A Two-Phase Algorithm for the Biobjective Integer
Minimum Cost Flow Problem

Andrea Raith
Department of Engineering Science
The University of Auckland, New Zealand
email: a.raith@auckland.ac.nz

Matthias Ehrgott
Department of Engineering Science
The University of Auckland, New Zealand
email: m.ehrgott@auckland.ac.nz
and
Laboratoire d’Informatique de Nantes Atlantique
Université de Nantes, France
email: matthias.ehrgott@univ-nantes.fr

November 22, 2007



Abstract

We present an algorithm to compute a complete set of efficient solutions for
the biobjective integer minimum cost flow problem. We use the two phase
method with a parametric network simplex algorithm in phase 1 to compute
all supported non-dominated extreme points. In phase 2, the remaining non-
dominated points (non-extreme supported and non-supported) are computed
using a k best flow algorithm on single-objective weighted sum problems.

We implement the algorithm and report run-times on problem instances
generated with a modified version of the NETGEN generator and also for some
networks with grid structure.

Keywords: Biobjective integer minimum cost flow problem, two phase method,
k best flow algorithm.



1 Introduction

Single-objective integer minimum cost flow problems have received a lot of
attention in the literature as they have various applications (see for example
Ahuja et al. 1993). As with most real-world optimisation problems, there is
usually more than one objective that has to be taken into account, thus leading
to multiobjective integer minimum cost flow problems (MIMCF). We restrict
our considerations to the biobjective case (BIMCF). The aim in BIMCF is to
find efficient solutions. The problem of finding all efficient solutions of BIMCF
is intractable, Ruhe (1988) presents an example problem with exponentially
many solutions. BIMCF is an NP-hard problem, as the biobjective shortest
path problem, a special case of BIMCF, was shown to be NP-hard by Serafini
(1986).

We propose to solve the BIMCF problem using an approach with two phases.
In the first phase, extreme supported efficient solutions (efficient solutions which
define extreme points of the convex hull of feasible solution vectors in objective
space) are computed with a simplex-based algorithm. Other efficient solutions
are computed in the second phase using a ranking algorithm on restricted areas
of the objective space.

We test our algorithm on different problem instances generated with the well
known network generator NETGEN and also on networks with a grid structure.

The rest of the paper is organised as follows: In Section 2 basic concepts
of BIMCF problems are introduced. Recent literature is discussed in Section
3. In Section 4 we present an algorithm to solve BIMCF, that is the two phase
method with a parametric network simplex approach in phase 1 and the k best
flow algorithm in phase 2. Finally, numerical results are presented in Section 5.

2 Biobjective Integer Minimum Cost Flow Problem

In this section, terminology and basic theory of biobjective integer minimum
cost flow (BIMCF) problems is introduced.

Let G = (N, A) be a directed network with a set of nodes N = {1,...,n}
and a set of arcs A C N x N with a = (¢,j) € A and |A| = m. Two non-negative
costs ¢, = (¢, c2) € N x N are associated with each arc a € A. Furthermore,
there are non-negative integer lower and upper bound capacities [, and u, with
lo < ug on every arc a. An integer numerical value b;, the balance, is associated
with each node. The value b; > 0, b; < 0, or b; = 0 indicates that, at node 1,
there exists a supply of flow, a demand of flow, or neither of the two (i is then
called transshipment node). The BIMCF problem is defined by the following

mathematical programme:



min Z(ﬂ?) _ { Zl(x) = ZaEA clllxa (1)

22($) = ZaeA nga

s.t. Z Tg — Z To=0b, VieN (2)

{a:a=(i,5)€A} {a:a=(j,i)€ A}
lo<z,Su, forallac A (3)
x4 integer for all a € A. (4)

Here x is the vector of flow on the arcs, constraint (2) represents flow conserva-
tion at the different nodes, and we assume that ), b; = 0. The feasible set
X is described by constraints (2) — (4). Its image under the objective function
is Z = z(X).

We assume [, = 0 in the following. In case of positive lower bound capacities,
the network can be transformed into a network with zero lower bound capacities
as explained in Ahuja et al. (1993).

