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Abstract

Yen and Birge (2006) formulate the airline crew scheduling problem as a two-stage

stochastic integer programme with recourse. They develop an algorithm, the flight-pair

branching algorithm, to solve the problem. In this note we show, by means of an example,

that the algorithm does not necessarily terminate with an optimal solution.
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1 Airline Crew Scheduling

The Tour-of-Duty (ToD) or pairings problem in airline scheduling consists in partitioning

the scheduled flights into sequences of flights that crew members can operate. Each such

sequence is referred to as a Tour-of-Duty (ToD) or pairing and must obey a set of legal and

contractual rules. A ToD consists of one or more duty periods, normally starting and ending

at a specified airport, the crew’s home base (crew base). A duty period is a crew’s working

day which consists of a sequence of flights with ground times that cannot be shorter than

a certain time period, e.g. 30 minutes, between consecutive flights, meal times and maybe

passengering flights, in which a crew member travels as a passenger to get to a particular

airport for a subsequent flight or back to the crew base.

The ToD problem can be formulated as a generalized set partitioning problem (GSPP)

with the objective of minimizing the crew cost incurred by operating the flight schedule

(Butchers et al., 2001; Barnhart et al., 2003):

minimize cT x

subject to Ax = e

M x


≥

=

≤

 b

x ∈ {0, 1}n.

(1)

Each column or variable corresponds to a legal ToD. The value of cj , the cost of variable

j, reflects the dollar cost of operating the jth ToD. The decision variable xj is equal to 1 if

pairing j is included in the solution and 0 otherwise.

The flight constraints Ax = e, where e is a vector of ones, ensure that each flight sector

is included in exactly one ToD, the elements of the A matrix are

aij =

 1, if pairing j contains flight i as operating sector,

0, otherwise.

The crew base balancing constraints Mx{≤,=,≥}b ensure that the distribution of work

over the set of crew bases matches the crew resources by imposing restrictions on the number

of crew resources included from each crew base.

Optimization approaches to solve problem (1) usually use column generation to generate

pairings (Anbil et al., 1998). Because the number of legal pairings is extremely large even

for problems with relatively few flights this is embedded in the optimization as dynamic
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column generation (Barnhart et al., 1998). To obtain an integer solution, a branch and price

approach with constraint branching is used (Ryan and Foster, 1981). Follow-on branching

(Ryan and Falkner, 1988), which is a constraint branching strategy commonly used for this

type of problem, is to force or ban two flights to be operated as a subsequence in a pairing.

The flights Fr, Fs are operated as subsequence if a crew assigned to operate flight Fs after

the operation of the flight Fr, with no other operating sector in between flights Fr and Fs.

On the one branch, all pairings that operate only one of the two flights are eliminated. On

the zero branch, all pairings that operate both flights are eliminated.

Traditionally, the ToD planning problem is solved well before the flight schedule becomes

operational. In this planning stage, all flights are assumed to have departure times that

are both fixed and known. This assumption is often proven wrong when the crew schedule is

actually implemented. Optimal solutions to the ToD problem tend to allow only short ground

times between consecutive flights. With such solutions, initial minor delays can quickly result

in major problems through chain impacts: A late arriving flight does not only cause the

following flight on the same aircraft to depart late, but also those flights which are operated

by late arriving crew members on a different aircraft. To recover from such disruptions can

cause large costs (Ehrgott and Ryan, 2002).

To address this problem and incorporate the short term problem of recovery from disrup-

tions in the ToD planning problem, Yen and Birge (2006) formulate the ToD planning problem

as a two-stage stochastic programme with recourse. The model takes the uncertainty in flight

departure times and flight duration into account and allows to find ToD solutions the total

cost (crew cost plus recovery cost) of which is lower than that of solutions of the traditional

deterministic model.

Given a crew schedule, the recourse problem is a large-scale LP to measure the cost of

delays, with the first stage problem being the traditional ToD planning (1). Yen and Birge

(2006) develop a method based on follow-on branching to solve the model. They sample

100 disruption scenarios and evaluate the solution of the second stage LP for each scenario

to determine the “switching cost” associated with aircraft changes. The “switching cost” is

then passed back to the first stage problem to remove any “expensive” aircraft changes, by

branching on the sector pair with the highest “switching cost”.

In the next section we describe the stochastic programming model and the algorithm

proposed by Yen and Birge (2006). In Section 3 we show that, contrary to the statement in

Yen and Birge (2006), the algorithm does not always find an optimal solution of the model.
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2 The Stochastic Programming Approach

A crew schedule x obtained from solving the ToD planning problem (1) can be evaluated

under some disruption scenarios. Let a disruption scenario ω be a random element of some

space Ω, that occurs with probability P(ω). The crew schedule x incurs a recovery cost

Q(x, ω). The expected value of the cost of future action to operate the crew schedule x is

denoted by Q(x) and it is defined as

Q(x) =
∑
ω∈Ω

P(ω)Q(x, ω).

