
A Comparison of Solution Strategies for Biobjective

Shortest Path Problems

Andrea Raith
Department of Engineering Science

The University of Auckland, New Zealand
email: a.raith@auckland.ac.nz

Matthias Ehrgott
Department of Engineering Science

The University of Auckland, New Zealand
email: m.ehrgott@auckland.ac.nz

and
Laboratoire d’Informatique de Nantes Atlantique

Université de Nantes, France
email: matthias.ehrgott@univ-nantes.fr

February 16, 2007

Abstract

We consider the biobjective shortest path (BSP) problem as the natural exten-
sion of the single objective shortest path problem. BSP problems arise in various
applications where networks usually consist of large numbers of nodes and arcs.
Since obtaining the set of efficient solutions to a BSP problem is more difficult
(i.e. NP-hard and intractable) than solving the corresponding single objective
problem there is a need for fast solution techniques. Our aim is to compare
different strategies for solving the BSP problem. We consider a standard label
correcting method, a purely enumerative near shortest path approach, and the
two phase method, investigating different approaches to solving problems aris-
ing in phase 1 and phase 2. In particular, we propose to combine the two phase
method with ranking in phase 2. In order to compare the different approaches,
we investigate their performance on three different types of networks. We em-
ploy grid networks and random networks, as is generally done in the literature.
Furthermore, road networks are utilized to compare performance on networks
with a structure that is more likely to actually arise in applications.

Keywords: Biobjective shortest path problem, two phase method, label cor-
recting algorithm, near shortest path algorithm.

1 Introduction

Shortest path problems have been studied intensively in the literature (e.g.
Gallo and Pallotino 1988). The single objective shortest path problem is most
widely studied. However, it is often not sufficient to restrict oneself to one
objective. Applications often indicate the necessity of taking two or more ob-
jectives into account, resulting in biobjective or multiple objective shortest path
problems. Examples include transportation problems (Pallottino and Scutellà
1998), routing in railway networks (Müller-Hannemann and Weihe 2006), and
problems in satellite scheduling (Gabrel and Vanderpooten 2002).

We consider the biobjective shortest path (BSP) problem as the natural
extension of the single objective case. BSP belongs to the class of multiple
objective combinatorial optimization (MOCO) problems. In BSP the aim is
to find efficient solutions. BSP is an NP-hard problem (Serafini 1986) and it
also is intractable, i.e. the number of efficient solutions may be exponential in
the number of nodes (Hansen 1980). Despite this fact, Müller-Hannemann and
Weihe (2006) suggest that in practical applications with certain characteristics
we can expect to find a reasonably small number of efficient solutions.

Only a subset of the image of the set of efficient solutions of a BSP problem
is situated on the boundary of the convex hull of the feasible set Z in objec-
tive space, the so-called supported efficient solutions. The images of the non-
supported efficient solutions are located in the interior of conv(Z). Supported
efficient solutions of the BSP problem can be obtained by solving problems with
a weighted sum, i.e. single, objective. There is no known characterization of
non-supported efficient solutions that leads to a polynomial time algorithm for
their computation.

There are two main approaches to solving BSP problems. On the one hand
there are enumerative approaches such as label correcting (Skriver and Ander-
sen 2000; Brumbaugh-Smith and Shier 1989) and label setting (Martins 1984;
Tung and Chew 1988, 1992) or ranking methods (Cĺımaco and Martins 1982).

Label correcting methods work similarly to their single objective (e.g. Bert-
sekas 1998) counterparts. In BSP problems a node can have several labels,
which do not dominate one another. The set of efficient solutions of the BSP
problem corresponds to all labels at the target node after a labeling algorithm
finishes. In label correcting and label setting methods, either one label at a
certain node is extended by all arcs out of that node (label-selection) or all
labels at a node are extended simultaneously (node-selection).

Ranking methods are single objective k-shortest path methods. Starting
with the optimal value for one objective, the second-best solution, the third-
best solution etc. is obtained until the k-best solution is reached. For BSP,
the process continues until it is guaranteed that all non-dominated points have
been found. K-shortest path methods have been found not to be competitive
with label correcting methods (Huarng et al. 1996; Skriver 2000). Instead, we
investigate the application of a near-shortest path method by Carlyle and Wood
(2005), which the authors successfully apply to the k-shortest path problem.

Another approach, the two phase method, is taking advantage of the prob-
lem structure (Mote et al. 1991; Ulungu and Teghem 1995). In the first phase,

1

the extreme supported efficient solutions (efficient solutions which define ex-
treme points of conv(Z)) are computed. In the second phase the remaining
efficient solutions are computed with one of the enumerative approaches men-
tioned before. The enumerative methods can be employed in a very effective
way as enumeration can be restricted to small areas of the objective space.

We present well known strategies to solve the BSP problem and introduce
the two phase method with near shortest path ranking by an adaptation of a
near shortest path approach in phase 2. Our aim is to compare the performance
of the different solution approaches. We investigate performance on two differ-
ent artificial network structures and also on road networks, to include some
real world network structures into our considerations as is done by Zahn and
Noon (1998) for single criterion shortest path problems. This comparison is in
contrast to earlier studies, where a single type of networks has been used.

In Section 2 basic concepts of BSP problems are introduced. Recent litera-
ture is discussed in Section 3. In Section 4 we present the different algorithms
we use to solve BSP, that is label correcting, near shortest path and the two
phase method. Finally, numerical results are presented in Section 5.

2 Biobjective Shortest Path Problems

In this section, terminology and basic theory of biobjective shortest path prob-
lems is introduced following the notation of Przybylski et al. (2007).

Let G = (N,A) be a directed network with a set of nodes N = {1, . . . , n}
and a set of arcs A = {(i1, j1), . . . , (im, jm)} ⊆ N × N . Two positive costs
cij = (c1

ij , c
2
ij) ∈ N × N are associated with each arc (i, j) ∈ A. In a road

network, for example, the costs c1
ij and c2

ij could represent time and distance
for traversing arc (i, j), respectively.

A path in G from node i0 ∈ N to node il ∈ N is a sequence {(i0, i1), (i1, i2),
. . . , (il−1, il)} of arcs in A. The biobjective shortest path problem (BSP) with
source node s ∈ N and target node t ∈ N can be formulated as a network flow
problem:

min z(x) =

{
z1(x) =

∑
(i,j)∈A c1

ijxij

z2(x) =
∑

(i,j)∈A c2
ijxij

(1)

s.t.
∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji =

1 if i = s
0 if i 6= s, t
−1 if i = t

(2)

xij ∈ {0, 1}, for all (i, j) ∈ A. (3)

Here x is a vector of flows on the arcs and the constraints (2) represent flow
balance at the different nodes. A balance of 1, −1, and 0 indicates that there
exists a surplus of one unit of flow, a demand of one unit of flow, or neither of
the two, respectively. The model ensures that one unit of flow is transported
through the network from s to t. The arcs with flow value 1 form a path from
s to t. The feasible set X is described by constraints (2) and (3) and its image
under the objective function is Z := z(X).

2

In the remainder of this paper we use the following orders on R2:

y1 5 y2 ⇔ y1
k 5 y2

k k = 1, 2
y1 ≤ y2 ⇔ y1

k 5 y2
k k = 1, 2; y1 6= y2

y1 < y2 ⇔ y1
k < y2

k k = 1, 2.

We are seeking those feasible solutions that do not allow to improve one
component of the objective vector z(x) without deteriorating the other one.

Definition 1 A feasible solution x̂ ∈ X is called efficient if there does not
exist any x′ ∈ X with (z1(x′), z2(x′)) ≤ (z1(x̂), z2(x̂)). The image z(x̂) =
(z1(x̂), z2(x̂)) of x̂ is called non-dominated. Let XE denote the set of all efficient
solutions and let ZN denote the set of all non-dominated points. We distinguish
two different types of efficient solutions.

• supported efficient solutions are those efficient solutions that can be ob-
tained as optimal solutions to a (single objective) weighted sum problem

min
x∈X

λ1z1(x) + λ2z2(x) (4)

for some λ1 > 0, λ2 > 0. The set of all supported efficient solutions
is denoted by XSE, its non-dominated image ZSN . The supported non-
dominated points lie on the convex hull conv(Z) of the feasible set in
objective space.

• The remaining efficient solutions in XNE := XE\XSE are called non-
supported efficient solutions. They cannot be obtained as solutions of a
weighted sum problem as their image lies in the interior of conv(Z). The
set of non-supported non-dominated points is denoted by ZNN .

The two objective functions z1 and z2 do generally not attain their individual
optima for the same values of x̂. We will assume in the following that there
exists no x̂ such that x̂ ∈ argmin{z1} and x̂ ∈ argmin{z2} for a problem of the
form (1) - (3).

Definition 2 Two feasible solutions x and x′ are called equivalent if z(x) =
z(x′). A complete set XE is a set of efficient solutions such that all x ∈ X\XE

are either dominated or equivalent to at least one x ∈ XE.

We will only consider solution approaches that compute a complete set XE .
Another notion of optimality that is used in the context of biobjective op-

timization is lexicographic minimization. Here, we choose among all optimal
feasible solutions for the preferred component k of the objective vector one
that is optimal for the other component l.