In the remainder of this paper we use the following orders on R?:

v <y e ySuik=12,
V' <y e ySuik=12y' #4% and
v <y & oy <uik=1,2

We are seeking those feasible solutions that do not allow to improve one
component of the objective vector z(x) without deteriorating the other one.

Definition 1 A feasible solution & € X is called efficient if there does not
exist any ' € X with (z1(2'), z2(2")) < (21(2),22(2)). The image z(%) =
(z1(2), 22(Z)) of & is called non-dominated. Let Xp denote the set of all effi-
cient solutions and and let Zy denote the set of all non-dominated points. We
distinguish two different types of efficient solutions.

e Supported efficient solutions are those efficient solutions that can be ob-
tained as optimal solutions to a (single objective) weighted sum problem

géi)f(l Mz () + AN220(2) (5)
for some X' > 0,\> > 0. The set of all supported efficient solutions
is denoted by Xgg, its non-dominated tmage Zgn. The supported non-
dominated points lie on the boundary of the convex hull conv(Z) of the
feasible set in objective space.

e Supported efficient solutions which define an extreme point of conv(Z) are
called extreme supported efficient solutions.

e The remaining efficient solutions in Xnyg = Xg\Xsp are called non-
supported efficient solutions. They cannot be obtained as solutions of a
weighted sum problem as their image lies in the interior of conv(Z). The
set of non-supported non-dominated points is denoted by Znn .



The two objective functions z; and zo do generally not attain their individual
optima for the same values of £. We will assume in the following that there
exists no & such that & € argmin{z;} and & € argmin{za} for a problem of the
form (1) - (4).

Definition 2 Two feasible solutions x and x’ are called equivalent if z(x) =
z(2"). A complete set Xp is a set of efficient solutions such that all x € X\ Xp
are either dominated or equivalent to at least one x € Xg.

The presented solution approach computes a complete set Xg.

Another notion of optimality that is used in the context of biobjective op-
timisation is lexicographic minimisation. Here, we choose among all optimal
feasible solutions for the preferred component k of the objective vector one
that is optimal for the other component I.

Definition 3 Let k € {1,2} and | € {1,2}\{k}. Then 2(Z) Sieory) 2(2') if
either zi(2) < zp(x') or both zi(&) = zk(2') and z(Z) < z(2"). We call & a
lex(k,1)-best solution if 2(2) Sjepr) 2(x) for all x € X. Let &5,y denote a
lex(k,1)-best solution.

3 Literature

An excellent and very recent review on multiobjective minimum cost flow prob-
lems is given by Hamacher et al. (2007). We will therefore only briefly men-
tion relevant literature. To our knowledge, there is no published work on the
MIMCF, so the following is restricted to BIMCF. All exact solution approaches
to find a (complete) set of efficient solutions for BIMCF, i.e. supported and
non-supported solutions, consist of two phases, also known as the two phase
method. In the first phase a complete set of supported efficient solutions, or at
least the extreme ones, is computed. In the second phase all remaining solutions
are computed.

In case all capacities, supplies, and demands are integer, which we assume in
this paper, any approach to solve the biobjective continuous minimum cost flow
problem can be used in phase 1 of BIMCF to find a complete set of extreme
supported solutions, e.g. Lee and Pulat (1991); Pulat et al. (1992); Sedeno-
Noda and Gonzélez-Martin (2000, 2003). To solve the continuous problem it is
sufficient to generate all extreme supported solutions. The algorithms presented
by Lee and Pulat (1991); Pulat et al. (1992) may generate some non-extreme
supported solutions, whereas the algorithms by Sedeno-Noda and Gonzéalez-
Martin (2000, 2003) generate extreme supported solutions only.

Lee and Pulat (1991) remark that their procedure can be extended to gener-
ate all integer efficient solutions with image on the edges of conv(Z), i.e. all sup-
ported solutions. Every efficient solution found by their algorithm corresponds
to a basic tree and two solutions are called adjacent if the two corresponding
trees differ in only two arcs. Whenever the flow changes by § when moving
from one efficient solution to an adjacent one, they propose to increase the flow



stepwise by 1,2,...,0 — 1 to obtain all intermediate solutions and claim to ob-
tain all supported solutions this way. This is incorrect, as not all non-extreme
supported solutions can be obtained as intermediate solutions of two adjacent
basic efficient solutions, an example is given by Eusébio and Figueira (2006).

