
Column Generation with Free Replicability in DEA

Matthias Ehrgott

Department of Engineering Science

The University of Auckland, New Zealand

email: m.ehrgott@auckland.ac.nz

and

Laboratoire d’Informatique de Nantes Atlantique

Université de Nantes, France

email: matthias.ehrgott@univ-nantes.fr

Jørgen Tind

Department of Mathematical Sciences

University of Copenhagen, Denmark

email: tind@math.ku.dk

March 27, 2007



Abstract

The evaluation of efficiency scores in data envelopment analysis is based on

the construction of artificial decision making units subject to some assump-

tions, usually requiring convexity of the production possibility set. This

demands divisibility in input and output, which is not always possible. The

so-called free replicability model, proposed by Henry Tulkens, permits input

and output to enter in only discrete amounts. The model is of a mixed

integer programming type, for which the number of variables, here corre-

sponding to the decision making units, may be critical in order to reach an

optimal solution.

We suggest to use column generation techniques to include only those

decision making units that may contribute to the creation of an optimal

solution.

Keywords: Data envelopment analysis, free replicable hull, branch and

bound, cutting plane, column generation.



The fundamental linear programming models in Data Envelopment Anal-

ysis (DEA) have had an enormous impact on theory and application in

productivity analysis. They are based on the creation of comparable deci-

sion making units (DMUs) subject to some assumptions on disposability,

scaling, and aggregation.

The aggregation process usually implies assumptions on convexity, the

principal ones being the constant return to scale and the variable return

to scale models. The assumptions of convexity have in certain cases been

questioned, notably by Tulkens (1993), who introduced the so-called free

disposable hull and free replicability hull models. Later discussions and

generalizations have been considered by Bogetoft (1996), Bogetoft et al.

(2000), Kuosmanen (2003) and Post (2001).

This paper shall focus on the free disposable hull model by Tulkens. It

is formulated as a mixed integer programming model of a rather general

form having one continuous variable. The remaining variables are integer

corresponding to each decision making unit in the model. Mixed integer pro-

gramming is notoriously hard, in particular in the presence of many integer

variables. Many books have been written on the subject, see for example

Wolsey (1998). An important tool in solving large optimization problems,

including problems in integer programming, is column generation. In in-

teger programming this is of particular relevance when many variables are

present and perhaps only known implicitly. We shall here consider column

generation, which in the current context is relevant in the presence of many

decision making units. But it also applies to the case, where a new decision

making unit can be created by a separate model, in column generation ter-

minology by a subroutine. The principle idea is that a master problem with

a selected number of decision making units quote prices on input and output

vectors to be used in the generation of additional decision making units. In

this way column generation skips irrelevant DMUs and includes only those

that may improve the efficiency score. This discussion is connected to the

analysis in Wilson (1995) about the detection of influential observations in

data envelopment analysis.

DEA and multicriteria optimization both deal with the concept of an ef-

2



ficient border and share many properties that can be exploited using equiv-

alent techniques. See for example Joro et al. (1998). The present paper has

a companion paper, Ehrgott and Tind (2007), dealing with multicriteria

optimization models.

Section 1 presents the fundamental model to be studied. Section 2 de-

scribes how a fundamental branch and bound scheme can be carried out for

the solution of the model. This is accompanied by an example. Section 3

deals with the introduction of possibly advantageous DMUs to be included

in the branch and bound procedure followed by some discussion including

an economic interpretation.

A similar analysis is carried out with the other fundamental solution

method in integer programming, the cutting plane technique, in Section 4.

The paper concludes with some perspectives about the common features of

the two procedures in the present context.

1 The Free Replicability Model

The free replicability model considers integer combinations of the decision

making units, DMUs. Let us introduce some notation in order to state the

model. Let xj and yj denote the input and the output vector of the jth

DMU. Consider a particular DMU with input vector x0 and output vector

y0. Let j = 0, . . . , n, i.e. we have n + 1 DMUs. Let θ, λj be variables,

j = 0, . . . , n. The free replicability model can then be formulated in the

following way.

