
Column Generation in Integer Programming
with Applications in Multicriteria

Optimization

Matthias Ehrgott
Department of Engineering Science

The University of Auckland, New Zealand
email: m.ehrgott@auckland.ac.nz

and
Laboratoire d’Informatique de Nantes Atlantique

Université de Nantes, France
email: matthias.ehrgott@univ-nantes.fr

Jørgen Tind
Department of Mathematical Sciences
University of Copenhagen, Denmark

email: tind@math.ku.dk

March 26, 2007

Abstract

This paper presents in a unified form a column generation scheme for in-
teger programming. The scheme incorporates the two major algorithmic
approaches in integer programming, the branch and bound technique and
the cutting plane technique. With integrality conditions imposed on the
variables it is of importance to limit the number of columns introduced in
the integer programming problem. This is equally important in the case of
multiple criteria where usually multiple alternative efficient solutions are re-
quired. The suggested scheme gives additional dual information that limits
the work required to move among the alternatives to be generated.

Keywords: Column generation, integer programming, multicriteria opti-
mization, branch and bound, cutting planes, saddle points.

MSC 2000: 90C29, 90C10

1 Introduction

This paper presents a column generation approach for integer programming.
The paper consists of two parts. The first part introduces the basic prin-

ciples in the single criterion case. It is based on the application of the two
standard techniques in integer programming, branch and bound as well as
cutting planes. A separate description is given for each case, respectively.
The branch and bound approach falls within the class of branch and price
algorithms. See for example Barnhart et al. (1998), who give an exposition of
the area. They also discuss various branching schemes and related enumer-
ation problems to avoid possible regeneration of columns that have already
been cancelled higher up in the branch and bound tree. In the current set-
ting we keep track of the branchings by keeping this information as separate
constraints in the subproblems. Vanderbeck and Wolsey (1996) also consider
branching schemes. Vanderbeck (2005) summarizes much of the most recent
work. Alternative formulations are developed by Villeneuve et al. (2005).

Equally, one may say that the cutting plane approach is within the class
of cut and price algorithms. Less previous work exists for this kind of pro-
cedures, but the work by Ralphs and Galati (2006) on a dynamic procedure
should be mentioned.

In a separate section we also emphasize the relationship with the clas-
sical column generation and decomposition methods in linear programming
and convex programming by demonstrating a necessary and sufficient saddle
point condition for optimality of the procedure.

The second part of the paper points out the potential use of these tech-
niques in multiobjective optimization with integer constraints. As is well
known a weighted sums approach may exclude some efficient points from
consideration. More general methods must be applied, for example the ε-
constrained procedure or the Tchebycheff procedure, see Ehrgott (2005). For
general multicriteria optimization with integer constraints it is of particular
importance to limit the number of integer variables. This is the core of
column generation to generate the appropriate set of columns which may
otherwise not be detected using the standard LP relaxation of the master
program.

Once an efficient solution has been found together with the appropriate
dual information we demonstrate by sensitivity analysis how neighboring
efficient solutions may be obtained without going back to a change of original
parameters. This is specifically demonstrated for the ε-constraint approach.

2

2 Column Generation in Branch and Bound

Let cj ∈ R and aj ∈ Rm for j = 1 . . . n and b ∈ Rm be constants and let
x = (x1 . . . xn) denote a set of variables. Consider an integer programming
problem of the form

min
n∑

j=1

cjxj

s.t.
n∑

j=1

ajxj ≥ b (1)

xj ≥ 0, integer.

Just for simplicity assume that the feasible set X = {x ∈ Rn :
∑n

j=1 ajxj ≥
b, xj ≥ 0, integer} is nonempty and bounded. Hence an optimal solution
exists. We are going to treat this problem by a standard branch and bound
technique based on linear programming and separation of the original vari-
ables. Then at any stage a finite set exists of terminals or end nodes of a
branch and bound tree. Let T denote this set. For each t ∈ T there exists a
corresponding linear programming subproblem (Pt):

min
x

n∑
j=1

cjxj

s.t.
n∑

j=1

ajxj ≥ b

ltj ≤ xj ≤ ut
j

x ≥ 0

where ltj ∈ R and ut
j ∈ R are the separating restrictions on the variables at

the corresponding node. For ease of exposition we keep the sign restriction
on the x variables separately and do not include them in the separation
constraint. Let Xt denote the set of feasible solutions of (Pt). No integer
solution of (1) is omitted by separation which means that X ⊂ ∪t∈T Xt. Let
T denote the collection of possible sets T of subproblems. The branch and
bound process terminates if all problems (Pt) are infeasible, or if some (Pt)
has an optimal solution that is integer, and has an objective function value
which is the lowest among the values of all feasible suproblems. So, the

3

solution of IP (1) by branch and bound can be understood as finding T ∈ T
such that the smallest optimal value of any (Pt), t ∈ T is largest, i.e.,

max
T∈T

min
t∈T

min
x

n∑
j=1

cjxj

s.t.
n∑

j=1

ajxj ≥ b (2)

ltj ≤ xj ≤ ut
j

x ≥ 0.

