6$, $\nabla R =-4$.

Figure 5.12 Histogram plot of modified Hausdorff distances (MHD) of 14147 registrations with different starting poses. (a) LV, (b) RV, (c) myocardium.

Figure 5.13 Iso-surfaces of MHD at 2 pixels. (a) LV, (b) RV, (c) myocardium.

Figure 5.14 Sub-pixel level ground truth data: (a) original image, (b) under-sampling ground truth and (c) ground truth contours after sub-pixel interpolation.

Figure 5.15 Multi-grid and multi-resolution strategy applied in the case of Figure 5.20. Top row – before registration, bottom row – after registration. (a) 2x2 mesh, high smoothing, (b) 3x3 mesh, medium smoothing, (c) 4x4 mesh, low smoothing, (d) 5x5 mesh, no smoothing.

Figure 5.16 Removal of papillary muscles from LV cavity; (a) SA image with LV contour, (b) binary image after thresholding, (c) binary image after convex hull, (d) potential papillary muscle pixels, (e) image after removing LV papillary muscles.

Figure 5.17 Removal of papillary muscles from RV cavity; (a) SA image with RV contour, (b) binary image after thresholding, (c) binary image after image filling, (d) potential papillary muscle pixels, (e) image after removing RV papillary muscles.

Figure 5.18 Two failed cases with large initial errors. (a) ground truth, (b) initial estimation, (c) registration result.

Figure 5.19 (a) MHD errors in pixels and (b) SI results of initial contours on the ED frames of middle SA slices for the ONTARGET dataset.

Figure 5.20 The case with the largest RV error. (a) ground truth, (b) initial estimation, (c) registration result.

Figure 5.21 Box plot of MHD (unit: pixel) between the ground truth and the detected contours. (a) LV endocardium, (b) RV endocardium and (c) epicardium.

Figure 5.22 Box plot of SI between the ground truth and the detected contours. (a) LV blood pool, (b) RV blood pool and (c) myocardium.

Figure 5.23 Box plot of SI with and without papillary muscle removal process. (a) LV blood pool, (b) RV blood pool and (c) myocardium.