Several papers are dedicated to the computation of non-supported efficient
solutions, assuming all non-dominated extreme points are known. Lee and Pulat
(1993) perform an explicit search of the solution space, by using intermediate
solutions between adjacent basic solutions (which is not sufficient, see remark
above) and modifying upper and lower bounds of arcs. They assume non-
degeneracy of the problem.

Huarng et al. (1992) extend this algorithm to allow degeneracy in the prob-
lems.

Sedeno-Noda and Gonzalez-Martin (2001) argue that these two papers are
incorrect and present an approach that is based on the basic tree structure
of solutions. Having found a complete set of extreme supported solutions in
phase 1, the algorithm by Sedefio-Noda and Gonzalez-Martin (2001) moves
from one efficient solution to adjacent solutions, in order to identify efficient
ones among them. Przybylski et al. (2006) give an example of a network where
one efficient solution is not adjacent to any of the other efficient solutions, hence
showing that the approach by Sedeno-Noda and Gonzélez-Martin (2001) can
not generate a complete efficient set.

Figueira (2002) present an approach where e-constraint problems are re-
peatedly solved via branch-and-bound to obtain non-supported solutions.

In the following, we summarise a thesis and two recent reports that were not
included in Hamacher et al. (2007). Do Castelo Batista Gouveia (2002) uses
a k best flow algorithm to enumerate all solutions of biobjective network flow
problems, including of course all efficient solutions. She analyses the number of
feasible flows, of efficient solutions, and of non-dominated points in the problem.

Eusébio and Figueira (2006) give examples of networks, where for a sup-
ported extreme and supported non-extreme non-dominated point, basic and
non-basic efficient solutions exist. It is known that there is always a basic solu-
tion for every extreme non-dominated point, but the authors show that there
may be other non-basic efficient solutions that lead to the same point, so that it
may be impossible to obtain all efficient solutions when using a simplex-based
method. Eusébio and Figueira (2006) also give a network in which supported
solutions exist that can not be obtained as intermediate solutions between two
extreme supported solutions.

In a more recent report, Eusébio and Figueira (2007) illustrate and prove
that supported solutions are indeed connected via chains of zero-cost cycles in
the incremental graph constructed from basic feasible solutions corresponding to
extreme supported solutions. They use this relationship to obtain all supported
solutions to a BIMCF problem. The same result can be obtained by considering
a weighted sum objective (5) for which two neighbouring extreme supported
solutions are optimal. The suppported points on the edge of conv(Z) connecting
the two extreme non-dominated points can be obtained by applying the k£ best
flow algorithm by Hamacher (1995) to the problem with weighted sum objective.
The k best flow algrithm is also based on cycles in the incremental graph. We
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explain how to apply the k best flow algorithm in Section 4.2.

4 A Two Phase Algorithm to Solve BIMCF

We solve the BIMCF problem with the two phase method. A formulation of
the two phase method for general multiobjective combinatorial optimisation
problems can be found in Ulungu and Teghem (1995).

The two phase method is based on computing supported and non-supported
non-dominated points separately. In phase 1 extreme supported efficient solu-
tions are computed, possibly taking advantage of their property of being ob-
tainable as solutions to the weighted sum problem (5), for an illustration see
Figure 1. In phase 2 the remaining supported and non-supported efficient so-
lutions are computed with an enumerative approach, as there is no theoretical
characterisation for their efficient calculation. The search space in phase 2 can
be restricted to triangles given by two consecutive supported non-dominated
points as indicated in Figure 2. It is expected that the search space in phase 2
is highly restricted due to information obtained in phase 1 so that the associated
problems can be solved quickly.