Definition 3 Let k ∈ {1, 2} and l ∈ {1, 2}\{k}. Then z(x̂) <lex(k,l) z(x′) if
either zk(x̂) < zk(x′) or both zk(x̂) = zk(x′) and zl(x̂) < zl(x′). We call x̂ a
lex(k, l)-best solution if z(x̂) 5lex(k,l) z(x) for all x ∈ X. Let xlex(k,l) denote a
lex(k, l)-best solution.

3

When solving a single objective version of the BSP problem (by either drop-
ping one objective or by using a weighted sum objective) with the network
simplex algorithm (e.g. Helgason and Kennington 1995), the fomulation (1) -
(3) is not favourable. Problems arise as the network simplex method performs
many basis exchanges without an actual flow change because the flow on all
basic arcs that are not part of the actual path from s to t is zero. If a basis
exchange involves only those arcs, there is no flow change at all. To avoid this
situation we use another formulation, the biobjective shortest path tree (BSPT)
problem. This formulation is also used by Mote et al. (1991):

min z(x) =

{
z1(x) =

∑
(i,j)∈A c1

ijxij

z2(x) =
∑

(i,j)∈A c2
ijxij

(5)

s.t.
∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji =
{

n− 1 if i = s
−1 if i 6= s

(6)

xij ≥ 0 and integer for all (i, j) ∈ A. (7)

By modifying the constraint set of (BSP), we now state the problem of
finding the shortest path from source node s to all other nodes, resulting in
nonzero flow on all basic arcs. Although not every basis exchange leads to a
change of the shortest s-t path, it does lead to some change in the shortest
path tree rooted at s. This approach ensures a flow change whenever the basis
changes.

3 Literature

The most recent survey on BSP problems is by Skriver (2000). The sur-
veys on MOCO problems by Ehrgott and Gandibleux (2000) and Ehrgott and
Gandibleux (2002) both include a section about shortest path problems. In the
following we mention literature that was to our knowledge not yet covered in a
survey. We focus on exact methods.

Martins and Dos Santos (2000) discuss the labeling algorithm for the multi-
objective shortest path problem with loops (MSPL). They prove boundedness
and finiteness results for the MSPL problem and also correctness of the label
setting and label correcting approach. They present a generic labeling algorithm
with label selection. They also propose a label setting algorithm based on
node selection for acyclic networks, taking advantage of the fact that acyclic
networks can be put in topological order. Martins and Dos Santos introduce a
new approach to complexity analysis, as multi-objective shortest path problems
are intractable in general. They consider the number of dominated paths that
are generated by an algorithm in the worst case.

Guerriero and Musmanno (2001) investigate label correcting and label set-
ting methods for the multicriteria shortest path tree problem. They propose
several strategies for label-selection and node-selection. Computational results
are presented for two different classes of test problems. There are problem

4

instances where label-selection is superior and others where node-selection is
superior.

Gabrel and Vanderpooten (2002) describe the application of a multiple ob-
jective shortest path label setting procedure for the daily scheduling of earth
observing satellites that take photos of the surface of the earth. They formulate
the problem as a shortest path problem with three objectives (taking as many
photos as possible, fulfilling as many priority requests as possible and minimiz-
ing equipment use). The nodes in the network are in topological order, which
facilitates label setting. The authors also present an interactive procedure to
select one of the enumerated paths.

Sastry et al. (2003) propose several algorithms for multi-objective shortest
path problems with positive and negative arc costs. They detect negative cycles
by a repeated application (at most once for every objective) of some single
objective shortest path algorithm that can detect negative cycles. For networks
without negative cycle, they propose a label correcting multiobjective shortest
path algorithm with node-selection similar to the one presented by Brumbaugh-
Smith and Shier (1989). Sastry et al. also propose two other label correcting
approaches. They are both variations to the approach by Corley and Moon
(1985). In each iteration of the algorithm, the labels at each node are updated
from all predecessor nodes. The algorithm stops when either none of the label
sets is changed in an iteration or when after n iterations the existence of a
negative cycle is asserted. In each iteration nodes are chosen randomly by
Sastry et al. whereas Corley and Moon choose nodes in order of their indices
1, 2, . . . , n. The other variation by Sastry et al. is to change the manner in
which label sets are updated, the approach is similar to Yen (1970). Each
iteration is split into two phases now. In the first phase, nodes are updated by
labels at nodes with smaller index than the current node only, in the second
phase nodes are updated by labels at nodes with bigger index. They mention
that their first algorithm performs best in practical tests.

Müller-Hannemann and Weihe (2006) investigate the cardinality of the set
of efficient solutions that arises in practical applications. They examine the
characteristics of shortest path problems in train networks with two and three
objectives. They relate network and problem characteristics to the actual num-
ber of efficient solutions. They find that this number is very low despite the
fact that biobjective shortest path problems are in general intractable.

There are recent heuristic approaches to solving the MSP problem, for in-
stance the following two: Sastry et al. (2005) present an approach using a k
shortest path method and a weighted sum objective function to compute some
efficient solutions. Sonnier et al. (2006) obtain a subset of the efficient set of
an MSP problem with m criteria by solving p problems with only p− 1 criteria
and then merging the efficient solutions.

A summary of approaches found in the literature is given in Table 1.

5

Table 1: Literature on the exact solution of BSP/MSP problems.
Reference Problem Solution approach
Hansen (1980) BSP Label setting
Cĺımaco and Martins (1982) BSP Ranking
Martins (1984) MSP Label setting
Corley and Moon (1985) MSP Label correcting
Hartley (1985) MSP Label correcting (Dyn. progr.)
Henig (1985) BSP Label correcting (Dyn. progr.)
Brumbaugh-Smith and Shier (1989) BSP Label correcting, node-selection
Mote et al. (1991) BSP Two phase method
Tung and Chew (1988) BSP Label setting, label-selection
Tung and Chew (1992) MSP Label setting, label-selection
Huarng et al. (1996) BSP computational comparison
Skriver and Andersen (2000) BSP Label correcting, node-selection
Martins and Dos Santos (2000) MSP Label setting and correcting

node- and label-selection
Guerriero and Musmanno (2001) MSP Label setting and correcting

node- and label-selection
Sastry et al. (2003) MSP Label correcting, node-selection

4 Solution Methods

We investigate different methods to solve BSP. Three main approaches are
identified. One is a biobjective label correcting algorithm with node-selection,
which is identified as the most successful approach to solve BSP problems by
Skriver and Andersen (2000). Another one is the adaptation of a near shortest
path procedure by Carlyle and Wood (2005) to BSP. We also investigate the
two phase method for BSP by Mote et al. (1991). A formulation of the two
phase method for general MOCO problems can be found in Ulungu and Teghem
(1995). We compare different strategies that can be used for initialization and
in phases 1 and 2.

4.1 Label Correcting

A biobjective label correcting method is a straightforward extension of the
single objective version. The main difference for two or more objectives is that
there may be several labels at a node, each corresponding to one path. The
labels at one node do not dominate one another.

Approaches to label correcting differ in whether they employ label-selection
or node-selection. Label-selection means that all labels are treated separately. A
label l at some node i is extended by all arcs (i, j) with tail node i. The extended
label l + cij is inserted into the label set at node j if it is not dominated. The
new label may dominate other labels at node j which are deleted. Also, a non-
dominated extended label l+ cij at j has to be reconsidered in a later iteration.
Node selection means that a node i is selected and all its labels are extended
via all outgoing arcs. We explain node-selection together with Algorithm 1.

Despite the results of Guerriero and Musmanno (2001), we opt for node-
selection, the approach also chosen by Skriver and Andersen (2000) (see also

6

Brumbaugh-Smith and Shier 1989), which will be described below, refer to
Algorithm 1.

Initially, the only labeled node is the source node s with its label set
Labels(s) = {(0, 0)}. All labels at a particular node i are extended along all
outgoing arcs (i, j). Dominated labels are eliminated from the extended labels
from node i and the labels already present at the end node j. The remaining
labels form the new label set at node j. Whenever the label set of a node
changes, the node has to be marked for reconsideration. At reconsideration,
the mark of the node is deleted. When no nodes are marked for reconsideration
any more, the algorithm terminates. When traversing an outgoing arc from a
node with multiple labels, every label has to be extended along this arc and
tested for dominance with the labels of the end node of the arc, this operation is
called merging. Merging is the most expensive component of a biobjective label
correcting algorithm. The label sets are ordered so that the first component is
increasing to reduce computational effort of the merge operation, which in our
case is O(|L| + |M |) when the sets L and M are merged (Brumbaugh-Smith
and Shier 1989). We also implement Skriver and Andersen’s condition to detect
dominance of the whole label set.