By our assumptions two cases occur.

Case 1: (Pt) has a finite optimal value. Consider the dual

max
yt,wt,vt

byt +
n∑

j=1

wt
jl

t
j −

∑
vt

ju
t
j

s.t. ajyt + wt
j − vt

j ≤ cj for j = 1 . . . n

yt, wt, vt ≥ 0

with variables yt ∈ Rm, wt
j ∈ R and vt

j ∈ R for j = 1 . . . n and t =
1 . . . |T |.
Let (ȳt ≥ 0, w̄t

j ≥ 0, v̄t
j ≥ 0) be an optimal solution of the dual. Note

that w̄t
j · v̄t

j = 0.

Case 2: (Pt) is infeasible. Then, with the same notation using Farkas’
Lemma there exist ȳt, w̄t, v̄t ≥ 0 such that

aj ȳt + w̄t
j − v̄t

j ≤ 0 for j = 1, . . . , n

bȳt +
n∑

j=1

w̄t
jl

t
j −

n∑
j=1

v̄t
ju

t
j > 0.

Combining cases 1 and 2 we can reformulate (2) as

max
T∈T

min
t∈T

max
yt,wt,vt

byt +
n∑

j=1

wt
jl

t
j −

n∑
j=1

vt
ju

t
j

s.t. ajyt + wt
j − vt

j ≤ c′j for j =, . . . , n

4

where c′j = cj if (Pt) has an optimal solution and c′j = 0 if (Pt) is infeasible.
The dual variables wt

j and vt
j are specific for column j at terminal t.

When a new column is to be considered for introduction without any explicit
prior bounds on the corresponding variables we leave those variables out of
consideration. So, we are left with the question: Does there exist a, c such
that aȳt > c′. For each (Pt) this is done by solving the problem

max
a,c

aȳt − c′,

where the maximization is over all “legal” columns (a, c) of the IP (1). In
view of formulation (2) we can generate a column to be added in every (Pt).
In total it is enough to solve

max
t∈T

max
a,c

aȳt − c′.

If the optimal value is less than or equal to 0, then there is no column to
be generated. If we now assume that the set A of columns of the IP can be
described by some polyhedron, A = {a ∈ Rm : Ba ≤ d} we can write the
column generation problem as

max
t∈T

max
a

aȳt − c′

s.t. Ba ≤ d, (3)

where c′ =

{
c (Pt) feasible
0 (Pt) infeasible.

In some applications c = 1 and independant of the column a. In other
cases c is a linear function of the column a. Consider the dual of the inner
optimization of (3). We then get the form

max
t∈T

(
min
ut≥0

dut − c′
)

s.t. utB = ȳt, t ∈ T.

If preferable the problem can be reformulated as a linear programming prob-
lem

max
ut≥0,s∈R

s

s.t. s ≤ dut − c′, t ∈ T

utB = ȳt, t ∈ T.

5

Example 1 We consider a cutting stock problem of cutting items of length 6,
9 and 12 out of pieces of length 20. 6, 3 and 2 items are required, respectively.
There are four possible cutting patterns and the IP is as follows.

min x1 + x2 + x3 + x4

s.t. 3x1 + x2 + x3 ≥ 6
x2 + 2x4 ≥ 3

x3 ≥ 2
xj ≥ 0 and integer.

(4)

The optimal IP solution is x1 = x2 = x4 = 1 and x3 = 2 with objective
z = 5. The LP relaxation has optimal solution x1 = 11

3
, x3 = 2, x4 = 1.5 with

z = 45
6
.

Now assume that we want to solve the problem by LP-based branch and
bound and column generation and that initially we only have x1, x3, x4 in the
problem. The LP relaxation has the same optimal solution as the original
problem. Optimal dual values are ȳ1 = 1

3
, ȳ2 = 0.5, ȳ3 = 2

3
. Since ȳ1 + ȳ2 < 1

the column of x2 cannot be generated. We shall now continue by branching
on variable x4.

Branch by x4 ≥ 2 :

min x1 + x3 + x4

s.t. 3x1 + x3 ≥ 6
2x4 ≥ 3

x3 ≥ 2
x4 ≥ 2
xj ≥ 0.

