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Abstract

The problem of designing fibre-optic networks for telecommunications can

be decomposed into (at least) three non-trivial subproblems. In the first of

these subproblems one must determine how many fibre-optic cables (fibres)

are required at either end of a street. In the next subproblem a minimum-

cost network must be designed to support the fibres. The network must also

provide distinct paths from either end of the street to the central exchange(s).

Finally, the fibre-optic cables must be placed in protective covers. These

covers are available in a number of different sizes, allowing some flexibility

when covering each section of the network. However, fibres placed within a

single cover must always be covered together for maintenance reasons.

In this paper we describe two formulations for finding a minimum-cost

(protective) covering for the network (the third of these subproblems). This

problem is a generalised set covering problem with side constraints and is

further complicated by the introduction of fixed and variable welding costs.

The first formulation uses dynamic programming (DP) to select covers along

each arc (in the network). However, this formulation cannot accurately model

the fixed costs and does not guarantee optimality. The second formulation,

based on the DP formulation, uses integer programming (IP) to solve the

problem and guarantees optimality, but is only tractable for smaller problems.

The cost of the networks constructed by the IP model is less than those

designed using the DP model, but the saving is not significant for the problems

examined (less than 0.1%). This indicates that the DP model will generally

give very good solutions despite its limitation. Furthermore, as the problem

dimensions grow, DP gives significantly better solution times than IP.

1 Introduction

Since 1995, the Operations Research (OR) group at the University of Auckland

has been developing telecommunications network design technology [11, 9, 10]. The

networks considered link the Central Business District (CBD) of a major centre

(e.g., Auckland, Wellington, etc) to one (or more) exchange buildings for the area.

The exchange buildings for the major centres are then connected together to form

a network for New Zealand.

The CBD subnetworks consist of fibre-optic cables (fibres) that start in buildings

and finish at exchanges. Fibres connect from each building to two vaults, one at each



end of the street (where the building is located). These vaults are then connected to

the exchange via a network of feeders and other vaults. To ensure reliability there

is a distinct path from each vault at the end of a street to the exchange(s), i.e.,

two independent ways for every building to connect to the exchange(s). Feeders

are underground trenches that contain the fibres, and vaults are access areas where

workers may perform maintenance and alterations to the network. Vaults either

bring new fibres into the network (from one or more streets) or join the fibres along

two (or more) feeders together (many vaults do both).

Fibres are placed into tubes either upon exiting a building or entering a vault from

the street (or sometimes at both points). The tubes are then placed in protective

sheathes referred to as covers. Whenever feeders meet at a vault the fibres from the

incoming feeders may be combined into larger (cheaper) covers.

Philpott and Mason [9] developed the Fibre Diversity Optimiser (FiDO) for de-

signing low-cost, reliable fibre-optic networks to meet customer bandwidth demand.

FiDO decomposes the network design process into three stages, determining in turn:

1. the number of fibres connected to the vaults at either end of a street (Street

Optimisation);

2. two distinct paths from the vaults at each end of a street to the exchange(s)

(Path Optimisation);

3. how to pack fibres into the covers as they travel through the feeders and vaults

to the exchange (Cover Optimisation).

The Street Optimisation problem involves deciding the location, size and number

of multiplexers for each street, from which copper cable is ducted to the telephone

receivers. These decisions represent a trade off between the use of copper or the use

of multiplexers and fibre. The optimium mix of copper and fibre is determined by

FiDO as the solution to a set-partitioning problem, which is known to be NP-hard

[5].

The Path Optimisation problem is an example of the well-studied multi-commodity

network design problem [8, 3, 6, 7, 2, 4, 1], which is NP-hard, even in the single com-

modity case [5].