Figure 5.24 A small epicardial contour because of no background information.
Figure 5.25 Myopic problem in a case with high RV/LV ratio.124
Figure 6.1 (a) atlas points: blue – myocardial points, red – RV points, pink – LV points; (b) boundary and anatomical information defined in atlas, green points – boundary points, black dots – two RV inserts, red contours – two special anatomical regions. ..127
Figure 6.2 Edge distance maps derived from binary edge maps: (a) original image, (b) binary edge image with high threshold, (c) distance map from b, (d) binary edge image with low threshold and (e) distance map from d. ..129
Figure 6.3 (a) pink - initial contour and blue – actual boundary, (b) edge distance map (3D) and (c) ROI distance map (3D) based on fast marching time-cross map.130
Figure 6.4 Distance maps based on fast marching algorithm and its updates in each step of the multi-grid strategy (each row); (a) image with initial contours before registration (b) B_LV, (c) B_RV, (d) B_LV 3D view and (e) B_RV 3D view. ...132
Figure 6.5 Example of a closed polygon with seven vertices134
Figure 6.6 Comparison between the results of the method with and without boundary term; (a) ground truth, (b) initial contours, (c) method without boundary term and (d) method with boundary term. ...136
Figure 6.7 MHD comparison of initial contour, registration based on intensity only and registration after adding boundary term. (a) LV, (b) RV and (c) epicardium.136
Figure 6.8 SI comparison of initial contour, registration based on intensity only and registration after adding boundary term. (a) LV, (b) RV and (c) myocardium.136
Figure 6.9 MHD comparison of using different area-term weights from 0 to 0.16. (a) LV, (b) RV and (c) epicardium. ..138
Figure 6.10 SI comparison of using different area-term weights from 0 to 0.16. (a) LV, (b) RV and (c) epicardium. ..138
Figure 6.11 MHD comparison of initial contour and each level of the coarse-to-fine strategy, 1st level: 2x2 mesh, 2nd level: 3x3 mesh, 3rd level: 4x4 mesh, 4th level: 5x5 mesh. (a) LV, (b) RV and (c) epicardium. ..139
Figure 6.12 SI comparison of initial contour and each level of the coarse-to-fine strategy, 1st level: 2x2 mesh, 2nd level: 3x3 mesh, 3rd level: 4x4 mesh, 4th level: 5x5 mesh. (a) LV, (b) RV and (c) myocardium. ...139
Figure 6.13 MHD Comparison of the registrations with 5x5 mesh and 4x4 mesh used in the last level of the coarse-to-fine strategy. ...141
Figure 7.1 Flow chart showing the process of automated 3D model-based CMR segmentation process. ...144
Figure 7.2 Contour points (red) detected in last chapter and their corresponding points (green) on the model surfaces (a) RV endocardium, (b) LV endocardium, (c) epicardium. ...147
Figure 7.3 Model hosted by 3x3x3 mesh, the contours (red) and their corresponding points (green) on the model surfaces. ...149
Figure 7.4 Linear solution to the computation of local coordinates.150
Figure 7.5 First three iterations in the fitting, (a) initial model, (b) after 1st iteration, (c) after 2nd iteration and (d) after 3rd iteration. ...153
Figure 7.6 Error function change in iterations. ...153
Figure 7.7 Comparison of MHD results of using linear and cubic FFD; (a) LV, (b) RV, (c) myocardium. ..154
Figure 7.8 SI results of using linear and cubic FFD; (a) LV, (b) RV, (c) myocardium. ...154
Figure 7.9 MHD results of using different smoothing weights from 0.25 to 4; (a) LV, (b) RV, (c) myocardium. ...155