(1)

min θ

s.t. θx0 −

n
∑

j=0

xjλj ≥ 0

n
∑

j=0

yjλj ≥ y0

λj ≥ 0 (j = 0, . . . , n)

θ free.

This is a mixed integer programming problem with integer variables and

3



(here) one continuous variable. For simplicity we have omitted the handling

of slacks. However, they may be introduced without difficulty. For the

treatment of slacks see Cooper et al. (2000).

In general it is difficult to solve such problems if there are many integer

variables, i.e. if there are many DMUs. We shall therefore use a column

generation technique in order to exclude DMUs that cannot contribute to

the formation of an optimal solution of (1).

Additionally, column generation techniques allow for the generation of

DMUs that are not given directly, but for which there are certain restric-

tions on a feasible input-output combination (xj , yj). In general this could

be given as a production possibility set P such that (xj , yj) ∈ P . Restric-

tions could also, perhaps more naturally, be given as a set of constraints

g(xj , yj) ≤ 0 defined by limitations in production factors.

Column generation has widespread use in linear programming, and in

many cases also in integer or mixed integer programming where only the

linear programming relaxation is considered and solved via column gener-

ation. The trouble is, however, that some columns, here corresponding to

the DMUs, may not be considered in a linear programming relaxation, even

though they are part of an optimal solution.

We shall here outline a column generation method for (1). For (mixed)

integer programming problems there exist generally two basic solution prin-

ciples, branch and bound techniques and cutting plane techniques, and col-

umn generation techniques are also developed in (mixed) integer program-

ming, see Barnhart et al. (1998) and Vanderbeck and Wolsey (1996), in

particular for the branch and bound method. We shall apply both methods

on the free replicability model in a column generation framework.

2 Branch and Bound

As mentioned, the idea is to start the process with a smaller number k of

known DMUs, where k < n + 1. In branch and bound we consider in a tree

structure multiple linear programming relaxations of the original problem

(1). If fractional values of integer variables are present in an optimal solution

4



of a relaxed problem, this problem is typically split into multiple problems

by the exclusion of the open non-integer interval around the fractional val-

ues of the integer variables. Typically this is only done with respect to a

single variable, and in this way a problem is replaced by two new linear pro-

gramming problems in a recursive way. We shall here follow this approach.

Each problem will have the same structure but with different bounds put

on the integer variables. Let lj and uj denote the lower and upper bounds,

respectively, of the variables λj for j = 0, . . . , k. With this notation each

problem has the following general structure.

(2)

min θ

s.t. θx0 −

k
∑

j=0

xjλj ≥ 0

k
∑

j=0

yjλj ≥ y0

λj ≤ uj (j = 0, . . . , k)

λj ≥ lj (j = 0, . . . , k)

θ free.

The first problem to be considered is the linear programming relaxation

of (1). Here in the beginning lj = 0 and uj = M for j = 0, . . . , k, where M

is a nonbinding number. We shall here illustrate the process on an example.

For more information and details about branch and bound see for example

Wolsey (1998).

Example 1 Let us consider a problem with 5 DMUs: A,B,C,D and E

having 1-dimensional input and one 1-dimensional output as given by the

following table.

DMU A B C D E

input xj 6 2 5 3 8

output yj 12 3 4 5 7

Let C be the designated DMU to be evaluated. Let us also assume that

at the beginning we have no knowledge about DMUs D and E. With this

terminolgy our problem (1) takes the following form

5



min θ

s.t. 5θ − 6λA − 2λB − 5λC ≥ 0

12λA + 3λB + 4λC ≥ 4

λA, λB , λC ≥ 0 and integer

θ free.

Let us first look at the linear programming relaxation with the unrestric-

tive bound uj = 10.

Problem I:

min θ

s.t. 5θ − 6λA − 2λB − 5λC ≥ 0

12λA + 3λB + 4λC ≥ 4

λA, λB , λC ≥ 0

λA, λB , λC ≤ 10

θ free.

The optimal solution of this program gives us θ = 0.4 for λA = 0.33

and λB = λC = 0. Since λA is fractional we remove the open interval

(0,1) from consideration for λA. Hence problem I is replaced by the

next two problems II and III.