In this paper we are concerned with solving the Cover Optimisation problem,

which FiDO does using a bin-packing heuristic. We model this problem as a gener-

alised set covering problem (known to be NP hard [5]) with side constraints, which we

initially solve using DP. The problem is complicated by fixed welding costs, removing

the guarantee of optimality from DP solutions. We also present an IP formulation

that does guarantee optimality, but which is intractable for larger problems.

The rest of this paper is structured as follows. Section 2 describes the physi-

cal characteristics of the network we need to consider in the Cover Optimisation

problem. In §3 we outline our DP formulation. We present the IP formulation for

the cover optimisation in §4. Section 5 gives results comparing the two formulations

(and the FiDO heuristic). Finally, in §6 we discuss the merits of the two approaches.

2 The Cover Optimisation Problem

In this section we describe the physical considerations inherent in the Cover Opti-

misation problem. In particular we explain how covers are used to protect the fibres



in the network, including side-welding new fibres into covers and welding covers

together at a vault.

Note that throughout the remainder of this paper fibres run from the building

to the exchange. Fibres and/or covers entering a vault have originated at a building

and leaving a vault are going to the exchange.

Cover Types There may be several cover types available, each with a given fibre

capacity and cost per unit length. The capacity increases at a faster rate than the

cost. We considered the cover types in table 1 during this research. Note that it is

Fibre Capacity Cost per Unit Length ($)

24 7.84

48 11.68

96 17.44

144 21.28

Table 1: Available cover types

cheaper to use a single cover with capacity 48 than two covers with capacity 24 over

the same distance.

New Fibres When new fibres enter at a vault they can either be placed directly

into a new cover or side-welded into an existing cover entering the vault. Figure 1

shows the two possibilities. In figure 1 (a), the 12 new fibres are placed in a new

24 (12)

12

24 (12)

24 (12)

(a) New fibres in a new cover

24 (24)

12

24 (12)

(b) New fibres side-welded into an existing cover

Figure 1: Dealing with new fibres

cover (capacity 24) that then leaved the vault. In figure 1 (b), the new fibres are

side-welded into the incoming cover (of capacity 24, carrying 12 fibres) that then

leaved the vault.

Existing Covers When feeders containing covers enter a vault the incoming covers

can either leave the vault unchanged or their fibres are welded together into a larger

cover (that then leaves the vault). The larger cover must have capacity at least

as great as the total capacity of the incoming covers (due to the way welding is

performed). Figure 2 shows the two possibilities. In figure 2 (a), two covers (capacity

24, carrying 12 fibres) come into a vault and leave unchanged. In figure 2 (b), the
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(a) Incoming covers left alone
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(b) Incoming covers welded together

Figure 2: Dealing with incoming covers

two covers are welded together into a new, larger cover (capacity 48) that carries

the total fibres from the covers (24 fibres). Note that a cover with capacity 24 could

carry all the fibre, but as already mentioned this is not possible.

Welding Costs In the Cover Optimisation problem, it costs nothing to place

fibres from the street into a new cover (although the cover will incur a cost) or to

side-weld them into an existing cover (both these costs have been considered in the

street optimisation). However, if two incoming covers are welded together, there is

a fixed cost for performing the welding and a unit weld cost for each fibre placed

into the new cover. To make maintenance easier, no fibres from an incoming cover

may be split amongst leaving covers.

3 Dynamic Programming Formulation

In this section we outline our DP formulation for solving the Cover Optimisation

problem.

3.1 The Logical Tree

Since fibres within a cover may not be split, we can solve the Cover Optimisation

problem using DP on a logical tree. To convert the network into a logical tree we:

1. remove any feeders and vaults that don’t contain fibres;

2. remove any vaults with only one feeder coming in and one feeder coming out

(no welding will ever occur at this vault);

3. duplicate any vault and/or feeder that occurs on more than one divergent path

(to the exchange).