The optimal solution is (x1, x3, x4) = (11
3
, 2, 2), (ȳ1, ȳ2, ȳ3) = (1

3
, 0, 2

3
)

and w̄4 = 1. The value is equal to 51
3
.

We shall now check if column 2 is eligible for insertion:∑3
i=1 ȳiai2 = 1

3
· 1 + 0 · 1 + 2

3
· 0 = 1

3
≤ 1 = c2. Hence column 2 is not

introduced in this problem.

6

Branch by x4 ≤ 1 :

min x1 + x3 + x4

s.t. 3x1 + x3 ≥ 6
2x4 ≥ 3

x3 ≥ 2
x4 ≤ 1
x1 ≥ 0.

No feasible solution exists.

By Farkas’ lemma the following system of inequalities has a solution.

3y1 ≤ 0

y1 + y3 ≤ 0

2y2 − v4 ≤ 0

6y1 + 3y2 + 2y3 − v4 > 0,

where v4 is the dual of x4 ≤ 1. A possible solution is (ȳ1, ȳ2, ȳ3) =
(0, 1

2
, 0) and v̄4 = 1.

We shall check column 2 by calculating
∑3

i=1 ȳiai2 = 0 ·1+ 1
2
·1+0 ·0 =

0.5 > 0. Hence column 2 is introduced and we obtain the problem

min x1 + x2 + x3 + x4

s.t. 3x1 + x2 + x3 ≥ 6
x2 + + 2x4 ≥ 3

x3 ≥ 2
x4 ≤ 1
xj ≥ 0.

An optimal and integer solution is (x1, x2, x3, x4) = (1, 1, 2, 1) with ob-
jective value = 5. Since this is the lowest of the values of the two
terminals this solution is proven to be optimal for the original problem
(4).

3 Column Generation and Cutting Planes

Consider again the original integer programming problem (1).

7

In this section we are going to solve (1) by means of a cutting plane
technique. In the column generation approach we begin by solving the integer
programming problem (1) with a subset of columns and continue to introduce
additional columns until a termination criterion proves optimality of the
entire problem (1). The main goal here is to outline the technique leading
to termination and proof of optimality without explicit introduction of all
columns; here by using cutting plane methods.

As it is well known, the idea behind cutting plane techniques is to intro-
duce valid inequalities which remove some nonintegral parts of the feasible
set in the linear programming relaxation of (1). There are many ways in
which this can be done. We are going to use one of the classical approaches
by using Chvatal-Gomory cuts, C-G cuts, see Nemhauser and Wolsey (1988).

The valid inequalities have their coefficients determined according to some
specific rules. These rules imply that no integer solution is removed by in-
troduction of an inequality. The jth coefficient in the inequality is defined
by insertion of the elements from the corresponding original column aj into
a specific function, which is generated recursively through the following op-
erations.

• Multiplication by a non-negative scalar,

• addition,

• application of the round up operation to nearest integer above d·e. For
example d7.6e = 8.

Example 2 For a problem with m = 2 we may consider the variables d =
(d1, d2) ∈ R2. A C-G function F in d is

F (d1, d2) = d2dd1e+ 3.5dd2ee.

With (d1, d2) = (0.5, 0.7) we get

F (0.5, 0.7) = d2d0.5e+ 3.5d0.7ee = d2× 1 + 3.5× 1e = d5.5e = 6.

Let F denote the set of all C-G functions and consider a function F ∈ F .
F then defines the following valid inequality.

n∑
j=1

F (aj)xj ≥ F (b).

8

By its construction this inequality is satisfied by all integer feasible solutions
of (1).

The aim is to find a subset F̃ ⊆ F of functions such that the following
linear programming problem has an optimal solution, which is integer and
hence also optimal for the original problem (1).

min
n∑

j=1

cjxj

s.t.
n∑

j=1

ajxj ≥ b (5)

n∑
j=1

F (aj)xj ≥ F (b) for all F ∈ F̃

xj ≥ 0 for j = 1, . . . , n.

In analogy with (2) we then have that (1) can be converted into the problem

max
F̃⊆F

min
x≥0

n∑
j=1

cjxj

n∑
j=1

ajxj ≥ b (6)

n∑
j=1

F (aj)xj ≥ F (b) for all F ∈ F̃ .