Problem II:

min θ

s.t. 5θ − 6λA − 2λB − 5λC ≥ 0

12λA + 3λB + 4λC ≥ 4

λA, λB , λC ≤ 10

λA ≥ 1

λB , λC , ≥ 0

θ free.

The optimal solution of problem II is λA = 1, λB = λC = 0 with

θ = 1.2. This solution is integer.

6



Problem III:

min θ

s.t. 5θ − 6λA − 2λB − 5λC ≥ 0

12λA + 3λB + 4λC ≥ 4

λA, λB λC ≥ 0

λA ≤ 0

λB , λC ≥ 0

θ free.

The optimal solution of problem III is λA = λC = 0, λB = 1.33 with

θ = 0.533. This solution is still fractional. Hence problem III is

replaced by the next two problems IV and V. We provide only the

bounding constraints.

Problem IV:

0 ≥ λA ≥ 0, 1 ≥ λB ≥ 0, 10 ≥ λC ≥ 0.

The optimal solution of problem IV is λA = 0 λB = 1 and λC = 0.25

with θ = 0.65.

Problem V:

0 ≥ λA ≥ 0, 10 ≥ λB ≥ 2, 10 ≥ λC ≥ 0.

The optimal solution of problem V is λA = λC = 0, λB = 2 with

θ = 0.8. This solution is integer and better than the solution provided

by problem II. Hence problem II is left from further consideration.

Finally, problem IV is separated into the next two problems VI and

VII.

Problem VI:

0 ≥ λA ≥ 0, 1 ≥ λB ≥ 0, 0 ≥ λC ≥ 0.

Problem VI is infeasible.

Problem VII:

0 ≥ λA ≥ 0, 1 ≥ λB ≥ 0, 10 ≥ λC ≥ 1.

7



The optimal solution of problem VII is λA = λB = 0 and λC = 1 with

θ = 1.0, which is integer, but not better than the solution provided by

problem V.

There are no remaining problems to be considered. Hence the solution

λA = λC = 0, λB = 2 with θ = 0.8 obtained by problem V is optimal in this

example. For the development of the tree structure in the branch and bound

process see Figure 1.

< Figure 1 Here.>

So DMU C is not efficient, as it obtains a productivity index which is

lower than 1. A new DMU twice as large as DMU B can obtain at least

the required output with a smaller amount of input. Observe that with the

required integrality the efficiency has improved in comparison with the value

θ = 0.4 of the linear programming relaxation, where DMU C became com-

pared with a fractional part of DMU A. 4

3 Column Generation in Branch and Bound

Let us again consider the general problem (2) and its dual linear program-

ming problem

(3)

max vy0 +
∑k

j=0
(wj lj − zjuj)

s.t. ux0 ≤ 1

−uxj + vyj + wj − zj = 0 (j = 0, . . . , k)

u ≥ 0

v ≥ 0

wj , zj ≥ 0 (j = 0, . . . , k),

where u, v,wj , zj are dual variables of appropriate dimensions.

We shall here apply the column generation technique or decomposition

technique from linear programming. This tells us that problem (2) is solved

to optimality even with all DMUs included, if the inequality

8



(4) −uxj + vyj + wj − zj = 0

is satisfied for all j = 0, . . . , n, where (u, v,wj , zj) are optimal in (3). Since

possible new columns have no restrictive upper bound at the outset the zj

variable is not required for this check. Also at the outset the lower bound is

equal to 0, which has the effect that wj may be removed and the equation

(4) may be turned into the following inequality

(5) −uxj + vyj ≤ 0.

Example 2 Let us return to Example 1. Consider again Problem I, which

is just the linear programming relaxation of the original problem. For this

problem the optimal dual variables are u = 0.2, v = 0.1. We shall now check

whether the dual inequality (5) is satisfied for DMU D with these dual vari-

ables. Calculation shows that

−0.2 × 3 + 0.1 × 5 ≤ 0.

Hence DMU D should not be considered if we are only going to study the

linear programming relaxation of our problem. 4

Going back to the general problem the branch and bound procedure

terminates with a set of problems that do not need to be investigated further.