Figure 3 gives an example of a network and its corresponding logical tree. Vault

A contains fibres that are following two divergent paths to the exchange (through

vaults C and D, respectively), so it is duplicated (to make node A’ and A”) in the

logical tree. Vault B and its incident feeders don’t contain any fibres, so they are

removed from the logical tree. Vaults C and D do contain fibres, but only have a

single feeder in and out, so they are removed from the logical tree.

Each arc in the logical tree starts at a node (representing a vault in the original

network).
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Figure 3: Logical Tree Example

3.2 The DP formulation

The DP formulation uses the logical tree and decides how to cover the fibres along

each arc. This formulation improves upon the initial approach from FiDO, where

a first-fit decreasing bin-packing heuristic was used to pack fibre into covers. The

heuristic does not consider the cost of the covers or welding when packing the fibres.

The total cost of covering the entire network is simply the sum of covering each

branch leading into the exchange(s). The cost of covering a branch is the cost of

covering the last arc in the branch, plus the cost of welding at the start of that arc

plus the cost of covering the remainder of the branch. This decomposition gives rise

to the DP recursion we use to find the minimum-cost covering of the entire network.

Choosing a combination of covers for an arc affects how we cover any incoming

arcs. Also, the cost of welding depends on this decision. However, the set of possible

combinations of covers for any arc is not immediately obvious from the number of

fibres travelling along that arc. This set is determined by the sets both further

from and closer to the exchange. However, we are able to determine bounds on the

fibre capacity that needs to be covered along any arc. Using these bounds we can

construct the set of all possible combinations of covers along every arc. These sets

make up the state space for the DP formulation.

Determining the State Space We find bounds on the fibre capacity for any

combination of covers along an arc using two quantities: minimum effective capacity

and maximum effective capacity. We will demonstrate the calculations required to

determine these quantities using the subnetwork depicted in figure 4. Each arc is

labelled and displayed below its label is the minimum effective capacity/maximum
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Figure 4: Determining the state space



effective capacity and [lower bound, upper bound] for the combinations of covers.

The minimum effective capacity of an arc is a lower bound on the fibre capacity

for any combination of covers used along that arc. We determine the minimum

effective capacity for a arc in two steps. First, we find the maximum of the total

fibres along the arc and the sum of minimum effective capacities along any incoming

arcs. Then, we find the minimum capacity of any combination of covers that can

hold that maximum. Any arc that starts at a leaf node of the logical tree has no

incoming arcs, so we can calculate the minimum effective capacity for all arcs by

starting from the leaf nodes and moving towards the exchange.

For arcs A, B, and C, the minimum effective capacity is the minimum capacity

for any combination of covers that holds the new fibres: 153 fibres may be contained

in one 144 (fibre capacity cover) and one 24; 29 fibres may be covered in one 48 and

63 fibres may be covered in one 48 and one 24. Along arc D, the incoming arcs (arc

A) have a total minimum effective capacity of 168, but the arc carries 184 fibres (153

+ 31), so we find the combination of covers with minimum capacity, one 144 and

one 48. Along arc E there are no new fibres, so the minimum effective capacity is

the sum of the minimum effective capacities of the incoming arcs (48 + 72 = 120).

Along arc F there are new fibres, but the sum of the incoming minimum effective

capacities (192 + 120 = 312) is greater than the total fibres along the arc (184 +

92 + 15 = 291). Therefore, the minimum effective capacity is 312.

The maximum effective capacity of a arc is an upper bound on the fibre capacity

for any combination of covers used along that arc. Given only new fibre along a

arc, we would never provide extra fibre capacity along an arc unless it was cheaper

to do so. Therefore, the maximum capacity of any combination of covers along the

arc is given by the cheapest combination of covers (in terms of cost per unit length)

that holds the new fibres. Given a node with incoming arcs and (possibly) new

fibres, the maximum capacity of any combination of covers along the outgoing arc

would arise if all the new fibres were covered separately. By adding the maximum

effective capacity of the incoming arcs to the new fibres then finding the cheapest

combination of covers for that sum we get the maximum effective capacity for the

arc itself. Again, we can calculate the maximum effective capacity for all the arcs

by starting from the leaf nodes and moving towards the exchange.