For a given set F̃ the set of feasible solutions of (6) includes the convex
hull of feasible solutions of (1). With rational data the theory of C-G cutting
planes says that a finite set F̃ exists such that the feasible solution set of
(6) is equal to the convex hull of the feasible solutions in (1). Hence it is
sufficient for a given problem (1) to consider only finite sets F̃ in order to
solve (6). Furthermore, the inner problem of (6) may be dualized by linear
programming duality so that (6) is converted into the form

max
F̃⊆F

max
uF≥0,v≥0

∑
F∈F̃

uF F (b) + vb

s.t.
∑
F∈F̃

uF F (aj) + vaj ≤ cj for j = 1, . . . , n. (7)

9

Define the function G : Rm → R as

G(d) =
∑
F∈F̃

uF F (d) + vd

and note that G(d) itself is a C-G function. Hence (7) can be changed into
the form

max
G∈F

G(b)

s.t. G(aj) ≤ cj for j = 1, . . . , n. (8)

This is the “classical” dual form of an integer programming problem, see for
example Schrijver (1986).

In a column generation framework (8) is solved with a selection of columns
aj. If in addition the constraints of (8) are satisfied for all columns aj then
the optimal value of (1) has been obtained, and an optimal solution x of (1)
can be found by solving the corresponding linear program (5). However, if a
column aj exists such that G(aj) > cj this column should be introduced.

Example 3 Consider the cutting stock example again.

min x1 + x2 + x3 + x4

s.t. 3x1 + x2 + x3 ≥ 6
x2 + 2x4 ≥ 3

x3 ≥ 2
xj ≥ 0 for j = 1, . . . , 4.

With the column a2 corresponding to x2 removed we get the reduced problem

min x1 + x3 + x4

s.t. 3x1 + x3 ≥ 6
2x4 ≥ 3

x3 ≥ 2
xj ≥ 0 for j = 1, 3, 4.

An optimal solution of this last problem is again (x1, x3, x4) = (11
3
, 2, 2) with

an objective function value 51
3
.

Here m = 3 and by application of the C-G function F1(d1, d2, d3) = d1
3
d1+

2
3
d3e we generate the following valid inequality⌈

1

3
× 3

⌉
x1 +

⌈
1

3
× 1 +

2

3
× 1

⌉
x3 ≥

⌈
1

3
× 6 +

2

3
× 2

⌉
10

or
x1 + x3 ≥ 4.

With the C-G function F2(d1, d2, d3) = d1
2
d2e we get the additional valid

inequality ⌈
1

2
× 2

⌉
x4 ≥

⌈
1

2
× 3

⌉
or

x4 ≥ 2.

By adding those two new inequalities into the constraints we obtain

min x1 + x3 + x4

s.t. 3x1 + x3 ≥ 6
2x4 ≥ 3

x3 ≥ 2
x1 + x3 ≥ 4

x4 ≥ 2
xj ≥ 0 for j = 1, 3, 4.

(9)

By solving this linear programming problem we get the optimal and also in-
teger solution x1 = x3 = x4 = 2 and objective value equal to 6. The dual
variables are

(y1, y2, y3, uF1 , uF2) = (0, 0, 0, 1, 1)

Hence the appropriate C-G function is defined by

G(d) = yd + uF1F1(d) + uF2F2(d) = F1(d) + F2(d) =

⌈
1

3
d1 +

2

3
d3

⌉
+

⌈
1

2
d2

⌉
.

With a2 = (1, 1, 0) we have G(1, 1, 0) = d1
3
×1+ 2

3
×0e+ d1

2
×1e = 1+1 = 2.

Since c2 = 1 we get that G(a2) > c2 violating the constraints of (8). Hence
column a2 should be introduced in (9). In order to calculate the coefficients
of the cuts we calculate

F1(1, 1, 0) =

⌈
1

3
× 1 +

2

3
× 0

⌉
= 1

and

F2(1, 1, 0) =

⌈
1

2
× 1

⌉
= 1

11

and we get the problem

min x1 + x2 + x3 + x4

s.t. 3x1 + x2 + x3 ≥ 6
x2 + 2x4 ≥ 3

x3 ≥ 2
x1 + x2 + x3 ≥ 4

x2 + x4 ≥ 2
xj ≥ 0 for j = 1, 2, 3, 4.

(10)

By solving (10) we get the optimal and also integer solution (x1, x2, x3, x4) =
(1, 1, 2, 1) with objective function value 5. The corresponding dual variables
are

(y1, y2, y3, uF1 , uF2) = (0.25, 0.5, 0.5, 0.25, 0).

Hence we get the corresponding function

G(d1, d2, d3) = y1d1 + y2d2 + y3d3 + uF1F1(d1, d2, d3) + uF2F2(d1, d2, d3)

= 0.25d1 + 0.5d2 + 0.5d3 + 0.25

⌈
1

3
d1 +

2

3
d3

⌉
+ 0.