Either a problem is infeasible or the objective value, which is a lower bound

for all possible further separations, is not lower than the value of the best

integer solution obtained.

However, it could be that a new column may change this picture. It is

here column generation comes into place. This implies that the inequalily

(5) should be checked for all problems that are not yet separated, also called

the terminal problems.

If the inequality does not hold for a new column for a particular prob-

lem, then that column or DMU should be introduced into the problem,

which should be solved again. This may decrease the value of the problem

and hence give rise the further calculations by the branch and bound pro-

cedure. Similarly, if a terminal problem is infeasible a new column should

9



be introduced into that problem. Since the variable of a new column at the

outset has no upper bound and since all input and output data are usually

assumed strictly positive, then feasibility can be obtained for a sufficiently

high λ-value of the new column. When all terminal problems are feasible and

the inequality (5) is satisfied for all new columns then the entire procedure

terminates with an optimal solution of the original problem.

Example 3 We shall continue with the previous example. The terminals

after termination of the branch and bound procedure correspond to problems

II, V, VI, and VII. Let us check the inequalities for DMU D in problem II.

The optimal dual variables are here (u, v) = (0.2, 0) and the inequality (5)

−0.2 × 3 + 0 × 5 ≤ 0.

is thus satisfied. Similarly for problems V and VII.

However, for the infeasible problem VI we insert DMU D and we obtain

Problem VIII.

Problem VIII:

min θ

s.t. 5θ − 6λA − 2λB − 5λC − 3λD ≥ 0

12λA + 3λB + 4λC + 5λD ≥ 4

λA, λB , λC , λD ≥ 0

λA, λC , ≤ 0

λB ≤ 1

λD ≤ 10

θ free.

As the optimal solution has the fractional element λD = 0.8 the prob-

lem is separated into two problems IX and X.

Problem IX with the bounding constraints

0 ≥ λA ≥ 0, 1 ≥ λB ≥ 0, 0 ≥ λC ≥ 0, 10 ≥ λD ≥ 1.

This has the optimal integer solution λA = λB = λC = 0, λD = 1 and

θ = 0.6, improving the previous best solution forund in problem V. The

opposite

10



Problem X has the bounding constraints

0 ≥ λA ≥ 0, 1 ≥ λB ≥ 0, 0 ≥ λC ≥ 0, 0 ≥ λD ≥ 0.

This problem is infeasible. Hence we shall introduce DMU E into this

problem. However this gives the value θ = 0.62 which exceeds the

values of all terminals.

Finally, DMU E satisfies the inequality (5) in all terminals, and the

procedure terminates with the solution found in problem IX as optimal for

the entire problem. See also Figure 2. This shows that DMU D performs

even better than a double sized DMU B.

< Figure 2 Here. >

4

Discussion. The above scheme has been built upon the traditional branch

and bound approach. If implemented directly it is necessary to have explicit

knowledge about included DMUs. It may happen that the dual feasiblity

condition (5) suggests introduction of a DMU that is already in. This sit-

uation may occur if the dual variable zj is positive for an already included

DMU. Other branching rules have been suggested to overcome this difficulty

via the introduction of different branching rules. See for example Vander-

beck and Wolsey (1996) and Barnhart et al. (1998).

It should also be noted that columns (DMUs) may be created in a sep-

arate production program of the following general form. We omit the index

j.

max−ux + vy

s.t. (x, y) ∈ P.

If the value of this program exceeds 0 then a the generated DMU is inserted.

Otherwise the procedure stops, provided that also possible infeasible termi-

nals have been explored.

11



The entire procedure has a straightforward economic interpretation. Let

T be the index set of all terminals at the termination of the procedure and

let (ut, vt) denote the optimal dual variables associated with terminal t ∈ T .

Termination of the procedure requires that −utx
j + vty

j ≤ 0 for all DMUs,

i.e. for j = 0, . . . , n and all t ∈ T .

Let G(−xj , yj) = maxt∈T −utx
j + vty

j. The termination criterion can

then be stated in short form as

G(−xj , yj) ≤ 0 (j = 0, . . . , n).