Thus, the stochastic programming formulation of the robust ToD planning problem is

minimize z = cT x + Q(x)

subject to Ax = e

M x


≥

=

≤

 b

x ∈ {0, 1}n.

(2)

To evaluate a crew schedule under a disruption scenario ω, the pushback recovery pro-

cedure is used. Pushback recovery means that a flight is delayed until all resources (crew

members and aircraft) are available. Below is a summary of our notation. Let

• SDTFi
be the scheduled departure time of the flight Fi,

• SATFi
be the scheduled arrival time of the flight Fi,

• FTFi
be the scheduled flight time of Fi, i.e. FTFi

= SATFi
− SDTFi

,

• F p
i be the plane predecessor flight of Fi,

• F cn
i be the crew predecessor flight of Fi under pairing n,

• PGT
F

p
i

Fi
be the minimum required plane ground time between the flights F p

i and Fi,

• GDT
F

cn
i

Fi
be the minimum required ground duty time between the flights F cn

i and Fi,

• DTω
Fi

be the delay time associated with the flight Fi under scenario ω, DTω
Fi

is a random

variable,

• ADTω
Fi

be the actual departure time of the flight Fi under scenario ω,
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• AATω
Fi

be the actual arrival time of the flight Fi under scenario ω,

• ÂDTω
Fi

be the actual departure time of the flight Fi under scenario ω without crew

interactions,

• ÂATω
Fi

be the actual arrival time of the flight Fi under scenario ω without crew inter-

actions,

• TDω
Fi

be the total delay to the flight Fi under scenario ω,

• NDω
Fi

be the non-crew induced delay to the flight Fi under scenario ω.

Considering a crew schedule x consisting of N pairings, the actual departure time of a

flight Fi under a disruption scenario ω is

ADTω
Fi

= max
{

SDTFi
,AATω

F
p
i

+ PGT
F

p
i

Fi
,AATω

F
cn
i

+ GDT
F

cn
i

Fi

}
while the actual departure time without crew interactions is

ÂDTω
Fi

= max
{

SDTFi
, ÂATω

F
p
i

+ PGT
F

p
i

Fi

}
.

The actual arrival time of a flight Fi under a disruption scenario ω is

AATω
Fi

= ADTω
Fi

+ FTFi
+ DTω

Fi

while the actual arrival time without crew interactions is

ÂATω
Fi

= ÂDTω
Fi

+ FTFi
+ DTω

Fi
.

The total delay, including plane induced delay and crew induced delay, to the flight Fi

under scenario ω is defined by the actual arrival time of the flight Fi under scenario ω minus

the scheduled arrival time of the flight Fi, that is

TDω
Fi

= AATω
Fi
− SATFi

and the non-crew induced delay to the flight Fi under scenario ω is

NDω
Fi

= ÂATω
Fi
− SATFi

.

The recovery cost of operating crew schedule x for a flight schedule consisting of S flights

under the disruption scenario ω is thus

Q(x, ω) =
S∑

i=1

pFi
(TDω

Fi
−NDω

Fi
),
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where pFi
is the penalty cost for each minute of delay of flight Fi.

After the crew schedule is evaluated, flight pairs are priced by switch delay. Switch delay

is a delay due to crew changing aircraft.

Given that the flights Fi and Fj are not on the same aircraft and crew were assigned

to perform the connection (Fi, Fj) in the ToD, switch delay for connection (Fi, Fj) under

scenario ω is the total delay of flight Fj under scenario ω minus the delay incurred if the crew

were assigned to perform the connection (F p
j , Fj) under scenario ω. Hence, if we consider a

crew schedule x consisting of N pairings, the switch delay for a flight connection (Fi, Fj) over

all scenarios in Ω is

SDFi
Fj

=
N∑

n=1

δnij

∑
ω∈Ω

P(ω) max
{

0,TDω
Fj
−

(
AATω

F
p
j

+ max
{

PGT
F

p
j

Fj
,GDT

F
p
j

Fj

}
− SDTFj

)}
,

where

δnij =



1, if



xn = 1,

ain = 1,

ajn = 1,

F cn
j = Fi,

plane(Fi) 6= plane(Fj)

0, otherwise.

Once the switch delay for each flight pair is calculated for a crew schedule x, the flight

pair with the highest switch delay cost is banned to appear from any pairing selected in the

next GSPP solution. This is equivalent to imposing a 0-branch on the flight pair with highest

switch delay and is called called flight-pair branching. If the total cost (crew cost and recovery

cost) of the new crew schedule is worse than that of the previous one, a 1-branch is imposed

on that highest switch delay flight pair, and a 0-branch is imposed on the next highest switch

delay flight pair.

The processes of solving (1) to find a new crew schedule, evaluating the cost minimal crew

schedule, calculating switch cost and flight-pair branching are repeated until no flight pair

with positive switch delay cost is found or the increase of planned crew cost is larger than

the decrease of the expected recovery cost.

3 The Example

Yen and Birge (2006) state that the algorithm must terminate with an optimal solution. We

argue that in some circumstances the true optimal solution cannot be found. We demonstrate
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this by an example.