For arcs A, B, and C, the maximum effective capacity is given by the capacity

for the cheapest combination of covers that holds the new fibres: 168 for arc A

(one 144 and one 24); 48 for arc B (one 48); and 96 for arc C (one 96). Along arc

D, the 31 new fibres may be covered cheaply with a 48 giving maximum effective

capacity of 168 + 48 = 216. Along arc E, there are no new fibres so the maximum

effective capacity is 48 + 96 = 144 (the sum of the maximum effective capacities of

the incoming arcs). Finally, along arc F the new fibres may be covered cheaply by

a 24 so the maximum effective capacity is 216 + 144 + 24 = 384.

Unfortunately, the maximum effective capacity does not account for welding.

We may sometimes add unused capacity along a arc if it reduces welding costs later.

We don’t need to worry about welding costs at those arcs incident to the exchange

(exchange arcs), but all other arcs are affected. However, we would never use a

combination of covers along an arc with greater capacity than the combination of

covers used into the exchange. We get a true upper bound on the fibre capacity that

needs to be covered along any arc by using the maximum effective capacity of the



exchange arc it (eventually) feeds into.1

The maximum effective capacity of the exchange arc (F) becomes the upper

bound for all the arcs feeding into it (A, B, C, D, and E), so the fibre capacity

bounds for combinations of covers along all the arcs is shown. For arc F this means

the possible combinations of covers along the arc are: 9×24, 7×24 and 1×48, . . . , 2×

144 and 1 × 96.

Given the bounds on the fibre capacity for any combination of covers along an

arc, we can then find all possible combinations of covers that lie within those bounds.

These combinations represent the different DP states that may be present along this

arc.

3.3 Solving the DP formulation

Now that we know all states (possible combinations of covers) for every arc we can

solve our DP recursion. Each branch of the logical tree may be solved separately,2

starting at the exchange arc and moving out through the rest of the branch. The

cost of selecting a state for an arc is given by the cost of laying the associated

combination of covers along the arc added to the minimum cost of selecting states

for the incoming arcs and welding the associated covers into the covers along the arc

itself.

The more states (combinations of covers) for each arc, the larger the computa-

tional cost of solving the DP recursion. For the problems considered (the Auckland

and Wellington CBDs), we found the DP recursion intractable. To overcome this,

we set a user-specified limit on the number of covers in any combination of covers.

Using this limit to (significantly) reduce the state space allowed us to solve the DP

recursion in a reasonable time. As we increased the limit on the number of covers

the DP recursion took longer to solve, but the solution becomes closer to optimal.

In §5 we show that the effect of increasing this limit decreases rapidly.

3.4 Guaranteeing Optimality

The solutions we obtained from DP provided cheaper coverings than the FiDO

heuristic (see §5). However, even if we could achieve an optimal solution from DP, it

would not necessarily be optimal for the network covering problem. When forming

the logical tree, nodes were sometimes duplicated (if they appeared on more than one

divergent path, see §3.1). The DP recursion relies on these nodes being considered

separately. However, the fixed welding cost means this may not always be the case.

If DP decides to weld at each copy of a single node it will pay this fixed cost twice.

In reality, there is only a single vault, so there will only be a single fixed cost for

welding.

Therefore, DP solves a slightly different problem from the actual network covering

problem. We can recalculate the cost of the DP solutions to properly account for

fixed weld costs, but the DP will still be guided by a slightly inaccurate costing. We

were unsure how great an effect this inaccuracy was having on the solutions. We

used IP to remove this inaccuracy while solving the DP formulation. We could not

1There are tighter upper bounds that may be calculated, but the time to calculate these bounds

is similar to the solution time for DP.
2Parallel processing could significantly reduce the time required to solve the DP recursion.



solve the problem as quickly with IP, but it offered us a comparison between the

actual optimal solution and the DP solution. We next describe the IP formulation

in §4.