The function G can be considered as a revenue function taking in costs for

consumption of inputs and income from outputs. The termination criterion

then says, that no DMU can have positive revenue. Otherwise and according

to the procedure above, if a DMU violates the termination criterion there

may by a gain in the efficiency score by introducing that DMU.

4 Column Generation and Cutting Planes

In this section we shall first consider the case with 1-dimensional input,

i.e. xj ∈ R+. In this case the program (1), apart from the scaling of the

objective, is equivalent to the following pure integer programming problem.

(6)

min

n
∑

j=0

xjλj

s.t.
n

∑

j=0

yjλj ≥ y0

λj ≥ 0 and integer (j = 0, . . . , n).

From the theory of integer programming the explicitly stated integrality

condition of the above problem may be eliminated by the introduction of

extra constraints, the so-called cutting planes, which cut away nonintegral

corner points of the constraints in the linear programming relaxation. We

shall here introduce the fundamental Chvatal-Gomory (C-G) cuts. These

cuts are derived from the original constraints through a recursive use of the

following operations on the rows:

12



• Addition,

• multiplication by a non-negative scalar,

• application of the round-up operation d·e. For example d5.4e = 6.

More on the use of cutting plane techniques in integer programming can be

found in Wolsey (1998).

Example 4 We shall continue with the previous example and as before we

shall consider the linear programming relaxation of the reduced problem with-

out DMU D:

(7)

min θ

s.t. 5θ − 6λA − 2λB − 5λC ≥ 0

12λA + 3λB + 4λC ≥ 4

λA, λB , λC ≥ 0

θ free.

First multiply the second constraint in (7) by 1

3
and obtain

4λA + λB +
4

3
λC ≥

4

3
.

Afterwards apply the round-up operation on all cooefficients. In this way we

obtain the first cut.

First cut:

(8) 4λA + λB + 2λC ≥ 2.

Similarly, multiply again the second constraint of the problem but this

time by 1

12
. After rounding up of all coefficients we get the second cut.

Second cut:

(9) λA + λB + λC ≥ 1.

Add (8) and (9) and multiply the result by 1

2
and obtain

5

2
λA + λB +

3

2
λC ≥

3

2
.

13



The coefficients are rounded up and we get the following third cut.

Third cut:

(10) 3λA + λB + 2λC ≥ 2.

Add next the inequalities (9) and (10). Multiply the resulting inequality

by 1

2
and we get

2λA + λB +
3

2
λC ≥

3

2

and upon round-up we obtain the fourth cut.

Fourth cut:

(11) 2λA + λB + 2λC ≥ 2.

We shall keep our attention to the cut (11). The cuts (8) and (10) are

dominated by cut (11). For simplicity of exposition we also leave out (9)

from further consideration, as we know in this example that it is going to be

nonbinding. With the notation already introduced let yj ∈ R denote the jth

coefficient in the second row of (7) and define the function

(12)
F (yj) =

⌈

1

2

(⌈

1

2

(⌈

1

3
yj

⌉

+

⌈

1

12
yj

⌉)⌉

+

⌈

1

12
yj

⌉)⌉

.

The formula (12) just gives a direct calculation of the jth coefficient in

the cut (11) based on the above detailed development.

If we solve (7) with the addition of the cut (11) we get the optimal and

integer solution λA = λC = 0, λB = 2 with θ = 0.8, as wanted. So the cut

(11) is enough to cut off undesired fractional solutions. 4

In general we get multiple cuts, in which the coefficients can be calculated

based on a formula subject to the generating rules of the C-G cuts. If we

have m outputs and l cuts we may naturally consider the vector function

F (yj) : R
m → R

l. Let w ∈ R
l denote the optimal dual variables of the cuts.

Together with previous notation the dual feasibility may be stated as

14



(13) −uxj + vyj + wF (yj) ≤ 0.

By optimality this is valid for all the DMUs introduced, i.e. for j =

0, . . . , k. The question is whether dual feasibility holds for all DMUs.

Example 5 In the example we get the optimal dual variables (u, v,w) =

(0.2, 0, 0.4), and as an illustration we check dual feasibility (13) for DMU A

by calculating

−0.2 × 6 + 0 × 12 + 0.4 × 2 = −0.4 ≤ 0.