4.1 Phase 1 — Parametric Simplex

In phase 1 of the two phase method, we compute a complete set of extreme sup-
ported solutions of the problem. As mentioned above, any solution method to
solve the biobjective continuous minimum cost flow problem can be used here.
We use a parametric simplex method by Sedeno-Noda and Gonzalez-Martin
(2000). Initially, one of the two lexicographically optimal solutions, e.g. the
lex(1,2)-best solution is obtained with a single-objective network simplex algo-
rithm with accordingly modified objective. From the initial solution, a network
simplex algorithm is employed, always choosing a basis entering arcs with the
least ratio of improvement of zy and worsening of z;. If there is more than
one arc with minimal ratio, one of them is chosen as entering arc, and the
others are saved in a list of candidates. After the arc entered the basis, the



reduced costs of the remaining arcs in the candidate list are reevaluated. As
long as there are remaining candidate arcs in the list violating optimality for
the second objective, one of them is introduced into the basis, then the reduced
costs of the remaining arcs are reevaluated until there is no more candidate
arc in the list or all remaining candidate arcs are optimal with respect to the
second objective. Now, an extreme supported solution is obtained and a new
list of candidate arcs with minimal ratio is computed. The procedure generates
extreme supported solutions moving in a left-to-right fashion. The parametric
simplex algorithm finishes when no candidate arcs to enter the basis can be
found, i.e. the lex(2,1)-best solution is obtained.

We modify an implementation of the network simplex algorithm called MCF
(Lobel 2003) for our purposes. The network simplex implementation takes
advantage of strongly feasible trees (Cunningham 1976) to prevent cycling.

We could derive some non-extreme supported solutions here, by considering
intermediate solutions whenever the flow between two solutions changes by
6 > 1. We would obtain é — 1 non-extreme supported solutions. We do not
implement this — an explanation follows at the end of Section 4.2.

4.2 Phase 2 — Ranking k£ Best Flows

In phase 2, a complete set of the remaining supported non-extreme solutions and
non-supported solutions is computed. The objective vectors of those solutions
can only be situated in the triangle defined by two consecutive supported ex-
treme points as indicated in Figure 2. Let 2!, ..., 2%, where 2! = (21(2%), 20(2%))
and 2’ are sorted by increasing z;, be the extreme supported points obtained in
phase 1. For each pair of neighbouring extreme supported points z* and z'*1,
we define weighting factors by

A= 21 (@) — 21 (2%) and A = zp(a?) — zo(z"h). (6)

Using A; and A2 in (5), we obtain a single-objective flow problem which has
optimal solutions 2%, zi*! (of course all supported solutions between 2% and z**!
are optimal as well). Applying a k best flow algorithm by Hamacher (1995) to
problem (5), we can generate feasible network flows in order of their cost. The k
best flow algorithm is used to generate all feasible flows in the current triangle
until it can be guaranteed that all non-dominated points have been found.
Before we continue with the algorithm for phase 2, we explain the k£ best flow
algorithm.

4.2.1 The k Best Flow Algorithm

We give a summary of the k best flow algorithm here, the reader is referred to
Hamacher (1995) for a more detailed description and proofs. First, we briefly
outline the k£ best flow algorithm for the single-objective minimum cost flow
problem. Starting with an optimal solution z in the network G, a so-called
incremental graph G, is constructed in which every arc represents an arc in G
on which flow may be increased or decreased. A cycle in G, represents a change
of flow that leads from x to another feasible flow. Identifying a minimal cycle



in the incremental graph leads to a second best flow solution in G. Now, the
problem is partitioned by modifying bounds on arcs of G so that in one partition
the original solution is optimal and the second best solution is infeasible and
vice versa. By iterating this process, a ranking of the k best solutions can be
obtained.

In Hamacher (1995) the algorithm is designed to solve problems in networks
with the property that there can not be two arcs between the same nodes ¢ and
4, no matter if they have the same or opposite directions. When solving BIMCF
problems, randomly generated networks generally do not satisfy this property.
Also, real-world networks will most likely not satisfy this property (e.g. road
networks). The only difficulty with multiple arcs between a pair of nodes is
keeping track of which arc in the incremental graph belongs to which arc in the
original network. We thus enumerate arcs in the original network, for notation
we use the unique arc identifier a € A.