Algorithm 1 Biobjective Label Correcting
1: modNodes = {s} {list of nodes with modified labels that have not yet been

reconsidered, treated in FIFO order}
2: Labels(s) = {(0, 0)} and Labels(i) = ∅, i = {1, . . . , n}\{s} {Labels(i) is

the list of labels at a particular node i}
3: while modNodes is nonempty do
4: remove first node i from modNodes {FIFO}
5: for all outgoing arcs (i, j) do
6: merge(Labels(i) + cij , Labels(j)) {extend all labels at i by cij and

merge with labels at j, eliminating all dominated labels}
7: if the label set of j has changed and j /∈ modNodes then
8: append j to modNodes {FIFO}
9: end if

10: end for
11: end while

Once the label correcting algorithm terminates, the set Labels(t) contains
all non-dominated path costs at the target node t. The corresponding efficient
solutions (the paths) can be obtained by backtracking the appropriate labels.

4.2 Ranking – Near Shortest Path

Methods such as the k-shortest path method generate one path after the other,
in order of increasing length. According to the literature, k-shortest path ap-
proaches could not be successfully applied to BSP problems as the cost of finding
paths in order of their lengths is quite high (Huarng et al. 1996; Skriver 2000).
Instead of a k-shortest path procedure, we use the near shortest path method
by Carlyle and Wood (2005), which aims at finding all paths the length of which

7

is within a certain deviation ε from the optimal path length ω, thus having a
maximal path length of δ = ω + ε. We use their implementation of the method
ANSPR0, which the authors identify as best approach, and carry out some slight
modifications. On the basis of computational tests, Carlyle and Wood conclude
that their near shortest path routine solves the k-shortest path problem faster
than other algorithms dedicated to solving the k-shortest path problem.

In order to use the near shortest path (NSP) procedure, a weighted sum
problem (4) corresponding to BSP is considered. Thus weighting factors λ1 > 0
and λ2 > 0 are defined:

λ1 = z2(xlex(1,2))− z2(xlex(2,1)) and λ2 = z1(xlex(2,1))− z1(xlex(1,2)). (8)

The lex(1, 2)- and lex(2, 1)-best solutions are determined in an initialization
phase. We investigate the usage of different algorithms in initialization, see
Section 4.3.1.

Upper bounds originating from the two lexicographically best solutions
xlex(1,2) and xlex(2,1) can be used to restrict enumeration. For every candidate
solution x̂ with z(x̂) = (z1(x̂), z2(x̂)) we get:

z1(x̂) ≤ z2(xlex(2,1)) and z2(x̂) ≤ z1(xlex(1,2)). (9)

zN = (z1(xlex(2,1)), z2(xlex(1,2))) is called the nadir point of the BSP problem,
the situation is indicated in Figure 1.

b

b rs

rs nadir point
z(xlex(2,1))

z(xlex(1,2))
z

N

Figure 1: Bounds on z1 and
z2.

b

b rs

⊕

z(xlex(2,1))

z(xlex(1,2))
z

N

rs nadir point

⊕ nadir moved

Figure 2: Improved bounds on z1 and
z2.

The bounds (9) can be further improved by the fact that we are dealing
with integer problems. Efficient solutions, which are not equivalent to solutions
obtained previously, can only be situated one unit below and one unit to the left
of the nadir point zN as indicated in Figure (2). We get the following improved
bounds:

z1(x̂) ≤ z1(xlex(2,1))− 1 and z2(x̂) ≤ z2(xlex(1,2))− 1. (10)

Algorithm 2 gives a description of the NSP algorithm for a directed graph
G = (N,A) with source node s and target node t. A cost cλ

ij > 0 is associated
with each arc (i, j), where cλ

ij = λ1c1
ij + λ2c2

ij . The maximum path length is

8

δ = λ1(z1(xlex(2,1)) − 1) + λ2(z2(xlex(1,2)) − 1), the weighted sum value of the
improved nadir point. We modify NSP slightly to integrate bounds (10) on the
respective objectives. We simply add two label sets d1 and d2 that keep track
of the current value of the two objectives and thus allow for comparison with
the respective upper bounds. See Algorithm 2 which incorporates our changes
to the original NSP.

Algorithm 2 NSP
1: L(i): the weighted sum path length at i
2: d1(i), d2(i): length of the path at i for the first and second objective, resp.
3: for all i ∈ N do
4: d(i) = weighted shortest path distance from i to t
5: end for
6: stack ← s
7: L(s) = 0 and dk(s) = 0; k = 1, 2
8: while the stack is not empty do
9: i← top node of stack

10: if nextArcOutOf (i) 6= ∅ then
11: (i, j)← next arc out of i
12: if L(i) + cλ

ij + d(j) ≤ δ AND d1(i) + c1
ij ≤ z1(xi+1)− 1 AND

d2(i) + c2
ij ≤ z2(xi)− 1 then

13: L(j) = L(i) + cλ
ij and dk(j) = dk(i) + ck

ij ; k = 1, 2
14: if j is target node t then
15: save current candidate solutions {possibly eliminating previous

candidate solutions that are now dominated}
16: pop j from stack
17: else
18: put j on top of stack
19: end if
20: end if
21: else
22: pop i from stack {no more outgoing arcs}
23: end if
24: end while

The NSP algorithm repeatedly computes candidate solutions within the
bounds (10) and with length < δ. Only after the algorithm terminates, we
know that the remaining candidate solutions are indeed efficient. It is, however,
possible to exploit candidate solutions in order to improve the upper bound δ.
We take advantage of the fact that every computed candidate excludes a certain
area of the objective space by domination.

First, define the local nadir point of two points zk = (zk
1 , zk

2) and zl = (zl
1, z

l
2)

with zk
1 < zl

1 and zk
2 > zl

2 to be zLN = (zl
1, z

k
2).

We consider straight lines parallel to the line connecting z(xlex(1,2)) and
z(xlex(2,1)) through the local nadir point of any two consecutive candidate points
and z(xlex(1,2)) and z(xlex(2,1)) as indicated in Figure 3. The upper bound
corresponds to the line through the point that has maximal distance from the

9

straight line connecting z(xlex(1,2)) and z(xlex(2,1)). Let zj
c = (z1(x

j
c), z2(x

j
c))

with j ∈ {1, . . . , p} be the candidate solutions ordered by increasing z1. This
yields the upper bound ∆:

γ = max{λ1z1(x1
c) + λ2z2(xlex(1,2)), λ

1z1(xlex(2,1)) + λ2z2(xp
c)}

∆ = max{γ, max{λ1z1(xj+1
c) + λ2z2(xj

cj); j = 1, . . . , p− 1}}.

b

b

×

×
rs

rs

rs

z(xlex(2,1))

z(xlex(1,2))

b supp. non-dom.

× candidate for

nonsupp. non-dom.

rs local nadir

Figure 3: Weighted sum bounds (two
candidate points).

b

b

×

×
rs

rs

rs

⊕

⊕

⊕

z(xlex(2,1))

z(xlex(1,2))

b supp. non-dom.

× candidate for

nonsupp. non-dom.

rs local nadir

⊕ local nadir moved

Figure 4: Improved weighted sum
bounds (two candidate points).

Again, the upper bound can be improved by considering the point one unit
below and one unit to the left of the local nadir point between each pair of con-
secutive points. But we also have to account for the candidate points themselves
as illustrated in Figure 4. This yields the improved upper bound ∆′:

γ1 = max{λ1(z1(x1
c)− 1) + λ2(z2(xlex(1,2))− 1),

λ1(z1(xlex(2,1))− 1) + λ2(z2(xp
c)− 1)}

γ2 = max{λ1z1(xj
c) + λ2z2(xj

c), j = 1, . . . , p}
γ3 = max{λ1(z1(xj+1

c)− 1) + λ2(z2(xj
c)− 1), j = 1, . . . , p− 1}

∆′ = max{γ1, γ2, γ3}. (11)

We refer to Przybylski et al. (2007) for a more detailed presentation of the
upper bounds (10) and (11).

In Algorithm 2, we can insert an additional step: δ can be updated by ∆′ ≤ δ
whenever a new candidate solution is computed. We insert the following step
between steps 15 and 16:

Compute ∆′ and update δ = ∆′.

4.3 Two Phase Method

The two phase method (Mote et al. 1991; Ulungu and Teghem 1995) is based
on computing supported and non-supported non-dominated points separately.
In phase 1 only the supported efficient solutions are computed, possibly taking

10

advantage of their property of being obtainable as solutions to the weighted
sum problem (4), for an illustration see Figure 5. In phase 2 the non-supported
efficient solutions are computed with an enumerative approach, as there is no
theoretical characterization for their efficient calculation. It is expected that
the search space for the enumerative approach in phase 2 is highly restricted
due to information obtained in phase 1 so that the associated problems can
be solved a lot quicker than by solving BSP with a purely enumerative ap-
proach only. The search space in phase 2 can be restricted to triangles given
by two consecutive supported non-dominated points as indicated in Figure 6.
An initialization phase is needed in the two phase method that computes one
or two initial solutions. We investigate the usage of different solution methods
in initialization, phase 1, and phase 2.

b

b

b

b

b supp. non-dom.

Figure 5: Supported non-dominated
points.

b

b

b

b

×
×

×

b supp. non-dom.

× nonsupp. non-dom.

Figure 6: All non-dominated
points.