4 Integer Programming Formulation

Our IP formulation uses the framework from the DP formulation (including the

user-specified limit on the number of covers). We still use the logical tree structure

(including incoming arcs), but different arcs are allowed to start at the same node.

This change is possible because IP does not need the tree structure required by the

DP recursion. Binary variables represent decisions about the combination of covers

used along each arc and any welding used at each node. Other constraints and

variables ensure that the covers of incoming arcs can be welded into the subsequent

covers.

We describe the IP formulation in detail throughout the rest of this section.

4.1 Definitions

The DP formulation generates the following sets:

A = the set of all (logical) arcs;

N = the set of all nodes;

T = the set of all cover types;

P (a) = the set of possible coverings for arc a ∈ A;

I(a) = the set of incoming arcs into arc a ∈ A;

S(n) = the set of arcs that start at node n ∈ N ;

with the following parameters:

ψunit = the unit weld cost;

ψfixed = the fixed weld cost;

ν(a) = the number of new fibres entering the network along arc a ∈ A;

λ(a) = the length of arc a ∈ A;

γ(t) = the fibre capacity of cover type t ∈ T ;

π(t) = the cost per unit length of cover type t ∈ T ;

µ(p, t) = the number of covers of type t ∈ T in covering p ∈ ∪a∈AP (a).

4.2 Decision Variables

Given the previous definitions we define the following decision variables

zap = 1 if covering p ∈ P (a) is used on arc a ∈ A, 0 otherwise;

datu = the number of covers of type t ∈ T that transfer to type u ∈ T

(with γ(u) > γ(t)) along arc a ∈ A;

sat = the number of covers of type t ∈ T that start along arc a ∈ A;

fa = the fibre count at the start of arc a ∈ A;

wn = 1 if there is a weld at node n ∈ N.



4.3 Objective Function

We want to minimise the total cost of covering the network including any welds that

need to be made.

Z =
∑

a∈A

∑

p∈P (a)

∑

t∈T

µ(p, t)π(t)λ(a)zap
︸ ︷︷ ︸

cost of using covering p

along arc a

+
∑

n∈N

ψfixedwn +
∑

a∈A

∑

t∈T

∑

ψunit

u∈T

γ(u)>γ(t)

γ(t)datu

Note that the last term in the objective function represents the total unit cost of

welding. The number of covers of type t ∈ T that transfer to another type along

a ∈ A is given by datu, but each cover t ∈ T requires γ(t) welds to transfer.

4.4 Unique Covering Constraints

Each arc can only use one covering.
∑

p∈P (a)

zap = 1, a ∈ A

4.5 Demand-Supply Constraints

We need to ensure that all covers coming into a arc a ∈ A either continue along c

or transfer to another cover type.
∑

i∈I(a)

∑

p∈P (i)

µ(p, t)zip −
∑

datu

u∈T

γ(u)>γ(t)

=
∑

p∈P (a)

µ(p, t)zap − sat, a ∈ A, t ∈ T

The left side of the constraint counts the covers of type t from the incoming arcs

that continue without transferring. The right side of the constraint counts covers of

type t that don’t start along arc a, i.e., continue from an incoming arc. Since arcs

that don’t transfer continue along the arc these two quantities must be equal. This

constraint determines the “demand” and “supply” for covers of type t along arc a.

We include the following constraint to ensure that any transferring covers move

into a new cover. ∑

γ(u)

u∈T

γ(u)<γ(t)

daut ≤ γ(t)sat, a ∈ A, t ∈ T

It forces the “supply” of fibre capacity for a particular cover type t along a to be

more than the “demand” for that fibre capacity from transferring covers.

4.6 Fibre Covering Constraints

The total fibre leaving an arc is equal to the fibre coming into the arc plus any new

fibres along the arc (i.e., fibres are conserved).