First, construct the incremental graph G, = (N, A,) corresponding to an
optimal flow x in G with

(i,7)a € A} with cost G;j, =c, if a=(i,j) € Aand 2, < ug,
(4,4)a € AL with cost ¢, = —c, if a=(i,j) € Aand z, > 1, =0,
A, = AfUAL.

If, for an arc a = (i,j) € A, both (i,j), and (j,7), € A, we call (7, ), and
(J,1)q symmetric arcs, otherwise an arc is called non-symmetric.

Next, a proper minimum cost cycle (operation proper MinimalCycle in Al-
gorithm 1) in the incremental graph G, can be obtained by

e For all symmetric arcs (i, 7)q:
find minimum cost cycle Cjj, in G = (N, A \{(J,?)a})-

e For all non-symmetric arcs (i, j)q:

find minimum cost cycle Cjjq in G, = (N, Ay).
e Choose proper minimum cost cycle C' € argmin{c(Cija) : (1,7)a € Az}

Sending one unit of flow along the proper minimal cycle C, we obtain a
second best flow in the original network G. In G = (N, A), increasing the
flow on arc (i,7), € A corresponds to increasing the flow on arc a € A, and
increasing the flow on (j,i), € A, corresponds to decreasing the flow on arc
a € A. This yields a second best flow z.

Now one upper bound on G is modified, so that x remains optimal in G
with modified bounds /,u’ and 7 is infeasible in this network. Also, another set
of bounds ', u is derived, so that & becomes optimal, = infeasible. The bounds
of one of the arcs a where flow was increased by one unit are modified. The
increased flow on this arc is &3 = x5 + 1 and we derive bounds:

;o re ifa=a

Ya = { U, otherwise (7)
;o zo+1lifa=a

lo = { l, otherwise (8)



Algorithm 1 K best flows
1: input: Network G = (N, A) with cost ¢, lower bounds [ = (0, ...,0), upper
bounds u, optimal solution x, max number of flows K
2: Partitions = {} /* list of partitions, ordered by cost of second best flows
in the partition. Every element contains (z,l,u,C') where C' is the minimal
cost cycle from which the second best flow can be derived */

3: Find proper MinimalCycle C' in G, derived from x,c, [, u
4: Partitions = {(x,l,u,C)}
5. k=2
6: while Partitions is nonempty and £ < K do
7. (xp,lp,up, Cp) = Partitions[1] /* element with least cost second best flow
*
/
8:  derivePartitions xp, 1y, u, and Zp, 1, uy

9:  Find proper MinimalCycle C in G, (incremental graph for x,, c,,, u;)
10:  Find proper MinimalCycle C in G3, (incremental graph for 2, c, lz’j7 up)
11: - Tnsert (zp, 1y, uy, C) and (2, 1, up, C) into Partitions /* so that the order

of Partitions is maintained */
12:  save k' best flow &,
13: k=k+1
14: end while
15: output: 2" 34 kP hest flow and k < K

In Algorithm 1 we call this operation derivePartitions.

In each of the networks with modified bounds [, « and I’,u, we can again
compute a second best flow. Out of the two second best solutions, the flow with
smaller cost is selected, this is the third best solution, which is again partitioned
and resolved, etc. A pseudo-code is shown in Algorithm 1.

4.2.2 Adaptation of the k Best Flow Algorithm in Phase 2

When solving phase 2, we can not specify a value of K a priori. Instead, we
continue until it is guaranteed that all efficient points between z* and 2! have
been found.

We call 2i, = (21(2'1), 22(2%)) the local nadir point of the current triangle.
The “worst” solution we are interested in, is the one that is one unit of cost
better than zliN in each objective. Its weighted objective value is an upper
bound to the weighted sum of the two costs of any efficient feasible flow in the
current triangle. Thus, initially, we enumerate k best flows x while

Mz (z) + M2p(z) € uy with uy = Mz (@) — 1) + XN2(22(2)) —1).  (9)

Whenever an efficient solution with cost vector within the triangle is found,
it is saved and the upper bound can be improved, as the new point dominates
parts of the triangle. For a detailed description of how the upper bound is
updated, please refer to Przybylski et al. (2008) or Raith and Ehrgott (2007).
The phase 2 algorithm is described in Algorithm 2.