For initialization and in phase 1 we pursue two main approaches. On the one
hand we use single objective label setting and correcting shortest path methods.
On the other hand we use a network simplex implementation (e.g. Helgason and
Kennington 1995) to solve (BSPT) with weighted sum objective. We modify
an implementation called MCF (Löbel 2003) for our purposes. The network
simplex implementation takes advantage of strongly feasible trees (Cunningham
1976) to prevent cycling.

4.3.1 Initialization

In the initialization phase we need to compute a lex(1, 2)-best or lex(2, 1)-
best solution or both, depending on the approach chosen in phase 1. Here,
single objective shortest path problems are solved with appropriate objective
functions, the relations < and > in the following algorithms are adapted to
lex(1, 2) and lex(2, 1) respectively. We investigate the following options:

• Single objective label correcting algorithm (LC). Refer to Bertsekas (1998)
for label correcting shortest path algorithms. We modify an implementa-
tion of LC by Carlyle and Wood (2005).

• Single objective label setting algorithm: Dijkstra’s algorithm (D). For
label setting shortest path algorithms refer to Bertsekas (1998).

11

• Network simplex (S). To run the network simplex, an initial artificial
solution for (BSPT) is constructed by adding an artificial root node and
artificial arcs connecting that root with all other nodes and equipping
them with adequate flow values and cost vectors.

0

ttiiiiiiiiiiiiiiiiiiiiiiii

vvmmmmmmmmmmmmmmmmm

�� ((RRRRRRRRRRRRRRR

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

1 2 . . . s− 1 s

bbDDDDDDDDD
s + 1 . . . n

Figure 7: An initial artificial basis with artificial root node 0 with balance 0.

There is an artificial arc from node s to the artificial root 0 with cost
vector (M, 0) and flow n− 1. All other artificial basic arcs from the root
0 to all nodes except s are equipped with cost vectors (M, 0) and a flow
of 1 to satisfy the demand of one unit of flow at each node except s. Note
that this is the initial solution for obtaining a lex(1, 2)-best solution.

Multiple partial pricing is used to speed up the selection of basic enter-
ing arcs. A disadvantage of the network simplex method is that, when
computing the lex(1, 2)-best solution, in order to eliminate all artificial
arcs from the basis, at least as many iterations as there are nodes have to
be performed as there is one artificial arc per node. If the lex(2, 1)-best
solution is also required, we can start off from the lex(1, 2)-best solution.

4.3.2 Phase 1

Phase 1 is dedicated to the computation of supported efficient solutions. This
can be done by solving several single objective problems in weighted sum for-
mulation (4), which happens in the two dichotomic approaches SDIC and LDIC
described below. The network simplex algorithm gives rise to a prametric ap-
proach. Basic entering arcs are chosen in such a manner that all extreme
supported efficient solutions are generated. This approach is introduced below
as SPAR.

In a dichotomic approach, weights are chosen to obtain a supported non-
dominated point that has the maximal distance to the straight line connecting
the two initial points z(xlex(1,2)) and z(xlex(2,1)) as illustrated in Figure 8 for
the same example as in Figures 5 and 6. The efficient solution x̂ thus obtained
leads to two new weighted sum problems: one between z(xlex(1,2)) and z(x̂)
(yielding no new solution), and one between z(x̂) and z(xlex(2,1)) (yielding one
more solution), see Figure 9. If the image of the efficient solution of such a
problem is distinct from the images of the two supported solutions defining it,
two new subproblems can be formulated. Otherwise, there is nothing else to
do. The dichotomic method iterates until all weighted sum problems and aris-
ing subproblems have been solved and a complete set of the extreme supported
efficient solutions is obtained.

The dichotomic method might not allow us to find all nondominated points
on conv(Z) in case there are more than two solutions on the same facet. How-

12

b

b

b

z(xlex(1,2))

z(xlex(2,1))

z(x̂)

b supp. non-dom.

Figure 8: Dichotomic method, first it-
eration.

b

b

b

b

z(xlex(1,2))

z(xlex(2,1))

z(x̂)

b supp. non-dom.

Figure 9: Dichotomic method, second
iteration.

ever, all extreme points will be computed. Missing supported solutions are
computed in phase 2.

We employ two different solution strategies:

• Network simplex dichotomic (SDIC). We use the network simplex to solve
the single objective weighted sum problems that arise from the dichotomic
approach.

• Label correcting dichotomic (LDIC). We use the label correcting method
described for initialization in Section 4.3.1 to solve the single objective
weighted sum problems that arise from the dichotomic approach.

It remains to explain the parametric network simplex approach. Starting off
with a lex(1, 2)-best solution the supported efficient set XSE is explored from
the upper left to the lower right. The goal is to reach a lex(2, 1)-best solution of
the problem, and basic entering arcs are chosen so that every supported efficient
solution is computed on the way to the lex(2, 1)-best solution. In each simplex
iteration, the basic entering arc is chosen to be the one with the least ratio
between improvement of z2 and the deterioration of z1, both expressed through
reduced costs. Whenever the shortest path from s to t changes, another efficient
solution is found. The disadvantage of SPAR is, that all non basic arcs have to
be considered when choosing a basic entering arc, as an arc with minimal ratio
has to be chosen. Thus partial pricing can not be used to speed up the simplex
algorithm. For further detail please refer to Mote et al. (1991). We call this
approach:

• Network simplex parametric (SPAR).

4.3.3 Phase 2

In phase 2 it is possible to benefit from the work already done in phase 1 to
significantly reduce computation time of the enumerative methods used. Let
z1, . . . , zk, where zi = (z1(xi), z2(xi)) and zi are sorted by increasing z1, be (at
least) the extreme points of a complete supported efficient set obtained in phase

13

1. It was mentioned before that non-supported non-dominated points can only
be situated in the area defined by two consecutive supported non-dominated
points, as indicated in Figure 6. For every pair of consecutive supported non-
dominated points z(xi) and z(xi+1) with i ∈ {1, . . . , k − 1} an enumerative
shortest path method is used to obtain non-supported solutions (if there are
any).

We investigate two different enumerative solution procedures. We again
employ bounds on each objective and on their weighted sum, in the same man-
ner that was presented in the context of NSP in Section 4.2. For every pair
of consecutive supported non-dominated points, zk and zl are substituted by
zi = z(xi) and zi+1 = z(xi+1), respectively, in (10) and (11). We investigate a
label correcting method (LCOR) and a ranking method (NSP).

• Near shortest path (NSP) as described in Section 4.2, is executed for ev-
ery pair of consecutive supported non-dominated points. Paths are only
expanded if they do not violate any bounds. Due to the lower bounds
considered in NSP, paths can often be discarded early on during compu-
tations.

• Biobjective label correcting (LCOR) as described in Section 4.1. LCOR
can also be run for every pair of consecutive supported non-dominated
points. Labels are discarded as soon as they violate any bounds. We
found that a lot of effort is put in the enumeration of paths that are
discarded at a very late stage of the algorithm. In particular, lots of
paths are enumerated for every pair of consecutive solutions that do not
end up within the bounds for any of them.

Therefore, in phase 2 we run LCOR just once (instead of once for every
triangle), and discard labels if they are not in any of the areas defined by
two conscutive supported non-dominated points or can not be extended
to end up within any of them.

5 Numerical Results

We investigate the performance of the different solution methods on three dif-
ferent kinds of networks. We introduce the types of networks considered and
then present computational results.

5.1 Test Sets

We investigate three different network types: grid networks, random NetMaker
networks and road networks. We did also experiment with networks generated
by NETGEN (Klingman et al. 1974), which we modified to incorporate two costs
for each arc. The networks thus generated had very few efficient paths, of-
ten only between one and three. Therefore we decided not to include NETGEN
networks in our considerations.

14

Table 2: Grid network test problems.
Name h×w Nodes Arcs |ZN | Name h×w Nodes Arcs |ZN |
G1 30 × 40 1202 4720 37 G15 2450 × 2 4902 19596 6
G2 20 × 80 1602 6240 80 G16 1225 × 4 4902 19592 6
G3 50 × 90 4502 17820 124 G17 612 × 8 4898 19586 10
G4 90 × 50 4502 17900 46 G18 288 × 17 4898 19550 15
G5 50 × 200 10002 39600 290 G19 196 × 25 4902 19550 18
G6 200 × 50 10002 39900 12 G20 140 × 35 4902 19530 32
G7 100 × 150 15002 59700 149 G21 111 × 44 4886 19448 54
G8 150 × 100 15002 59800 122 G22 92 × 53 4878 19398 53
G9 100 × 200 20002 79600 247 G23 79 × 62 4900 19468 77
G10 200 × 100 20002 79800 132 G24 70 × 70 4902 19460 93
G11 200 × 150 30002 79800 204 G25 62 × 79 4900 19343 95
G12 50 × 50 10002 39600 52 G26 53 × 92 4878 19320 93
G13 100 × 100 10002 39800 113 G27 44 × 111 4886 19314 137
G14 200 × 200 40002 159600 309 G28 35 × 140 4902 19320 209

G29 25 × 196 4902 19208 244
G30 17 × 288 4898 19008 371
G31 8 × 612 4898 18360 819
G32 4 × 1225 4902 17150 1383
G33 2 × 2450 4902 19596 1594

5.1.1 Grid Networks

Nodes are arranged in a rectangular grid with given height and width. Every
node has at most four outgoing arcs (up, down, left and right), to its immediate
neighbours. Only nodes on the boundary of the grid have less outgoing arcs.
There are two distinct nodes beyond the grid structure: A source node s and
a target node t. There is an arc from s to every node on the left margin of the
grid and an arc from every node of the right margin of the grid to the target
node t. The costs (c1

ij , c
2
ij) for arc (i, j) are chosen randomly from a discrete

uniform distribution with ck
ij ∈ {1, 2, . . . , 10}, k = 1, 2. Carlyle and Wood

(2005) use grid networks for numerical tests on NSP algorithms. Refer to Table
2 for a listing of problem instances. Instances G15-G33 are grid networks with
approximately the same number of nodes, but varying in width and height.