This also applies to the remaining included DMUs, B and C.

The question is whether this condition is also true for DMU D. Let us

first calculate the corresponding coefficient in the cut by means of (12).

F (5) =

⌈

1

2

(⌈

1

2

(⌈

1

3
× 5

⌉

+

⌈

1

12
× 5

⌉)⌉

+

⌈

1

12
× 5

⌉)⌉

=

⌈

1

2

(⌈

1

2
(2 + 1)

⌉

+ 1

)⌉

=

⌈

1

2
(2 + 1)

⌉

= 2.

Now let us check condition (13) for DMU D. Calculation shows

−0.2 × 3 + 0 × 5 + 0.4 × 2 = 0.2.

Hence condition (13) is violated and we shall introduce DMU D in our LP

relaxation including the added and now extended cut. Hence we shall solve

min θ

s.t. 5θ − 6λA − 2λB − 5λC − 3λD ≥ 0

12λA + 3λB + 4λC + 5λD ≥ 4

2λA + λB + 2λC + 2λD ≥ 2

λA, λB, λC , λD ≥ 0

θ free.

15



The optimal solution of this problem is λA = λB = λC = 0, λD = 1, which

is integer. The corresponding dual solution is (u, v,w) = (0.2, 0, 0.3).

Let us finally consider DMU E and we shall therefore calculate the cor-

responding coefficient in the cut by means of (12).

F (7) =

⌈

1

2

(⌈

1

2

(⌈

1

3
× 7

⌉

+

⌈

1

12
× 7

⌉)⌉

+

⌈

1

12
× 7

⌉)⌉

=

⌈

1

2

(⌈

1

2
(3 + 1)

⌉

+ 1

)⌉

=

⌈

1

2
(2 + 1)

⌉

= 2.

Now let us check condition (13) for DMU E. Calculation shows

−0.2 × 8 + 0 × 7 + 0.3 × 2 = −1.0.

Hence (13) is satisfied and the procedure terminates with the last solution

with value θ = 0.6. 4

Discussion. The formation of cuts can be done in many ways. Many inte-

ger programming textbooks include the generation of the so-called fractional

Gomory cuts, which over a long period of time were considered of limited

practical use. However, they have been revived in recent years and have

been adopted in modern optimization software.

In the present context it should be noted that we will ensure finite con-

vergence of the above column generation procedure by using Gomory cuts

with integral data.

It should also here be noted that the generation of DMUs may be created

by a production program, which here will have the following general form.

We omit the index j.

max−ux + vy + wF (y)

s.t. (x, y) ∈ P.

So far, we have limited ourselves to the discussion of the case with

only 1-dimensional input, since the problem in this instance could be trans-

16



formed into an ordinary pure integer programming problem (6). With multi-

dimensional input the original problem (1) remains a genuine mixed integer

programming problem. Cut generation in mixed integer programming is a

much harder discipline, although some very nice theoretical results exist to-

gether with promising computational practice. See for example Cornuéjols

(2007). Gomory introduced at an early stage cuts for mixed integer pro-

gramming which have been treated in many textbooks. See for example

Nemhauser and Wolsey (1988). It is possible in the mixed integer program-

ming case to build up functions like the above ones in order to generate

coefficients for a cut. They can be cast into the general form G(−xj , yj),

and dual feasibility can be checked by the sign of this function. For some

details see Agrell and Tind (2001).

As in the branch and bound case we can also give an economic inter-

pretation. Let G(−x, y) = −ux + vy + wF (y). Then the dual feasibility

condition can be given the short form G(−xj , yj) ≤ 0 for j = 0, . . . , n. If

G is considered as a revenue function this says that there is no room for

an additional gain in the efficiency score from any DMU at the end of the

whole procedure.

5 Conclusion

We have shown how some DMUs may be selected for and other DMUs may

be left out of consideration in an optimal solution. This has here been

demonstrated using both of two fundamental solution tools in integer pro-

gramming. In particular it is noted that the linear programming relaxation

of the original problem cannot alone provide the correct dual variables in

order to obtain the relevant DMUs.