Suppose our flight schedule consists of one day of operation with six flights {F1, F2, . . . , F6}

operated by two planes (P1 and P2) serving three cities (A, B and C). Suppose we only have

one delay scenario that always happens. The flight schedule and delay details are as follows.

SDT SAT DT

Flight Plane Origin Destination (hh:mm) (hh:mm) (min)

1 1 A B 12:00 13:00 5

2 2 C B 12:00 13:00 0

3 2 B C 13:30 15:00 0

4 1 B C 13:45 15:15 15

5 2 C B 15:45 17:15 0

6 1 C A 16:00 18:00 0

Delay time (DT) is the independent delay time associated with each flight. We assume

the minimum plane ground time (PGT) and minimum ground duty time (GDT) to be 30

minutes between any two flights and that passengering is not allowed. For this flight schedule

eight different duty periods {D1, D2, . . . , D8} are possible. Note that duty periods coincide

with ToDs in this example.

Duty Period Path

1 F1 → F3 → F5

2 F1 → F3 → F6

3 F1 → F4 → F5

4 F1 → F4 → F6

5 F2 → F3 → F5

6 F2 → F3 → F6

7 F2 → F4 → F5

8 F2 → F4 → F6

With these eight duty periods, four possible solutions {x1, x2, . . . , x4} of the pairings

problem can be constructed.
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Solution Duty Periods

1 D1, D8

2 D2, D7

3 D3, D6

4 D4, D5

Let us assume that c is such that

cT x1 < cT x3 < cT x4 < cT x1 +Q(x1) < cT x3 +Q(x3)

and that cT x1 < cT x2. We also assume that the penalty cost pFi is 1 for all flights Fi.

In particular, x1 is the unique optimal solution of (1) and we evaluate its on-time perfor-

mance.

Duty Period Flight ADT AAT TD ND

(hh:mm) (hh:mm) (min) (min)

1 1 12:00 13:05 5 5

3 13:35 15:05 5 0

5 15:45 17:15 0 0

8 2 12:00 13:00 0 0

4 13:45 15:30 15 15

6 16:00 18:00 0 0

The recovery cost Q(x1) of this solution is 5. The switching cost of the flight pair (F1, F3)

is 5 and the switching cost of all other flight pairs is 0. According to the flight-pair branching

algorithm, the flight pair (F1, F3) is banned from appearing in any pairing selected in the

next solution, so the duty periods D1 and D2 are banned, and hence solutions x1 and x2 are

no longer feasible.

The crew schedule x3 is the next solution. The on-time performance of x3 is as follows.
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Duty Period Flight ADT AAT TD ND

(hh:mm) (hh:mm) (min) (min)

3 1 12:00 13:05 5 5

4 13:45 15:30 15 15

5 16:00 17:30 15 0

6 2 12:00 13:00 0 0

3 13:30 15:00 0 0

6 16:00 18:00 0 0

The recovery cost Q(x3) of this solution is 15. By our assumption, cT x1 + Q(x1) <

cT x3 + Q(x3), i.e. the difference in crew cost between x1 and x3 is small compared to the

difference of 10 of the recovery cost. Following the algorithm this node is fathomed, the

0-branch on the flight pair (F1, F3) is removed, and a 1-branch is imposed. In other words,

the flight pair (F1, F3) is forced to appear in the next solution, so the duty periods D3, D4,

D5 and D6 are banned, and hence solutions x3 and x4 are infeasible.

After the 1-branch is imposed on the flight pair (F1, F3), x1 is of course the optimal

solution. In this solution, the switching cost for all other flight pairs is 0, i.e. the algorithm

terminates with solution x1.

However, the true optimal solution, x4, cannot be identified with the algorithm. The

on-time performance of x4 is as follows.

Duty Period Flight ADT AAT TD ND

(hh:mm) (hh:mm) (min) (min)

4 1 12:00 13:05 5 5

4 13:45 15:30 15 15

6 16:00 18:00 0 0

5 2 12:00 13:00 0 0

3 13:30 15:00 0 0

5 15:45 17:15 0 0

The recovery cost Q(x4) of this solution is 0. Thus, by our assumption, cT x4 +Q(x4) =

cT x4 < cT x1 + Q(x1). Solution x4 must be obtained by a ban on the flight pair (F1, F3),

yielding solution x3, followed by a ban on the flight pair (F4, F5). Since the node with

a 0-branch on (F1, F3) is fathomed, x4 can never be obtained. Note that solution x2 has

Q(x2) = 20 and is hence worse than x1 in both the deterministic and stochastic model.
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The example shows that one of the stopping criteria for the flight-pair branching algo-

rithm is invalid, namely that the increase of planned crew cost is larger than the decrease

of the recovery cost. The planned crew cost is an increasing function along a branch of the

tree constructed by the flight-pair branching algorithm, but since the recovery cost is not a

decreasing function, the upper bound of the algorithm is not valid.
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