Observe, for example, that G(a1) = G(3, 0, 0) = 0.25×3+0.25d1
3
×3+ 2

3
×0e =

1. Similarly G(a2) = G(a3) = G(a4) = 1, implying that all columns satisfy
the constraints of (8). This proves optimality of the solution also for the
original problem (4).

4 Saddlepoints and Column Generation

The purpose of decomposition in the current setup is via a master problem
to find a tree for which dual feasiblity is checked by the subproblem.

In linear and convex programming the master problem finds a set of
primal and dual variables of which the primal variables are feasible. Dual
feasibility is then examined by the subproblem. Usually each master problem
is solved to optimality. The primal-dual solutions then define a saddlepoint
for the Langrangean function of the master problem. The purpose of the
subproblem is to check whether it is still a valid saddlepoint when all solutions
are taken into account.

This section establishes a similar setup for integer programming. This
shall first be illustrated by application of the branch and bound technique,

12

and we shall see how a saddlepoint is generated. The end of this section
treats the cutting plane case too.

Consider again the original problem in the form (2). Observe that it does
not matter if all the inner problems share the same variables. This means
that (2) can be reformulated to

z1 = max
T∈T

min
x

min
t∈T

n∑
j=1

cjxj

s.t.
n∑

j=1

ajxj ≥ b (11)

ltj ≤ xj ≤ ut
j

x ≥ 0.

If the inner problem is infeasible for a t ∈ T we then set the objective function
value of the inner problem to +∞.

By an interchange of the first two operations we get the problem

z2 = min
x

max
T∈T

min
t∈T

n∑
j=1

cjxj

s.t.
n∑

j=1

ajxj ≥ b (12)

ltj ≤ xj ≤ ut
j

x ≥ 0.

This interchange implies in general that z1 ≤ z2. Let (T ∗, x∗) denote an
optimal solution of (11) obtained by a tree with nodes T ∗ and resulting in
the (primal) optimal solution x∗. For x = x∗ we get in (12) the same objective
value for any valid tree. Hence, z1 = z2.

By Lagrangean duality (12) is equivalent with

max
T∈T ,yt≥0,wt≥0,vt≥0

min
x≥0

min
t∈T

byt +
n∑

j=1

wt
jl

t
j −

∑
j=1

vt
ju

t
j +

n∑
j=1

(cj − ytaj − wt
j + vt

j)xj

 .

(13)

13

Let N = {(T, yt, wt, vt) | yt, wt, vt ≥ 0 for t = 1, . . . , |T |, T ∈ T } and let
S ∈ N . Let also K((T, yt, wt, vt), x) = mint∈T byt +

∑n
j=1 wt

jl
t
j −

∑
j=1 vt

ju
t
j +∑n

j=1(cj − ytaj − wt
j + vt

j)xj.
In this way the Lagrangean dual (13) undertakes the short form

max
S∈N

min
x≥0

K(S, x). (14)

The program (12) is directly equivalent with

min
x≥0

max
T∈T ,yt≥0,wt≥0,vt≥0

min
t∈T

byt +
n∑

j=1

wt
jl

t
j −

∑
j=1

vt
ju

t
j +

n∑
j=1

(cj − ytaj − wt + vt
j)xj (15)

or in short form
min
x≥0

max
S∈N

K(S, x). (16)

The observations above can be summarized into the following

Proposition 1 x∗ is an optimal solution of the original program (1) if and
only if there exists a tree with nodes and dual variables S∗ that are optimal
in (16) and (14).

In this situation we thus get that (16) and (14) have equal values and that

min
x≥0

max
S∈T

K(S, x) = max
S∈N

min
x≥0

K(S, x) = K(S∗, x∗).

Alternatively this expresses that (S∗, x∗) is a saddlepoint for K(S, x), i.e.

K(S, x∗) ≤ K(S∗, x∗) ≤ K(S∗, x) for all S ∈ N and x ≥ 0. (17)

So, alternatively we have

Proposition 2 x∗ is an optimal solution of the original program (1) if and
only if there exists a tree with nodes and dual variables S∗ such that (S∗, x∗)
is a saddlepoint for K(S, x).

In the column generation approach presented here we gradually increase
the dimension of the variables x by the introduction of new columns. Let C

14

be the current restricted set. At optimality we get a saddlepoint with this
set C, i.e. the master program obtains a solution (S∗, x∗) which satisfies

K(S, x∗) ≤ K(S∗, x∗) ≤ K(S∗, x) for all S ∈ N and x ∈ C.

The column generation subproblem checks whether this is valid for all
candidate columns and corresponding variables. If not, then the right in-
equality of (17) is violated and a column and a new variable is introduced in
the function K(S, x).