Algorithm 2 Phase 2 BIMCF
1: input: Network (N, A) with cost z = (c!, c?), lower bound [ = (0,...,0),

upper bound w, list of extreme supported solutions z!,...,2*
2:9=1
3: while 1 < s do
4:  Compute A1, A2 (6), the upper bound uy (9), and ¢ = Ajc! + Aaoc?.
5. Find proper MinimalCycle C in G i+1 derived from =t ¢, u
6:  Partitions = {(z,l,u,C)}
7. while (Partitions is nonempty) and (cost of second best flow in
Partitions(1]: ¢(zp) + ¢(Cp) S uy ) do
8: Steps 7-11 in Algorithm 1 /* Execute one iteration of k best flow */
9: if 2(Z,) in current triangle and not domianted by any point in the
triangle found so far then
10: Insert &, into list of efficient solutions, and eleminate other solutions
that are now dominated.
11: Update u) if possible.
12: end if
13:  end while
14: 1=14+1

15: end while
16: output: Complete set of non-extreme efficient solutions

Unfortunately the k best flow algorithm will generate solutions with ob-
jective vector outside the current triangle which cannot be removed as those
solutions might later lead to other solutions within the triangle. Whenever a
solution x* with cost outside the current triangle lies within another triangle
A, we could save this solution and use it to compute a better upper bound u}
in A. This will, however, not speed up the algorithm, as we still have to rank
flows in A starting from the least cost flow. There are two possibilities:

e Ranking flows and updating the upper bound in A stops the algorithm
before the solution x* is enumerated, or

e Ranking flows in A generates the solution z* again, now the bound is
updated to u3 (or an even better value than that) anyway.

Thus, saving solutions in other triangles cannot improve the run-time of phase
2. We remarked at the end of Section 4.1 that we could consider intermediate
solutions whenever the flow between two adjacent solutions obtained in phase
1 changes by § > 1. Due to the nature of the phase 2 algorithm, including
intermediate solutions from phase 1 and thus obtaining 6 — 1 smaller triangles
instead of the one defined by the two extreme solutions does not present an
advantage. The ranking algorithm would generate the same rankings § — 1
times as we can not restrict the ranking to the current triangle. There is also
no advantage in a better upper bound, as the ranking algorithm will first gen-
erate all alternative optimal solutions (i.e. the non-extreme supported solutions
including the intermediate solutions), and after that the upper bound will be
as good as it would be in the smaller triangles.



Table 1: Test Instances: NETGEN

transhipment transshipment

Name n m sources sinks ZieN:bi >0 bi sources sinks

NO1 / FO1 20 60 9 7 90 / 100 4 3
NO02 / F02 20 80 9 7 90 / 100 4 3
NO03 / F03 20 100 9 7 90 / 100 4 3
N04 / Fo4 40 120 18 14 180 / 100 9 7
NO05 / F05 40 160 18 14 180 / 100 9 7
NO06 / F06 40 200 18 14 180 / 100 9 7
NO7 / FO7 60 180 27 21 270 / 100 14 10
NO08 / F08 60 240 27 21 270 / 100 14 10
NO09 / F09 60 300 27 21 270 / 100 14 10
N10 / F10 80 240 35 38 350 / 100 17 14
N11 / F11 80 320 35 38 350 / 100 17 14
N12 / F12 80 400 35 38 350 / 100 17 14

All efficient solutions are found by this phase 2 approach. In our implemen-
tation, however, only a complete set of solutions is saved.

5 Numerical Results

We investigate the performance of our solution method with networks generated
by NETGEN (Klingman et al. 1974), which is slightly modified to include a second
objective function. We generate two sets of test instances, with the following
parameters fixed for all problems: mincost = 0, maxcost = 100, %highcost =
0, %capacitated = 100, mincap = 0, and maxcap = 50. Furthermore, we vary
parameters as in Table 1. We generate 30 problems for each set of parameters.
We generate problems NO1-N12 with varying sum of supply (D, Nby>0 b;) and
problems FO1-F12 with fixed total sum of supply, as we observe that increasing
the sum of supply with the network size significantly complicates the problem.
All NETGEN instances are listed in Table 1.