ν(a) +
∑

i∈I(a)

fi = fa, a ∈ A

The fibre leaving an arc must fit into the covering along that arc.
∑

p∈P (a)

∑

t∈T

µ(p, t)γ(t)zap ≥ fa, a ∈ A



4.7 Welding Constraint

If there is any transfer of covers along an arc then there is a weld at the start node

for that arc. ∑

a∈S(n)

∑

t∈T

∑

datu

u∈T

γ(u)<γ(t)

≤Mwn, n ∈ N,M large

4.8 Problem-Specific Constraints

Finally, when we used our IP formulation on a problem with four cover types from

table 1 we noticed some infeasible welding decisions. Specifically, 3 covers of capacity

96 would be welded into 2 covers of capacity 144. Since fibres from existing covers

cannot be split, this welding should be banned. The following constraint ensures

that at most one 96 cover will be placed into every 144 cover.

da,96,144 ≤ sa,144, a ∈ A

4.9 Formulation Summary

The complete IP formulation is given below.

minZ =
∑

a∈A

∑

p∈P (a)

∑

t∈T

µ(p, t)π(t)λ(a)zap +
∑

n∈N

ψfixedwn +
∑

a∈A

∑

t∈T

∑

ψunit

u∈T

γ(u)>γ(t)

γ(t)datu

subject to
∑

p∈P (a)

zap = 1, a ∈ A

∑

i∈I(a)

∑

p∈P (i)

µ(p, t)zip −
∑

datu

u∈T

γ(u)>γ(t)

=
∑

p∈P (a)

µ(p, t)zap − sat, a ∈ A, t ∈ T

∑

γ(u)

u∈T

γ(u)<γ(t)

daut ≤ γ(t)sat, a ∈ A, t ∈ T

ν(a) +
∑

i∈I(a)

fi = fa, a ∈ A

∑

p∈P (a)

∑

t∈T

µ(p, t)γ(t)zap ≥ fa, a ∈ A

∑

a∈S(n)

∑

t∈T

∑

datu

u∈T

γ(u)<γ(t)

≤Mwn, n ∈ N,M large

da,96,144 ≤ sa,144, a ∈ A

zap ∈ {0, 1}, a ∈ A, p ∈ P (a),

datu ∈ Z
+, a ∈ A, t ∈ T, u ∈ T, γ(t) < γ(u),

sat ∈ Z
+, a ∈ A, t ∈ T,

wn ∈ {0, 1}, n ∈ N



5 Results

FiDO was developed for the Windows platform (in Microsoft Visual Studio). Using

much of the FiDO source code, we wrote a DP application in Microsoft Visual C++

and solved the network covering problem on an AMD Athlon 1400+ (256 MB RAM).

We solved the IP formulation using CPLEX 6.6.0 in Red Hat Linux 8.0 running on

a dual processor 550 MHz Pentium III (256 MB RAM).

Two different CBDs were considered, Auckland and Wellington, with the four

cover types in table 1. Additionally, we considered four different cases of tubification

(see table 2). As briefly described in §1, fibres are placed into tubes separately for

each street (street tubification) and (may be) aggregated into tubes again at the

vault (vault tubification). Street tubification rounds the demand for each street to

a multiple of the street tube size. Vault tubification rounds the total demand at

a vault to a multiple of the vault tube size. We can then work in multiples of the

tubification, e. g., with FibCost12,0 tubification, a street demand of 22 is rounded

to 24 and then becomes a demand of 2 and the cover capacities become 2 (24), 4 (48),

8 (96) and 12 (144). The welding costs are given as ψunit = $18 and ψfixed = $400.

Tubification Street Tube Size Vault Tube Size

FibCost1,0 1 None

FibCost1,1 1 1

FibCost12,0 12 None

FibCost1,12 1 12

Table 2: Different tubifications

Finally, we tested cover limits of 1, 2, 3, 4, and 5.