The solution process stops when no violation occurs of the right inequality
of (17).

A similar process develops by using the cutting plane technique. We shall
here consider a general Lagrange function L of the type

L(G, x) =
n∑

j=1

(cj −G(aj))xj + G(b)

where G : Rm → R is a C-G function as considered before. This is a general-
ization of the standard Lagrange function in which the ordinary Langrange
multipliers have been replaced by a C-G function.

The Langrange dual is

max
G∈F

min
x≥0

L(G, x).

The original problem (1) is directly equivalent with the primal form

min
x≥0

max
G∈F

L(G, x).

For a given set of columns we have by duality that an optimal solution x∗

exists if and only if there exists a C-G function G forming a saddlepoint, i.e.

L(G, x∗) ≤ L(G∗, x∗) ≤ L(G∗, x) for x ≥ 0 and G ∈ F .

If a new column exists with G(aj) > cj this violates the right hand side of
the saddlepoint and must therefore be included. The procedure stops when
the saddlepoint is no longer violated by any column.

15

5 Application to Multiobjective Integer Pro-

gramming

We use the scheme of the previous section in a multiobjective context. Con-
sider a multiobjective IP

min
n∑

j=1

cjxj

s.t.
n∑

j=1

ajxj ≥ b (18)

xj ≥ 0, integer,

where cj ∈ Rp. A feasible solution x of (18) is called efficient if there is no
other feasible solution x′ such that

∑n
j=1 cjx′j ≤

∑n
j=1 cjxj and at least one

of these inequalities is strict. The set of efficient solutions is usually found by
scalarization techniques. A well known technique is the ε-constraint method.
All efficient solutions can be found using this method (Chankong and Haimes,
1983).

The scalarized problem can be written as follows.

min
n∑

j=1

cj
ixj

s.t.
n∑

j=1

−ĉjxj ≥ −ε (19)

n∑
j=1

ajxj ≥ b

xj ≥ 0, integer,

where ĉj = (cj
1, . . . , c

j
i−1, c

j
i+1, . . . , c

j
p) and ε ∈ Rp−1. It is well known that

for every efficient solution x of (MOIP) there exist i and ε such that x is an
optimal solution of (19), see Ehrgott (2005).

Solving (19) by branch and bound, we can apply the column generation
framework of the previous section and obtain the column generation sub-
problem

max
t∈T

max
a,c

aȳt − ĉω̄t − cj′

i ,

16

where ω̄t are the optimal dual values of the ε-constraints in node t of T and
cj′

i is defined analogously to c′j in Section 2.
Assuming that both a and ĉ have some polyhedral description, i.e., AC =

{(a, ĉ) ∈ Rm+p−1 : B(a, ĉ) ≤ d} we obtain

max
t∈T

max
a,c

aȳt − ĉω̄t − cj
i

′

B(a, c) ≤ d

or, with the same arguments as before

max s

s.t. s ≤ dut − cj′

i for t ∈ T

utB = (ȳt,−ω̄t) for t ∈ T.

Solving (19) by cutting planes we can proceed as in Section 3 with C-G
functions incorporating ĉj and ε generating cutting planes

F (−ĉj, aj) ≥ F (−ε, b).

In the following two examples we illustrate both the cutting plane and
branch and bound approach.

Example 4 Consider the following bicriterion problem.

min x1 + x2 + x3 + x4

min 14x1 + 4x2 + 2x4

s.t. 3x1 + x2 + x3 ≥ 6
x2 + + 2x4 ≥ 3

x3 ≥ 2
xj ≥ 0 and integer.

(20)

The problem has the following four efficient solutions

x1 x2 x3 x4 c1x c2x
0 0 6 2 8 4
0 1 5 1 7 6
0 3 3 0 6 12
1 1 2 1 5 20.

17

We shall use the ε-constraint method specifying a maximum size 13 of the
second objective.

min x1 + x2 + x3 + x4

s.t. −14x1 − 4x2 − 2x4 ≥ −13
3x1 + x2 + x3 ≥ 6

x2 + + 2x4 ≥ 3
x3 ≥ 2

xj ≥ 0 and integer.

(21)

The LP-relaxation of (21) has the optimal solution (x1, x2, x3, x4) = (1
14

, 3,
211

14
, 0) with objective value 56

7
. Without column 1 the optimal LP solution is

(x2, x3, x4) = (31
4
, 23

4
, 0) with value 6.