5.1.2 NetMaker

Skriver and Andersen (2000) propose an alternative, NetMaker, to using a pure
random network generator such as NETGEN. They state that NETGEN generates
networks containing very few efficient paths, an observation we agree with.
Here, nodes are numbered from 1 to n, where node 1 is the source node, node n
is the target node. We use a random number generator that generates discrete
uniformly distributed random numbers. NetMaker networks are constructed
by first generating a random Hamiltonian cycle. Then a random number of
arcs out of every node is generated, in between a minimum and maximum
number of outgoing arcs. An arc out of node i can only reach nodes j with
j ∈ [i − d Inode

2 e, i + d Inode
2 e], where Inode denotes the node interval, the max-

imum allowed range for an arc. Arc costs are determined randomly. It is
randomly chosen whether c1

ij ∈ {1, 2, . . . , 33} or c1
ij ∈ {67, 68, . . . , 100} and a

number in the chosen interval is randomly allocated as cost. The cost c2
ij is then

randomly chosen from the other interval. We investigate three modifications to

15

Table 3: NetMaker network test problems.
Outgoing arcs Var a) Var b) Var c)

Name Nodes Inode min max Arcs |ZN | Arcs |ZN | Arcs |ZN |
NM1 3000 20 5 15 31559 6 31502 1 31646 3
NM2 3000 20 1 20 33224 8 33122 1 33229 4
NM3 3000 50 5 15 31345 9 31548 2 31775 2
NM4 3000 50 1 20 33536 15 32641 3 32963 4
NM5 3000 50 10 40 76095 6 76924 3 77388 3
NM6 7000 20 5 15 73524 6 73940 1 73575 2
NM7 7000 20 1 20 77024 5 76775 3 76547 3
NM8 7000 50 5 15 73676 3 73282 2 73369 3
NM9 7000 50 1 20 76821 7 77518 1 76658 3
NM10 7000 50 10 40 178476 6 178292 6 180611 4
NM11 14000 20 5 15 146598 6 147388 2 146979 2
NM12 14000 20 1 20 154159 6 154115 4 154252 1
NM13 14000 50 5 15 146919 2 146900 2 147187 1
NM14 14000 50 1 20 153742 17 154213 2 153068 4
NM15 14000 50 10 40 357866 7 358264 3 356367 3
NM16 21000 20 5 15 220313 5 220685 3 220794 3
NM17 21000 20 1 20 231402 4 230403 1 230432 1
NM18 21000 50 5 15 220687 7 219606 3 219931 1
NM19 21000 50 1 20 230497 4 231876 2 232465 1
NM20 21000 50 10 40 534288 5 536151 3 533980 3

the structure of NetMaker:

a) Penalize the cycle: Arc weights ck
ij , k = 1, 2 as above but for all arcs in

the Hamiltonian cycle, choose ck
ij , k = 1, 2 randomly in {1, 2, . . . , 10000}.

b) To make NetMaker networks more comparable to grid networks, we en-
force that roughly half of the arcs out of a node go to nodes with higher
node numbers and half of them to nodes with lower numbers. Arc weights
are chosen like in a) for all arcs of the Hamiltonian cycle, for all other
arcs set ck

ij ∈ {1, 2, . . . , 10}, k = 1, 2.

c) More penalty on cycle: For all arcs that are part of the Hamiltonian cycle
ck
ij = 10000, k = 1, 2. Everything else is the same as in b).

For problem instances of NetMaker refer to Table 3.

5.1.3 Road Networks

The road networks of the states of the US were extracted by Schultes (2005)
from US Census (2000). We use road networks to test our methods on real
world data. The original data come as undirected networks, we convert them
into directed networks by duplicating arcs. We also add a Hamiltonian cycle
with high arc costs to ensure connectedness of the networks. In the original
data, there is not always a path from a node to every other node. This happens
for example for the Rhode Island data, as there are a few islands that are not
connected to the mainland via roads. Each arc (i, j) is equipped with arc costs
where c1

ij is the time needed to travel the arc and c2
ij is the travel distance in

meters. Travel time is determined by multiplying the travel distance of an arc
by one of four different road quality factors. Source and target node are chosen
randomly from a discrete uniform distribution.

16

Table 4: Road network test problems.
Name State Nodes Arcs |ZN |: Average Min Max
DC1-DC9 Washington DC 9559 39377 3.33 1 7
RI1-RI9 Rhode Island 53658 192084 9.44 2 22
NJ1-NJ9 New Jersey 330386 1202458 10.44 2 21

We run tests with three different kinds of road networks. We use the net-
works of the states Washington DC, Rhode Island and New Jersey, the network
sizes are listed in Table 4. For each road network we test nine instances with
different source and target nodes.

5.2 Results

all networks
0 10 20 30 40 50 60 70

LCOR

S - NSP

D - NSP

LC - NSP

S - LDIC - NSP

S - LDIC - LCOR

S - SDIC - NSP

S - SDIC - LCOR

D - LDIC - NSP

D - LDIC - LCOR

D - SDIC - NSP

D - SDIC - LCOR

LC - LDIC - NSP

LC - LDIC - LCOR

LC - SDIC - NSP

LC - SDIC - LCOR

S - SPAR - NSP

S - SPAR - LCOR

D - SPAR - NSP

D - SPAR - LCOR

LC - SPAR - NSP

LC - SPAR - LCOR

co
m

b
in

at
io

n

times

fastest
second
third

Figure 10: All networks – fastest three algo-
rithms.

all
0 10 20 30 40

LCOR

S - NSP

D - NSP

LC - NSP

S - LDIC - NSP

S - LDIC - LCOR

S - SDIC - NSP

S - SDIC - LCOR

D - LDIC - NSP

D - LDIC - LCOR

D - SDIC - NSP

D - SDIC - LCOR

LC - LDIC - NSP

LC - LDIC - LCOR

LC - SDIC - NSP

LC - SDIC - LCOR

S - SPAR - NSP

S - SPAR - LCOR

D - SPAR - NSP

D - SPAR - LCOR

LC - SPAR - NSP

LC - SPAR - LCOR

times aborted

Figure 11: Tests exceeding
timeout of 30 minutes.

We identify the best methods for the different phases in the two phase
method. We also compare total computation times of the two phase method
and the enumerative approaches LCOR and NSP.

The different solution methods presented in Section 4 lead to a total of 22
combinations. For the enumerative solution methods we have NSP with three
different initializations and LCOR. There are 18 different combinations for the
two phase method:

• LCOR

• NSP and initialization with L/D/S

• Two phase method:

– initialization with L/D/S

– phase 1 with SDIC/LDIC/SPAR

– phase 2 with LCOR/NSP

17

Road Networks
0 10 20 30 40 50 60 70 80

LCOR

S - NSP

D - NSP

LC - NSP

S - LDIC - NSP

S - LDIC - LCOR

S - SDIC - NSP

S - SDIC - LCOR

D - LDIC - NSP

D - LDIC - LCOR

D - SDIC - NSP

D - SDIC - LCOR

LC - LDIC - NSP

LC - LDIC - LCOR

LC - SDIC - NSP

LC - SDIC - LCOR

S - SPAR - NSP

S - SPAR - LCOR

D - SPAR - NSP

D - SPAR - LCOR

LC - SPAR - NSP

LC - SPAR - LCOR

co
m

b
in

at
io

n

percentage

%fastest
%second
%third

Figure 12: Road Networks – fastest three algo-
rithms.

Road
0 10 20 30 40

LCOR
S - NSP
D - NSP

LC - NSP
S - LDIC - NSP

S - LDIC - LCOR
S - SDIC - NSP

S - SDIC - LCOR
D - LDIC - NSP

D - LDIC - LCOR
D - SDIC - NSP

D - SDIC - LCOR
LC - LDIC - NSP

LC - LDIC - LCOR
LC - SDIC - NSP

LC - SDIC - LCOR
S - SPAR - NSP

S - SPAR - LCOR
D - SPAR - NSP

D - SPAR - LCOR
LC - SPAR - NSP

LC - SPAR - LCOR

times aborted

Figure 13: Tests exceeding
timeout of 30 minutes.