Figure 7.10 SI results of using different smoothing weights from 0.25 to 4; (a) LV, (b) RV, (c) myocardium. .. 155
Figure 7.11 MHD results of using different mesh complexities from left to right 1x1x1, 2x2x2, 3x3x3, 4x4x4; (a) LV, (b) RV, (c) myocardium... 156
Figure 7.12 SI results of using different mesh complexities from left to right 1x1x1, 2x2x2, 3x3x3, 4x4x4; (a) LV, (b) RV, (c) myocardium... 156
Figure 7.13 Examples of variability of the atlas and the LV RV presentation on apical slices.. 157
Figure 7.14 Examples of variability of the atlas and the LV RV presentation on basal slices.. 158
Figure 7.15 Coarse-to-fine strategy for the atlas-based registration of a SA slice close to the apex, top row – before registration, bottom row – after registration. 160
Figure 7.16 Box plot of MHD errors of the experiments using different smoothing weights from 0.25 to 1. ...161
Figure 7.17 (a) and (b) are two different LA planning shown on the middle SA slice, (c) the LV centre (orange), two RV inserts (magenta), the original Vy (cyan dot line) and the Vy rotated by \(\theta \) (cyan solid line). ... 164
Figure 7.18 (a) atlas on the 4-chamber LA slice, (b) 2D view of LV distance map and (c) its 3d view.. 165
Figure 7.19 Multi-grid and multi-resolution strategy for the atlas-based registration of the LA slice; pink – constraint points, green – mesh, magenta – atlas......................... 165
Figure 7.20 Contour comparisons on the middle SA slice used in the last chapter: (a) Ground truth contours, (b) initial model contours, (c) contours after atlas-based registration and (d) model contours after 3D fitting..166
Figure 7.21 MHD comparison of initial contours, the contours after atlas-based registration and contours after 3D model fitting. (a) LV, (b) RV and (c) epicardium. 167
Figure 7.22 SI comparison of initial contours, the contours after atlas-based registration and the contours after 3D model fitting. (a) LV, (b) RV and (c) epicardium. .. 167
Figure 7.23 Top row – initial model shown on each SA slice, middle row – updated model with the contours computed from the middle SA slice, bottom row – updated model with the detected contours of the 3rd to 5th SA slices; magenta contour – the ground truth of LV endocardium. .. 168
Figure 7.24 Location of five specific slices: (a) first apical slice, (b) second apical slice, (c) middle slice, (d) second basal slice and (e) first basal slice.................................. 169
Figure 7.25 Box plots of the modified Hausdorff distances between ground truth and the updated model, in comparison to the inter-observer errors. 169
Figure 7.26 MHD errors on the 4-chamber LA slice between the ground truth and (a) the contours before the registration, (b) the contours after registrations and (c) inter-observer error.. 170
Figure 7.27 Improvement of using 4-chamber LA slice in comparison to the Figure 7.23 .. 170
Figure 7.28 Box plot of the modified Hausdorff distance of the correspondence between ground truth and Initial estimate, using the contours detected on Mid SA, All SA, SA+LA, and inter-observer manual error... 172
Figure 7.29 Two possible better LA acquisition plans; green – original slices, magenta – new slices added. .. 174
Figure 7.30 Covers above the basal slice and erroneous deformation at the base in a coarse-to-fine registration process; top row – before registration, bottom row – after registration; (a)3x3, (b)4x4, (c)5x5. ...176
Figure 7.31 Two problems at the apex in current model; (a) thick myocardium, (b) RV apex lower than LV. ..176
List of Tables