We shall use F1(d) = d 1
10

d1 + 3
10

d2 + 1
10

d3 + 7
10

d4e to generate the cutting
plane x3 ≥ 3. The resulting problem has an optimal and integer solution
(x2, x3, x4) = (3, 3, 0), corresponding to the efficient solution x = (0, 3, 3, 0).

We perform sensitivity analysis on the right hand side of the first con-
straint, i.e. ε, to show that other efficient solutions can be obtained without
changing the value of ε and resolving the problem.

(20) without x1 is

min x2 + x3 + x4

s.t. −4x2 − 2x4 ≥ −ε
x2 + x3 ≥ 6
x2 + + 2x4 ≥ 3

x3 ≥ 2
xj ≥ 0 and integer.

(22)

F generates the cut x3 ≥ d− 1
10

ε + 35
10
e. Observing that the LP relaxation

of (20) and (22) is infeasible for ε < 3 we get x3 ≥ 4 for ε ∈ [3, 5), x3 ≥ 3
for ε ∈ [5, 15) and a redundant constraint for ε ≥ 15.

We add x3 ≥ 4 and analyze the (23) for ε ∈ [3, 5).

min x2 + x3 + x4

s.t. −4x2 − 2x4 ≥ −ε
x2 + x3 ≥ 6
x2 + + 2x4 ≥ 3

x3 ≥ 2
x3 ≥ 4

xj ≥ 0 and integer.

(23)

18

Within that range the dual optimal solution is (y1, . . . , y4, uF1) = (1
6
, 1, 2

3
,

0, 0). Checking the dual constraints we see that x1 will not be generated
and using F2(d) = d1

3
d1 + 3

10
d3e and F3(d) = d1

6
d1 + 2

3
d3e we obtain the cuts

x2 ≤ 0 and x4 ≥ 2. With these cuts added, the problem becomes infeasible for
ε < 4 and for ε ∈ [4, 5) we have (y1, . . . , y4, uF1 , uF−2, uF3) = (0, 1, 0, 0, 0, 0, 1)
so that G(d) = d2 + d1

6
d1 + 2

3
d2e. This way, with a1 = (−14, 3, 0, 0) we have

G(a1) = 3 > 1 and x1 is generated. The coefficients of x1 in the three cuts are
F1(a

1) = 0, F2(a
1) = −4, F3(a

1) = −2 and the resulting LP has the optimal
and efficient solution x = (0, 0, 6, 2), which is obtained for all ε ∈ [4, 5).

A similar analysis can be done for ε ∈ [5, 15) and ε ≥ 15. It turns out that
for all ε ≤ 12 the dual solution (y, uF1) = (1

6
, 1, 2

3
, 0, 0) remains optimal, so

that x1 will never be generated. By adding further cuts, the efficient solutions
(0, 0, 6, 2) or (0, 1, 5, 1) are found for ε ∈ [5, 6) and ε ∈ [6, 12), respectively.
For ε ≥ 12 the dual optimal solution changes to (y1, . . . y4, uF1) = (0, 1, 0, 0, 0)
and the dual constraints indicate that x1 has to be generated. Then effi-
cient solutions (0, 3, 3, 0) and (1, 1, 2, 1) are detected for ε ∈ [12, 20) and
ε ∈ [20,∞), respectively.

Below we present an example of the use of our method in a bicriteria set
covering problem, using the ε-constraint scalarization and the branch and
bound technique

Example 5

min z1 = 4x1 + 4x2 + 4x3 + 3x4

s.t. −x1 − 3x2 − 2x3 − x4 ≥ −ε
x1 + x3 + x4 ≥ 1
x1 + x2 ≥ 1

x2 + x3 ≥ 1
x1, x2, x3, x4 ∈ {0, 1}.

Here, the first constraint is a constraint derived from a second objective func-
tion to minimize z2 = x1 + 3x2 + 2x3 + x4. There are two efficient solutions,
x = (0, 1, 0, 1), z = (z1, z2) = (7, 4) and x = (1, 0, 1, 0), z = (z1, z2) = (8, 3).

The LP is infeasible for ε < 3 and otherwise has optimal solution x =
(0.5, 0.5, 0.5, 0) with value 6 and optimal dual solution y = (0, 2, 2, 2) for all
ε ≥ 3. Thus the column of variable x4 will not be generated for any value of
ε.

19

Let us consider branching on variable x2. In the branch x2 ≥ 1 we obtain
that the LP is infeasible for ε < 4 even if x4 is generated. For all ε ≥
4 the optimal integer solution (x1, x2, x3) = (1, 1, 0) with duals (y, w2) =
(0, 4, 0, 0, 4) is obtained. Thus, x4 is generated and introducing it into the
problem results in the optimal and integer solution x = (0, 1, 0, 1).