All numerical tests are performed on a Linux (Fedora Core 4, kernel 2.6.14-
1.1656) computer with 3GHz Pentium 4 processor and 1GB RAM. We use
the gcc compiler (version 4.0.2) with compile option -O3. The methods are
implemented in C, we adapt program code from Carlyle and Wood (2005) for
NSP and LC. The network simplex is a modified version of MCF (by Löbel
2003). When measuring runtime, we disregard the time it takes to read the
problem from a problem file. Runtime does include the generation of all non-
dominated path labels together with the actual paths. In LCOR the paths
can be obtained by backtracking the labels at each node. We do not include
the time for the backtracking process in the runtime. Whenever the runtime
exceeded 30 minutes, the computation was aborted.

Note that we omit all problem instances that have only one efficient solution,
which means that there is a path that is optimal in both objectives. The
according run times would falsify our results, as the lex(1, 2)-best and lex(2, 1)-
best solutions will have the same path costs, which can already be detected after
initialization in any approach that requires two initial solutions. This occurs
for the two phase method with dichotomic phase 1 (SDIC or LDIC) and the
NSP algorithm in which case the question is only which initialization method
is the fastest one. Computational results show that the fastest initialization
method in this case is LC, followed by S.

We do not list the actual run times in the following, as there are just too
many results – 22 computations are performed for each problem instance and
we have 80 instances. Instead we focus on the fastest three combinations for
each problem instance. We list how often each combination is the fastest, the
second fastest or the third fastest one, see Figures 10, 12, 14, and 16. There may
be several combinations that achieve the fastest, second fastest or third fastest
runtime. We also display how often a computation was aborted after running
for 30 minutes in Figures 11, 13, 15, and 17. To give the reader an idea of run
times, we include Tables 5 and 6 in which the fastest runtime for each problem
is listed. The fastest approaches for all test problem are displayed in Figure
10 and 11. Considering this graph, the most successful combinations are LC -

18

Grid Networks
0 10 20 30 40 50 60 70 80

LCOR

S - NSP

D - NSP

LC - NSP

S - LDIC - NSP

S - LDIC - LCOR

S - SDIC - NSP

S - SDIC - LCOR

D - LDIC - NSP

D - LDIC - LCOR

D - SDIC - NSP

D - SDIC - LCOR

LC - LDIC - NSP

LC - LDIC - LCOR

LC - SDIC - NSP

LC - SDIC - LCOR

S - SPAR - NSP

S - SPAR - LCOR

D - SPAR - NSP

D - SPAR - LCOR

LC - SPAR - NSP

LC - SPAR - LCOR

co
m

b
in

at
io

n

percentage

% fastest
%second
%third

Figure 14: Grid Networks – fastest three algo-
rithms.

Grid
0 10 20 30 40

LCOR

S - NSP

D - NSP

LC - NSP

S - LDIC - NSP

S - LDIC - LCOR

S - SDIC - NSP

S - SDIC - LCOR

D - LDIC - NSP

D - LDIC - LCOR

D - SDIC - NSP

D - SDIC - LCOR

LC - LDIC - NSP

LC - LDIC - LCOR

LC - SDIC - NSP

LC - SDIC - LCOR

S - SPAR - NSP

S - SPAR - LCOR

D - SPAR - NSP

D - SPAR - LCOR

LC - SPAR - NSP

LC - SPAR - LCOR

times aborted

Figure 15: Tests exceeding
timeout of 30 minutes.

NetMaker 0 10 20 30 40 50 60 70 80

LCOR

S - NSP

D - NSP

LC - NSP

S - LDIC - NSP

S - LDIC - LCOR

S - SDIC - NSP

S - SDIC - LCOR

D - LDIC - NSP

D - LDIC - LCOR

D - SDIC - NSP

D - SDIC - LCOR

LC - LDIC - NSP

LC - LDIC - LCOR

LC - SDIC - NSP

LC - SDIC - LCOR

S - SPAR - NSP

S - SPAR - LCOR

D - SPAR - NSP

D - SPAR - LCOR

LC - SPAR - NSP

LC - SPAR - LCOR

co
m

b
in

at
io

n

percentage

%fastest
%second
%third

Figure 16: NetMaker Var a) – fastest three al-
gorithms.

NetMaker
0 10 20 30 40

LCOR
S - NSP
D - NSP

LC - NSP
S - LDIC - NSP

S - LDIC - LCOR
S - SDIC - NSP

S - SDIC - LCOR
D - LDIC - NSP

D - LDIC - LCOR
D - SDIC - NSP

D - SDIC - LCOR
LC - LDIC - NSP

LC - LDIC - LCOR
LC - SDIC - NSP

LC - SDIC - LCOR
S - SPAR - NSP

S - SPAR - LCOR
D - SPAR - NSP

D - SPAR - LCOR
LC - SPAR - NSP

LC - SPAR - LCOR

times aborted

Figure 17: Tests exceeding
timeout of 30 minutes.

LDIC - NSP/LCOR, followed by LC - NSP and LCOR. We can also discard
some approaches: Initialization with S or D is not very successful. Furthermore,
SPAR in phase 1 of the two phase method does not perform well. This behavior
does not come surprisingly – as was mentioned in Section 4.3.2, in every simplex
iteration all non-basic arcs have to be considered, which is a huge computational
effort.

It is, however, worthwhile considering each problem class individually, see
Figures 12, 14, and 16. In these figures, we display in how many percent of all
computational tests of a problem class a combination is fastest (or second/third
fastest). The figures show that in the different problem classes, different ap-
proaches are more or less effective. Consider road networks first (Figure 12).
We identify the NSP algorithm with LC initialization as quickest approach.
Also, the two phase method with LC - LDIC - NSP/LCOR is rather successful,
employing SDIC in phase 1 is slightly worse.

Performance on grid networks is very interesting (Figure 14). The NSP
algorithm performs really badly here, it is aborted 28 times out of 33. LCOR

19

NetMaker 0 10 20 30 40 50 60 70 80

LCOR

S - NSP

D - NSP

LC - NSP

S - LDIC - NSP

S - LDIC - LCOR

S - SDIC - NSP

S - SDIC - LCOR

D - LDIC - NSP

D - LDIC - LCOR

D - SDIC - NSP

D - SDIC - LCOR

LC - LDIC - NSP

LC - LDIC - LCOR

LC - SDIC - NSP

LC - SDIC - LCOR

S - SPAR - NSP

S - SPAR - LCOR

D - SPAR - NSP

D - SPAR - LCOR

LC - SPAR - NSP

LC - SPAR - LCOR

co
m

b
in

at
io

n

percentage

%fastest
%second
%third

Figure 18: NetMaker Var b) – fastest
three algorithms.

NetMaker 0 10 20 30 40 50 60 70 80

LCOR

S - NSP

D - NSP

LC - NSP

S - LDIC - NSP

S - LDIC - LCOR

S - SDIC - NSP

S - SDIC - LCOR

D - LDIC - NSP

D - LDIC - LCOR

D - SDIC - NSP

D - SDIC - LCOR

LC - LDIC - NSP

LC - LDIC - LCOR

LC - SDIC - NSP

LC - SDIC - LCOR

S - SPAR - NSP

S - SPAR - LCOR

D - SPAR - NSP

D - SPAR - LCOR

LC - SPAR - NSP

LC - SPAR - LCOR

co
m

b
in

at
io

n

percentage

%fastest
%second
%third

Figure 19: NetMaker Var c) – fastest
three algorithms.

in contrast performs quite well on grid networks. However, the most successful
approach for grid networks is LC - LDIC - NSP. This demonstrates well the
benefit of the two phase method. Runtime is significantly improved for NSP in
phase 2.

Var a) of the NetMaker networks shows behavior that is very different to
grid networks. Here, the combination LC - NSP is very successful, whereas
LCOR does not even appear among the fastest three. The fastest two phase
approach is the combination LC - LDIC - LCOR, again illustrating the benefit
of the two phase method.

Behavior on the last two problem classes is very contrary. On grid networks,
LCOR alone performs very well, but in the two phase method the combination
with NSP as phase 2 is best. In NetMaker networks on the other hand, LC -
NSP alone is the most successful approach but the two phase method succeeds
with LCOR in phase 2.

It is worth noting that variations in arc costs in the test networks may
lead to drastically different results. We investigate three different variations of
NetMaker. The networks have the same basic parameters, yet computational
results are very different. In Figures 16, 18 and 19 the different results for
Variations a), b) and c) are illustrated. Variations b) and c) are the only
problem instances investigated where the usage of a single objective label setting
method (D) was successful. In variations b) and c) the two phase method is a
lot more successful than in variation a).

We conclude this Section with observations about the best approach to be
chosen for each phase, again distinguishing the different problem classes, see
Figure 20. We again distinguish the three different types of networks, results
for each network type are displayed in different color. For each phase of the two
phase method we indicate which approach was most successful by displaying
in how many percent of all problem instances an approach was the fastest one.
We distinguish between initialization that computes one or two initial solutions.
We also compare the two enumerative approaches LCOR and LC - NSP (which
has performed best). Note that we only consider Var a) of NetMaker here.