The two cases, branch and bound, and cutting planes, have been con-

sidered separately. However, we have seen that the rules for insertion along

with an economic interpretation can be cast in the same framework by means

of the general function G. Hence, it should be noted that it is possible to

merge the two procedures within a common framework for the study of the

free replicability hull model (1).

17



In the classical linear programming case primal and dual feasibility to-

gether with the notion of complementary slackness play a key role in sensi-

tivity analysis studies of the classical models. See for example Cooper et al.

(2001) and Boljunčić (2006). As a final comment we may observe that the

notion of primal and dual feasibility and complementary slackness can be

extended into the current mixed integer programming case. This opens up

for a sensitivity analysis study of the free replicability model (1) as well.

References

Agrell, P. J. and Tind, J. (2001). A dual approach to nonconvex frontier

models. Journal of Productivity Analysis, 16, 129 – 147.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., and

Vance, P. H. (1998). Branch and price: Column generation for solving

huge integer programs. Operations Research, 46, 316 – 329.

Bogetoft, P. (1996). DEA on relaxed convexity assumptions. Management

Science, 42, 457 – 465.

Bogetoft, P., Tama, J. M., and Tind, J. (2000). Convex input and out-

put projections of nonconvex production possibility sets. Management

Science, 46, 858 – 869.

Boljunčić, V. (2006). Sensitivity analysis of an efficient DMU in DEA model

with variable returns to scale (VRS). Journal of Productivity Analysis,

25, 173 – 192.

Cooper, W. W., Seiford, L. M., and Tone, K. (2000). Data envelopment

analysis: A comprehensive text with models, applications, references and

DEA-solver software. Kluwer Academic Publishers, Dordrecht.

Cooper, W. W., Li, S., Seiford, L. M., Tone, K., Thrall, R. M., and Zhu, J.

(2001). Sensitivity and stability analysis in DEA: Some recent develop-

ments. Journal of Productivity Analysis, 15, 217 – 246.

18



Cornuéjols, G. (2007). Valid inequalities for mixed integer linear programs.

Mathematical Programming, Series B . To appear.

Ehrgott, M. and Tind, J. (2007). Column generation in integer program-

ming with applications in multicriteria optimization. Technical report,

Department of Engineering Science, The University of Auckland.

Joro, T., Korhonen, P., and Wallenius, J. (1998). Structural comparison

of data envelopment analysis and multiple objective linear programming.

Management Science, 44, 962 – 970.

Kuosmanen, T. (2003). Duality theory of non-convex technologies. Journal

of Productivity Analysis, 20, 273 – 304.

Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and Combinatorial

Optimization. Wiley, New York.

Post, T. (2001). Estimating non-convex production sets using transconcave

DEA. European Journal of Operational Research, 131, 132 – 142.

Tulkens, H. (1993). On FDH efficiency analysis: Some methodological issues

and applications to retail banking, courts, and urban transit. Journal of

Productivity Analysis, 4, 183 – 210.

Vanderbeck, F. and Wolsey, L. A. (1996). An exact algorithm for IP column

generation. Operations Research Letters, 19, 151–159.

Wilson, P. W. (1995). Detecting influential observations in data envelopment

analysis. Journal of Productivity Analysis, 6, 27 – 45.

Wolsey, L. A. (1998). Integer Programming . Wiley-Interscience, Chichester.

19



I

II III

V IV

VII VI

θ = 0.4, λA = 0.33

λA ≥ 1 λA ≤ 0

θ = 1.2, integer θ = 0.53, λB = 1.33

λB ≥ 2 λB ≤ 1

θ = 0.8, integer θ = 0.65, λC = 0.25

λC ≥ 1 λC ≤ 0

θ = 1, integer infeasible

Figure 1: Branch and bound tree.

20



VI

VIII

X IX

XI

infeasible

DMU D

θ = 0.6, λD = 0.8

λD ≤ 0 λD ≥ 1

infeasible θ = 0.6, integer

DMU E

θ = 0.62

Figure 2: Continuation of branch and bound procedure.

21