We also generate networks with a grid structure. Nodes are arranged in a
rectangular grid with given height and width. Every node has at most four
outgoing arcs (up, down, left, and right), to its immediate neighbours. Only
nodes on the boundary of the grid have fewer outgoing arcs. A grid is defined
by the parameters height h, width w, maximum cost ¢4, max capacity Umaz,
and sum of supply ). N:b;>0 0i- Nodes are randomly chosen to be demand-,
supply-, or transshipment nodes with probabilities 0.4, 0.4, and 0.2, respec-
tively. It is, however, possible that some demand- or supply-nodes are assigned
a balance of 0. Instances G01-G04 are created with the same number of nodes
as instances NO1-N12 and the same ),y o bi- In instances G05/G06 and
G09/G10 we increase Upq, of GO3 and G04, respectively. In instances G07/G08
and G11/G12 we decrease ¢pq, of GO3 and GO04, respectively. Again, we gen-
erate 30 problems for each set of parameters. All grid instances are listed in
Table 2.

10



Table 2: Test Instances: Grid

Name h w n m Cmag Umaz ZiGN:bi>O b;
GO01 4 5 20 62 100 50 100
GO02 5 8 40 134 100 50 100
GO03 6 10 60 208 100 50 100
G04 8 10 80 284 100 50 100
GO05 6 10 60 208 100 75 100
GO06 6 10 60 208 100 100 100
Go7 6 10 60 208 25 50 100
GO08 6 10 60 208 50 50 100
GO09 8 10 80 284 100 75 100
G10 8 10 80 284 100 100 100
Gl11 8 10 80 284 25 50 100
G12 8 10 80 284 50 50 100

Table 3: Results for problems NO1 — N12
|ZnN] |Zsnl/IZNN] time

Name average min max average average min max
NO1 168.13 15 392 0.28 0.40 0.01 1.45
N02 271.13 66 852 0.22 0.76 0.09 3.17
No03 375.43 126 702 0.18 1.40 0.27 3.78
N04 455.10 137 879 0.15 7.09 1.67 26.36
NO5 660.63 252 1801 0.14 11.84 3.16 36.95
NO6 948.30 266 2280 0.12 22.58 5.05 74.91
NoO7 867.80 410 1399 0.11 42.21 11.48 94.32
NO8 1510.37 531 2834 0.09 90.88 27.11 245.20
NO09 1553.47 808 2448 0.09 112.62 32.77 238.82
N10 1138.77 552 1901 0.10 125.42 46.44 372.95
Ni1 2036.20 989 4109 0.08 289.05 69.97 559.34
N12 2480.70 1287 3921 0.07 397.94 138.38 813.76

5.1 Numerical Results

All numerical tests are performed on a Linux (Ubuntu 7.04) computer with
2.80GHz Intel Pentium D processor and 1GB RAM. We use the gec compiler
(version 4.1) with compile option -O3. The methods are implemented in C.
When measuring run-time, we disregard the time it takes to read the problem
from a problem file. Run-time does include the generation of all non-dominated
points together with the efficient flows. Run-time is measured with a precision
of 0.01 seconds.
We make the following observations:

When fixing the number of nodes n in a network but increasing the number
of arcs m the number of efficient solutions increases, this is illustrated by
instances N01-N12 and FO01-F12.

For all presented instances, we can observe that the more efficient solu-
tions there are in a problem, the longer the run-time of the algorithm.
Despite the instances being fairly small, they have a lot of solutions.