In the branch x2 ≤ 0 the LP is infeasible if ε < 3 and again remains
infeasible even with x4. For ε ≥ 3 the optimal solution (x1, x2, x3) = (1, 0, 1)
with duals (y, v2) = (0, 0, 4, 4, 4), so x4 is generated. The updated LP gives
optimal solution x = (1, 0, 1, 0).

In practical applications, where very large integer programs have to be
solved, the ε-constraint method has numerical disadvantages, because the
ε-constraints tend to destroy problem structure. Ehrgott and Ryan (2003)
propose a new scalarization technique that has proved to be computationally
superior to the ε-constraint method. The elastic constraint scalarization of
a multicriteria optimization problem is as follows.

min
n∑

j=1

cj
ixj +

∑
j 6=i

pjsj

s.t. −
n∑

j=1

ĉjxj + l − s = −ε

n∑
j=1

ajxj ≥ b

xj ≥ 0, integer

l, s ≥ 0

where l, s ∈ Rp−1 are variables of slack and surplus variables, respectively,
and p ∈ Rp−1 is a vector of penalties for violating the original ε-constraints
in (19). Note that this modification does not change the column generation
subproblem

max
t∈T

max
a,c

aȳt − ĉω̄t + w̄t
j − v̄t

j − cj′

i

in the branch and bound approach, or the column generation approach.
Therefore the approaches described above can be applied to the elastic con-
straint scalarization, too.

20

6 Conclusion

A main obstacle in integer programming is the high number of variables that
are usually required and the difficulty is getting the models solved within a
reasonable amount of time. It is therefore of outmost importance to limit
the number of variables. Column generation has been used over some time
to solve problems with a single objective. For problems with multiple crite-
ria extensive research has been done with continuous, in particular convex
models. Here the weighted sums approach plays a major role and different
efficient solutions have been obtained by variations in the weights. If inte-
grality is introduced for the variables the weighted sum approach may fail
to find interesting efficient alternatives. We have here used the ε-constraint
approach in which the parameters are changed in order to find alternative
efficient solutions. Each time a model is solved we gain dual information
which can facilitate the investigation of efficient alternatives and limit the
number of integer variables required.

A fundamental concept in multicritiria optimization is efficiency, and the
challenging part is to obtain one or multiple efficient solutions. The same
concept also applies to data envelopment analysis, in which however the
directions for obtaining efficient solutions are given. See for example Cooper
et al. (2000). In a companion paper (Ehrgott and Tind, 2007) we give an
analysis of the so-called free replicability model with integrality conditions
proposed by Tulkens Tulkens (1993).

References

Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., and Vance, P.
(1998). Branch and price: Column generation for solving huge integer
programs. Operations Research, 46, 316 – 329.

Chankong, V. and Haimes, Y. (1983). Multiobjective Decision Making Theory
and Methodology . Elsevier Science, New York.

Cooper, W., Seiford, L., and Tone, K. (2000). Data Envelopment Analysis:
A Comprehensive Text with Models, Applications, References and DEA-
Solver Software. Kluwer Academic Publishers, Dordrecht.

Ehrgott, M. (2005). Multicriteria Optimization. Springer, Berlin, 2nd edi-
tion.

21

Ehrgott, M. and Ryan, D. (2003). Constructing robust crew schedules with
bicriteria optimization. Journal of Multi-Criteria Decision Analysis , 11,
139 – 150.

Ehrgott, M. and Tind, J. (2007). Column generation with free replicability in
dea. Technical report, Department of Engineering Science, The University
of Auckland.

Nemhauser, G. and Wolsey, L. (1988). Integer and combinatorial optimiza-
tion. Wiley, Chichester.

Ralphs, T. and Galati, M. (2006). Decomposition and dynamic cut generation
in integer linear programming. Mathematical Programming , 106, 261 –
285.

Schrijver, A. (1986). Theory of linear and integer programming . Wiley,
Chichester.

Tulkens, H. (1993). On fdh efficiency analysis: Some methodological issues
and applications to retail banking, courts, and urban transit. Journal of
Productivity Analysis , 4, 183 – 210.

Vanderbeck, F. (2005). Implementing mixed integer column generation, pages
331 – 358. Kluwer Academic Publishers, Dordrecht.

Vanderbeck, F. and Wolsey, L. (1996). An exact algorithm for ip column
generation. Operations Research Letters , 19, 151 –159.

Villeneuve, D., Desrosiers, J., Lübbecke, M., and Soumis, F. (2005). On
compact formulations for integer programs solved by column generation.
Annals of Operations Research, 139, 375 – 388.

22