The best approach for initialization is LC throughout the different network
types. The results for phase 1 of the two phase method clearly indicate that

20

0

10

20

30

40

50

60

70

80

90

100

LCOR NSP LDIC SDIC SPAR LC D S LC D S LCOR NSP

phase 2 phase 1 init: compute 2 start
values

init: compute 1 start value plain total

Road
Grid
NetMaker

Figure 20: Fastest approaches in different phases.

LDIC is the best approach to employ. The preferred approach in phase 2
depends on the network type, LCOR is better suited for grid networks, NSP
for road and NetMaker networks. For purely enumerative approaches behavior
is again just the opposite.

In Tables 5 and 6 the best run times for all problem instances are listed
together with the best approach. All instances could be solved in less than one
minute, the nine instances that required more than ten seconds all have more
than 200 efficient solutions or more than 50,000 nodes.

6 Conclusion

We were able to show that the two phase method is competitive with other
commonly applied approaches to solve the BSP problem. The two phase method
works well with both a ranking approach and a label correcting approach in
phase 2. The purely enumerative NSP approach was a very successful approach
to solve some problem instances, however it often had to be aborted on others.

We illustrate all this on various test instances. It also becomes clear that it
depends a lot on the network type which approach performs best, even small
variations on the network may have a high impact on performance.

21

Table 5: Fastest runtime for grid networks (top) and road networks (bottom).
Instance h w |ZN | Time (sec) Best approach
G1 30 40 37 0.01 LC-LDIC-NSP
G2 20 80 80 0.05 LC-LDIC-NSP
G3 50 90 124 0.22 LC-LDIC-NSP
G4 90 50 46 0.04 LC-LDIC-NSP
G5 50 200 290 6.21 LC-LDIC-LCOR
G6 200 50 44 0.08 LC-LDIC-NSP
G7 100 150 149 4.57 LC-LDIC-LCOR
G8 150 100 122 0.66 LC-LDIC-NSP
G9 100 200 247 13.27 LC-LDIC-LCOR
G10 200 100 132 0.82 LC-LDIC-NSP
G11 200 150 204 5.87 LC-LDIC-NSP
G12 50 50 52 0.04 LC-LDIC-NSP
G13 100 100 113 1.02 LC-LDIC-LCOR
G14 200 200 309 28.49 LC-LDIC-LCOR
G15 2450 2 6 0.01 LCOR
G16 1225 4 6 0.01 LC-NSP / LCOR
G17 612 8 10 0.01 LCOR / LC-NSP / LC-LDIC-NSP
G18 288 17 15 0.02 LC-LDIC-NSP
G19 196 25 18 0.01 LC-LDIC-NSP
G20 140 35 32 0.02 LC-LDIC-NSP
G21 111 44 54 0.05 LC-LDIC-NSP
G22 92 53 53 0.08 LC-LDIC-NSP
G23 79 62 77 0.09 LC-LDIC-NSP
G24 70 70 93 0.30 LC-LDIC-LCOR
G25 62 79 95 0.31 LC-LDIC-LCOR
G26 53 92 93 0.41 LC-LDIC-LCOR
G27 44 111 137 0.63 LCOR / LC-LDIC-LCOR
G28 35 140 209 1.23 LC-LDIC-LCOR
G29 25 196 244 2.11 LC-LDIC-LCOR
G30 17 288 371 4.27 S-LDIC-NSP
G31 8 612 819 16.53 LCOR
G32 4 1225 1383 33.30 LCOR
G33 2 2450 1594 39.06 LCOR
Instance Nodes Arcs |ZN | Time (sec) Best approach
DC1 9559 39377 2 0.14 LC-NSP
DC2 9559 39377 6 0.24 LC-SDIC-LCOR
DC3 9559 39377 3 0.07 LC-LDIC-LCOR
DC4 9559 39377 2 0.05 LC-NSP
DC5 9559 39377 1 0.07 LC-NSP / 2phase with init = LC
DC6 9559 39377 7 0.29 LC-NSP
DC7 9559 39377 2 0.10 LC-NSP
DC8 9559 39377 1 0.08 LC-NSP / 2phase with init = LC
DC9 9559 39377 6 0.19 LC-LDIC-LCOR
RI1 53658 192084 3 0.40 LC-NSP
RI2 53658 192084 15 6.60 LC-LDIC-NSP
RI3 53658 192084 2 0.40 LC-NSP
RI4 53658 192084 17 3.23 LC-LDIC-NSP
RI5 53658 192084 16 2.97 LC-LDIC-LCOR
RI6 53658 192084 3 11.56 LC-LDIC-NSP
RI7 53658 192084 3 0.55 LC-NSP
RI8 53658 192084 4 0.46 LC-NSP
RI9 53658 192084 22 2.06 LC-LDIC-LCOR
NJ1 330386 1202458 2 2.45 LC-NSP
NJ2 330386 1202458 6 4.09 LC-NSP
NJ3 330386 1202458 21 7.47 LC-NSP
NJ4 330386 1202458 5 2.25 LC-NSP
NJ5 330386 1202458 7 13.75 LC-LDIC-LCOR
NJ6 330386 1202458 12 14.68 LC-LDIC-NSP
NJ7 330386 1202458 6 7.16 LC-LDIC-LCOR
NJ8 330386 1202458 13 3.81 LC-NSP
NJ9 330386 1202458 2 53.57 LC-NSP

22

T
ab

le
6:

Fa
st

es
t

ru
nt

im
e

fo
r
N
e
t
M
a
k
e
r

ne
tw

or
ks

.
V
a
r

a
)

V
a
r

b
)

V
a
r

c)
In

st
a
n
ce

N
o
d
es

In
t.