For problem type F10, the number of efficient solutions is lower, on av-
erage, than that of problems F01, F04, and FO7 although they all have
the same ratio n/m. This happens, because the value of ZieN:bi>0 b; is

11
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Table 4: Results for problems FO01 — F12

|Zn] |Zsw1/IZn | time
Name average min max average average min max
Fo1 181.13 24 491 0.27 0.52 0.04 2.81
F02 260.53 15 685 0.24 0.99 0.02 4.58
F03 353.77 158 788 0.20 1.54 0.28 6.41
Fo4 213.87 65 380 0.20 2.44 0.58 5.58
F05 354.10 144 701 0.15 5.19 1.86 11.77
Fo6 478.87 176 714 0.13 9.20 2.53 33.65
Fo7 203.97 48 410 0.16 7.17 0.87 22.40
FO8 343.23 165 860 0.14 13.48 5.31 41.27
F09 454.17 230 950 0.12 21.35 8.18 47.9
F10 146.43 72 277 0.18 8.80 2.75 17.27
F11 277.90 131 680 0.15 19.64 8.38 54.04
F12 414.50 234 693 0.12 34.03 12.57 66.47

Table 5: Results for problems G01 — G12

|ZN] |Zsn|/1ZNnN] time
Name average min max average average min max
GO01 74.13 5 276 0.52 0.11 0.00 0.79
GO02 211.23 37 817 0.27 1.99 0.09 10.54
G03 256.07 86 592 0.22 8.72 2.22 33.23
G04 354.20 58 1092 0.20 21.20 2.40 99.01
G05 319.67 64 1034 0.21 8.90 1.45 23.48
G06 420.6 106 955 0.19 12.17 2.66 37.72
GO7 194.63 39 433 0.30 6.78 0.44 25.18
G08 235.33 25 477 0.27 8.00 0.61 40.42
G09 477.33 176 1094 0.17 34.38 6.00 293.53
G10 397.77 113 1069 0.19 21.54 2.04 65.64
G11 265.93 35 541 0.27 23.61 1.33 55.53
G12 326.80 109 645 0.20 21.27 5.62 70.89

fixed, in problem F10 there are only 100 units of flow shipped through
the network consisting of 80 nodes.

The sum of supply significantly increases the number of efficient solutions,
which can be seen by comparing the results for problems F01-F12 with the
corresponding results of problems NO1-N12. It is, however, more realistic
to increase ) ;e ., o bi while increasing the network size.

We generate grid network instances GO1-G04 similar to instances FO1-F12
and NO1-N12 generated by NETGEN. Comparing the number of solutions
of G01-G04 to those of NO1-N12 we observe that there are (on average)
always fewer solutions in the grid networks. This is not the case when
comparing the average number of solutions of G03 and G04 to those of
FO7 and F10/F11, respectively.

When decreasing ¢y,q, in grid instances G07/G08 and G11/G12, we ob-
serve that smaller ¢,,q, leads to fewer efficient solutions and thus to a
faster run-time. When increasing u,,q, in G05/G06, the number of solu-
tions increases and so does the run-time. But increasing u,,q, to 100 in
G10 leads to less solutions that increasing uy,q,; to 75 in G09.

|Zsn|/|Znn|, the ratio of supported and non-supported non-dominated
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points, is decreasing when the total number of solutions is increasing for
NETGEN instances, on average. For grid instances there seems to be the
same trend, but the total number of solutions does not increase as much.
In most NETGEN and grid instances, less than respectively 20% and 30%
of all solutions are supported. Thus, the majority of solutions is non-
supported.

e In Figures 3 - 5, the non-dominated points of one instance of each of the
classes F01, NO1, and GO1 are shown. This illustrates that most non-
supported points are in fact very close to the boundary of conv(Z). The
given figures are just three examples, but we observe a similar behaviour in
most of the problem instances. By obtaining only the supported solutions
of a problem, a fairly good approximation of the set of efficient solutions
can be obtained. There are, however, exceptions such as the example
in Figure 6, where there are a lot of non-supported points far from the
boundary of conv(Z).

6 Conclusion

The presented two phase algorithm works well to solve BIMCF problem, but
the problems solved within reasonable run-time are fairly small. It is therefore
worth investigating how to increase the performance of the presented algorithm
to make it possible to solve bigger problems. Future research could address the
extension of the the two phase algorithm for BIMCF to the MIMCF problem
with more than two objectives. This can be done along the lines of Przybylski
et al. (2007), where a two phase method for multi-objective integer program-
ming is presented together with an example of the application to the assignment
problem with three objectives.
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