Table 2-1 Thresholds defined for leakage detection and improvement evaluation in each slice... 38
Table 2-2 Comparison of the orientation errors (mean ± standard deviation in degrees) relative to manual identification of the LV long axis orientation V_x. In the ONTARGET and ZEST datasets, the parallel SA scan planes were planned to be approximately orthogonal to V_x during image acquisition and should therefore have normals aligned with V_x. In the CINE-SCOUT dataset, the image orientations were fixed to \vec{V}_x... 42
Table 4-1 Measures which appeared in three or more of the above articles............... 62
Table 4-2 Four aspects of an algorithm with good performance................................. 74
Table 4-3 Standard deviations of the Gaussian curves fitted to the curves in Figure 4.7 ... 79
Table 4-4 Relationships between T_x, T_y, R and S in five cases............................. 79
Table 5-1 Modified Hausdorff distance and similarity index before and after registration ... 121
Table 6-1 MHD and SI comparison of initial contour, registration without and with boundary term... 137
Table 7-1 MHD and SI comparison of initial contours, contours after atlas-based registration and contours after 3D registration. ... 167
Table 7-2 Modified Hausdorff distance between the ground truth and the updated model after initial estimate, using the contours detected on Mid SA, All SA, SA+LA, and inter-observer manual error... 172
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAM</td>
<td>Active Appearance Models</td>
</tr>
<tr>
<td>ACC</td>
<td>Accuracy</td>
</tr>
<tr>
<td>AMIR</td>
<td>Automatic Multi-modality Image Registration</td>
</tr>
<tr>
<td>AMRG</td>
<td>Auckland Magnetic Resonance Research Group</td>
</tr>
<tr>
<td>ASM</td>
<td>Active Shape Models</td>
</tr>
<tr>
<td>CAR</td>
<td>Capture Range</td>
</tr>
<tr>
<td>CMR</td>
<td>Cardiac Magnetic Resonance</td>
</tr>
<tr>
<td>CO</td>
<td>Cardiac Output</td>
</tr>
<tr>
<td>CR</td>
<td>Correlation Ratio</td>
</tr>
<tr>
<td>CSS</td>
<td>Chi Square Statistic</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communication in Medicine</td>
</tr>
<tr>
<td>DOG</td>
<td>Distinctiveness of the Global Maximum</td>
</tr>
<tr>
<td>ECC</td>
<td>Entropy Correlation Coefficient</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>ED</td>
<td>End-diastolic</td>
</tr>
<tr>
<td>EDI</td>
<td>Entropy of Difference Image</td>
</tr>
<tr>
<td>EDV</td>
<td>End-diastolic Volume</td>
</tr>
<tr>
<td>EF</td>
<td>Ejection Fraction</td>
</tr>
<tr>
<td>EH</td>
<td>Energy of Histogram</td>
</tr>
<tr>
<td>EM</td>
<td>Expectation Maximization</td>
</tr>
<tr>
<td>ES</td>
<td>End-systolic</td>
</tr>
<tr>
<td>ESV</td>
<td>End-systolic Volume</td>
</tr>
<tr>
<td>FFD</td>
<td>Free-form Deformation</td>
</tr>
<tr>
<td>FOV</td>
<td>Field of View</td>
</tr>
<tr>
<td>FT</td>
<td>Fourier Transform</td>
</tr>
<tr>
<td>GCC</td>
<td>Gradient Cross Correlation</td>
</tr>
<tr>
<td>GMI</td>
<td>Gradient Mutual Information</td>
</tr>
<tr>
<td>GVF</td>
<td>Gradient Vector Flow</td>
</tr>
<tr>
<td>H1</td>
<td>First Harmonic</td>
</tr>
<tr>
<td>HD</td>
<td>Hausdorff Distance</td>
</tr>
<tr>
<td>ICA</td>
<td>Independent Principle Component Analysis</td>
</tr>
<tr>
<td>ICP</td>
<td>Iterative Closest Point</td>
</tr>
<tr>
<td>JE</td>
<td>Joint Entropy</td>
</tr>
<tr>
<td>LA</td>
<td>Long Axis</td>
</tr>
<tr>
<td>LM</td>
<td>Levenberg-Marquardt</td>
</tr>
<tr>
<td>LV</td>
<td>Left Ventricle</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>LVEF</td>
<td>Left Ventricle Ejection Fraction</td>
</tr>
<tr>
<td>LVM</td>
<td>Left Ventricle Mass</td>
</tr>
<tr>
<td>MAP</td>
<td>Maximum a Posteriori</td>
</tr>
<tr>
<td>MHD</td>
<td>Modified Hausdorff Distance</td>
</tr>
<tr>
<td>MI</td>
<td>Mutual Information</td>
</tr>
<tr>
<td>MR</td>
<td>Magnetic Resonance</td>
</tr>
<tr>
<td>MRA</td>
<td>Magnetic Resonance Angiography</td>
</tr>
<tr>
<td>MRF</td>
<td>Markov Random Fields</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Image</td>
</tr>
<tr>
<td>MRIU</td>
<td>Modified Ratio of Image Uniformity</td>
</tr>
<tr>
<td>NCC</td>
<td>Normalized Cross Correlation</td>
</tr>
<tr>
<td>NMI</td>
<td>Normalized Mutual Information</td>
</tr>
<tr>
<td>NOM</td>
<td>Number of Minima</td>
</tr>
<tr>
<td>NP-hard</td>
<td>Nondeterministic Polynomial-time Hard</td>
</tr>
<tr>
<td>ONTARGET</td>
<td>Ongoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PDM</td>
<td>Point Distribution Models</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>PNI</td>
<td>Pattern Intensity</td>
</tr>
<tr>
<td>RIU</td>
<td>Ratio of Image Uniformity</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of Interest</td>
</tr>
<tr>
<td>RON</td>
<td>Risk of Non-convergence</td>
</tr>
<tr>
<td>RV</td>
<td>Right Ventricle</td>
</tr>
<tr>
<td>SA</td>
<td>Short Axis</td>
</tr>
<tr>
<td>SI</td>
<td>Similarity Index</td>
</tr>
<tr>
<td>SMPL</td>
<td>Simple Multi-Property Labelled</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single Photon Emission Tomography</td>
</tr>
<tr>
<td>SPM</td>
<td>Statistical Parametric Mapping</td>
</tr>
<tr>
<td>SSD</td>
<td>Sum of Squared Difference</td>
</tr>
<tr>
<td>SSFP</td>
<td>Steady State Free Precession</td>
</tr>
<tr>
<td>SV</td>
<td>Stroke Volume</td>
</tr>
<tr>
<td>WD</td>
<td>Wood Method</td>
</tr>
<tr>
<td>WT</td>
<td>Wall Thickness</td>
</tr>
<tr>
<td>ZEST</td>
<td>New Zealand Eplerenone Aortic Stenosis Trial</td>
</tr>
</tbody>
</table>