M
in

M
a
x

|Z
N
|

T
im

e
B

es
t

a
p
p
ro

a
ch

|Z
N
|

T
im

e
B

es
t

a
p
p
ro

a
ch

|Z
N
|

T
im

e
B

es
t

a
p
p
ro

a
ch

N
M

1
3
0
0
0

2
0

5
1
5

6
0
.1

0
D

-N
S
P

/
L
C

-N
S
P

1
0
.0

5
D

-N
S
P

/
3

0
.1

2
D

-S
D

IC
-L

C
O

R
2
p
h
a
se

w
it
h

in
it

=
D

N
M

2
3
0
0
0

2
0

1
2
0

8
0
.0

9
L
C

-N
S
P

1
0
.0

5
D

-N
S
P

/
4

0
.1

5
D

-S
D

IC
-L

C
O

R
2
p
h
a
se

w
it
h

in
it

=
D

N
M

3
3
0
0
0

5
0

5
1
5

9
0
.0

6
L
C

-N
S
P

2
0
.0

6
D

-N
S
P

2
0
.0

6
D

-N
S
P

N
M

4
3
0
0
0

5
0

1
2
0

1
5

0
.0

7
L
C

-N
S
P

3
0
.1

6
D

-S
D

IC
-L

C
O

R
4

0
.1

4
D

-N
S
P

N
M

5
3
0
0
0

5
0

1
0

4
0

6
0
.1

9
D

-N
S
P

3
0
.3

1
D

-S
D

IC
-N

S
P

3
0
.2

3
D

-S
D

IC
-L

C
O

R
N

M
6

7
0
0
0

2
0

5
1
5

6
0
.3

3
L
C

-N
S
P

1
0
.2

6
D

-N
S
P

/
2

0
.3

8
D

-S
D

IC
-L

C
O

R
2
p
h
a
se

w
it
h

in
it

=
D

N
M

7
7
0
0
0

2
0

1
2
0

5
0
.2

4
L
C

-N
S
P

3
0
.7

2
D

-S
D

IC
-L

C
O

R
3

0
.4

6
D

-S
D

IC
-L

C
O

R
N

M
8

7
0
0
0

5
0

5
1
5

3
0
.1

6
L
C

-L
D

IC
-L

C
O

R
2

0
.5

1
D

-S
D

IC
-L

C
O

R
3

0
.4

0
D

-S
D

IC
-L

C
O

R
N

M
9

7
0
0
0

5
0

1
2
0

7
0
.1

5
L
C

-N
S
P

1
0
.2

5
D

-N
S
P

/
3

0
.4

9
D

-S
D

IC
-L

C
O

R
2
p
h
a
se

w
it
h

in
it

=
D

N
M

1
0

7
0
0
0

5
0

1
0

4
0

6
0
.5

1
D

-N
S
P

6
1
.8

2
D

-S
D

IC
-L

C
O

R
4

0
.7

3
D

-S
D

IC
-L

C
O

R
N

M
1
1

1
4
0
0
0

2
0

5
1
5

6
0
.8

8
L
C

-N
S
P

2
2
.2

2
D

-S
D

IC
-L

C
O

R
2

1
.5

6
D

-S
D

IC
-L

C
O

R
N

M
1
2

1
4
0
0
0

2
0

1
2
0

6
0
.7

9
L
C

-N
S
P

4
2
.1

0
D

-S
D

IC
-L

C
O

R
1

0
.9

8
D

-N
S
P

/
2
p
h
a
se

w
it
h

in
it

=
D

N
M

1
3

1
4
0
0
0

5
0

5
1
5

2
0
.4

5
L
C

-L
D

IC
-L

C
O

R
2

2
.0

3
D

-S
D

IC
-L

C
O

R
1

0
.9

4
D

-N
S
P

/
2
p
h
a
se

w
it
h

in
it

=
D

N
M

1
4

1
4
0
0
0

5
0

1
2
0

1
7

0
.5

3
L
C

-N
S
P

2
1
.8

6
D

-S
D

IC
-L

C
O

R
4

1
.9

1
D

-S
D

IC
-L

C
O

R
N

M
1
5

1
4
0
0
0

5
0

1
0

4
0

7
2
.0

3
L
C

-N
S
P

3
5
.0

8
D

-S
D

IC
-N

S
P

3
2
.3

1
D

-S
D

IC
-L

C
O

R
N

M
1
6

2
1
0
0
0

2
0

5
1
5

5
1
.5

4
L
C

-N
S
P

3
4
.3

4
D

-S
D

IC
-L

C
O

R
3

4
.4

0
D

-S
D

IC
-N

S
P

N
M

1
7

2
1
0
0
0

2
0

1
2
0

4
1
.4

8
L
C

-N
S
P

1
2
.4

1
D

D
-N

S
P

1
2
.1

1
D

-N
S
P

/
2
p
h
a
se

w
it
h

in
it

=
D

2
p
h
a
se

w
it
h

in
it

=
D

N
M

1
8

2
1
0
0
0

5
0

5
1
5

7
0
.9

7
L
C

-N
S
P

3
3
.9

2
D

-S
D

IC
-L

C
O

R
1

2
.0

8
D

-N
S
P

/
2
p
h
a
se

w
it
h

in
it

=
D

N
M

1
9

2
1
0
0
0

5
0

1
2
0

4
0
.8

8
L
C

-L
D

IC
-L

C
O

R
2

2
.1

9
L
C

-N
S
P

1
2
.1

3
D

-N
S
P

/
2
p
h
a
se

w
it
h

in
it

=
D

N
M

2
0

2
1
0
0
0

5
0

1
0

4
0

5
3
.3

0
L
C

-N
S
P

3
4
.3

4
D

-S
D

IC
-L

C
O

R
3

3
.1

1
D

-S
D

IC
-L

C
O

R

23

References

D.P. Bertsekas. Network Optimization Continuous and Discrete Models. Athena
Scientific, Belmont, Massachusetts, 1998.

J. Brumbaugh-Smith and D. Shier. An empirical investigation of some shortest
path algorithms. European Journal of Operational Research, 43(2):216–224,
1989.

W.M. Carlyle and R.K. Wood. Near-shortest and k-shortest paths. Networks,
46(2):98–109, 2005.

J.C.N. Cĺımaco and E.Q.V. Martins. A bicriterion shortest path problem. Eu-
ropean Journal of Operational Research, 11:399–404, 1982.

H.W. Corley and I.D. Moon. Shortest paths in networks with vector weights.
Journal of Optimization Theory and Applications, 46(1):79–86, 1985.

W.H. Cunningham. A network simplex method. Mathematical Programming,
11:105–116, 1976.

M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of mul-
tiobjective combinatorial optimization. OR Spektrum, 22:425–460, 2000.

M. Ehrgott and X. Gandibleux. Multiobjective combinatorial optimization –
theory, methodology, and applications. In M. Ehrgott and X. Gandibleux,
editors, Multiple Criteria Optimization: State of the Art Annotated Biblio-
graphic Surveys, International Series in Operationas Research & Management
Science, pages 369–444. Kluwer, 2002.

V. Gabrel and D. Vanderpooten. Enumeration and interactive selection of
efficient paths in a multiple criteria graph for scheduling an earth observing
satellite. European Journal of Operational Research, 139(2):533–542, 2002.

G. Gallo and S. Pallotino. Shortest path algorithms. Annals of Operations
Research, 13:3–79, 1988.

F. Guerriero and R. Musmanno. Label correcting methods to solve multicriteria
shortest path problems. Journal of Optimization Theory and Applications,
111(3):589–613, 2001.

P. Hansen. Bicriterion path problems. In G. Fandel and T. Gal, editors, Mul-
tiple Criteria Decision Making, Theory and Application. Proceedings of the
3rd International Conference, Hagen/Königswinter 1979, volume 177 of Lec-
ture Notes in Economics and Mathematical Systems, pages 109–127. Springer
Verlag, Berlin, 1980.

R. Hartley. Vector optimal routing by dynamic programming. In P. Serafini,
editor, Mathematics of Multiobjective Optimization, CISM International Cen-
tre for Mechanical Sciences – Courses and Lectures, pages 215–224. Springer
Verlag, Wien, 1985.

24

R.V. Helgason and J.L. Kennington. Primal simplex algorithms for minimum
cost network flows. In M. O. Ball, C.L. Magnanti, T.L.and Monma, and G.L.
Nemhauser, editors, Network Models, Handbooks in Operations Research and
Management Science, pages 85–133. Elsevier, Amsterdam, 1995.

M. Henig. The shortest path problem with two objective functions. European
Journal of Operational Research, 25:281–291, 1985.

F. Huarng, S. Pulat, and L.-H. Shih. A computational comparison of some
bicriterion shortest path algorithms. The Chinese Institute of Industrial En-
gineers. Journal, 13(2):121–125, 1996.

D. Klingman, A. Napier, and J. Stutz. NETGEN: A program for generating
large scale assignment, transportation, and minimum cost flow problems.
Management Science, 20:814–821, 1974.

A. Löbel. MCF, version 1.3. http://www.zib.de/Optimization/Software/
Mcf/, 2003.

E.Q.V. Martins. On a multicriteria shortest path problem. European Journal
of Operational Research, 16:236–245, 1984.

E.Q.V Martins and J.L.E. Dos Santos. The labelling algorithm for the multi-
objective shortest path problem. Technical report, Universidade de Coimbra,
Portugal, Departamento de Matématica, 2000.

J. Mote, I. Murthy, and D. L. Olson. A parametric approach to solving bicrite-
rion shortest path problems. European Journal of Operational Research, 53:
81–92, 1991.

M. Müller-Hannemann and K. Weihe. On the cardinality of the Pareto set
in bicriteria shortest path problems. Annals of Operations Research, 147:
269–286, 2006.

S. Pallottino and M.G. Scutellà. Shortest path algorithms in transportation
models: classical and innovative aspects. In P. Marcotte and S. Nguyen,
editors, Equilibrium and Advanced Transportation Modelling, pages 245–281.
Kluwer Academic Publishers, 1998.

A. Przybylski, X. Gandibleux, and M. Ehrgott. Two-phase algorithms for the
bi-objective assignment problem. European Journal of Operational Research,
To appear, 2007.

V.N. Sastry, T.N. Janakiraman, and S.I. Mohideen. New algorithms for multi
objective shortest path problem. Opsearch, 40(4):278–298, 2003.

V.N. Sastry, T.N. Janakiraman, and S. I. Mohideen. New polynomial time algo-
rithms to compute a set of Pareto optimal paths for multi-objective shortest
path problems. International Journal of Computer Mathematics, 82(3):289–
300, 2005.

25

D. Schultes. Tiger Road Networks for 9th DIMACS Implementation Challenge –
Shortest Path. http://www.dis.uniroma1.it/~challenge9/data/tiger/,
2005.

P. Serafini. Some considerations about computational complexity for multi
objective combinatorial problems. In J. Jahn and W. Krabs, editors, Re-
cent advances and historical development of vector optimization, volume 294
of Lecture Notes in Economics and Mathematical Systems, pages 222–232.
Springer Verlag, Berlin, 1986.

A.J.V. Skriver. A classification of bicriterion shortest path (BSP) algorithms.
Asia-Pacific Journal of Operational Research, 17:199–212, 2000.

A.J.V. Skriver and K.A. Andersen. A label correcting approach for solving
bicriterion shortest-path problems. Computers & Operations Research, 27:
507–524, 2000.

D. L. Sonnier, Y. Chan, and M. Bradley. A fast parallel algorithm for the
multicriteria shortest path problem. 2006.

C.T. Tung and K.L. Chew. A bicriterion Pareto-optimal path algorithm. Asia-
Pacific Journal of Operational Research, 5:166–172, 1988.

C.T. Tung and K.L. Chew. A multicriteria Pareto-optimal path algorithm.
European Journal of Operational Research, 62:203–209, 1992.

E. L. Ulungu and J. Teghem. The two phases method: An efficient procedure
to solve bi-objective combinatorial optimization problems. Foundations of
Computing and Decision Sciences, 20(2):149–165, 1995.

US Census. US Census 2000 TIGER/Line Files. http://www.census.gov/
geo/www/tiger/tigerua/ua_tgr2k.html, 2000.

J.Y. Yen. An algorithm for finding shortest routes from all source nodes to a
given destination in general networks. Quarterly of Applied Mathematics, 27
(4):526–530, 1970.

F.B. Zahn and C. E. Noon. Shortest path algorithms: An evaluation using real
road networks. Transportation Science, 32(1):65–73, 1998.

26