While developing the DP application we noticed that FiDO would always place

new fibres into a single cover. In many cases this pushed the cost higher, so we

changed FiDO to allow multiple covers to be used for new fibres and achieve signif-

icantly cheaper coverings. The results for the old version of FiDO, our new version

of FiDO, the DP application and the IP formulation are given in tables 3 and 4.

Note that the cost for the DP formulation is the actual cost of covering the network

with the multiple fixed cost charges removed.

It is obvious from tables 3 and 4 that DP outperforms FiDO when more than

2 covers are allowed along the arcs. It is interesting to observe the change in the

improvement as the number of covers increases. Figures 5 and 6 show the percentage

improvement against the solution time for Auckland and Wellington, respectively.

From these plots we see that as the limit on the number of covers increases the

amount of time required to solve using DP grows far more quickly than the improve-

ment in the cost of the solution. The plots indicate the best choice for the limit in

these examples is 3–4. Beyond that the saving does not justify the computational

expense.

Our results show that when IP terminates at optimality, it gives a cheaper cov-

ering for the network, but with an improvement of less that %0.1. Therefore, DP

yields a solution that is very close to optimal, indicating that the way the DP formu-

lation models welding does not have a significant effect. The high quality of the DP

solutions is evident from IP’s inability to outperform DP if it is terminated before

optimality.



Integer/Linear % Improvement
Cover DP Solution IP Solution Gap DP over IP over

Limit Cost Time (ms) Cost Time (ms) Termination new FiDO DP

Auckland CBD FibCost1,0, old FiDO = 934650, new FiDO = 539761
1 572656 12063 572288 12708240 0.00% -6.09 0.06

2 516584 16641 516583 998970 0.00% 4.29 0.00

3 509012 129922 508856 284330 0.00% 5.70 0.03

4 505613 34971265 505393 370180 0.00% 6.33 0.04

5 503611 66057755 503391 217490 0.00% 6.70 0.04

Auckland CBD FibCost1,1, old FiDO = 934650, new FiDO = 539761
1 572656 12000 572288 12717130 0.00% -6.09 0.06

2 516584 16719 516584 999660 0.00% 4.29 0.00

3 509012 1290993 508856 291210 0.00% 5.70 0.03

4 505613 34936294 505393 369710 0.00% 6.33 0.04

5 503611 66123813 503391 218400 0.00% 6.70 0.04

Auckland CBD FibCost1,12, old FiDO = 955778, new FiDO = 758074
1 752121 1984 752104 893600 0.00% 0.79 0.00

2 722912 2969 765182 13630170 6.72% 4.64 -5.52

3 708379 57344 761521 13542410 8.42% 6.56 -6.98

4 703227 1009219 728108 23615100 4.90% 7.24 -3.42

5 701813 26786922 745532 43121210 7.28% 7.42 -5.86

Auckland CBD FibCost12,0, old FiDO = 1042179, new FiDO = 827815
1 807699 1969 807411 62000 0.00% 2.43 0.04

2 770500 2843 769817 4360160 0.00% 6.92 0.09

3 763029 16594 766779 33988290 1.51% 7.83 -0.49

4 761867 881812 814878 17889920 7.87% 7.97 -6.51

5 759437 25580031 790617 18004720 5.56% 8.26 -3.94

Table 3: Comparing IP and DP for Auckland
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Figure 5: Improvement using DP compared to solution time for Auckland CBD



Integer/Linear % Improvement
Cover DP Solution IP Solution Gap DP over IP over

Limit Cost Time (ms) Cost Time (ms) Termination new FiDO DP

Wellington CBD FibCost1,0, old FiDO = 1158823, new FiDO = 945839
1 920216 13672 920216 9782 0.00% 2.71 0.00

2 895370 14187 895036 76636 0.00% 5.34 0.04

3 891815 18062 891223 309726 0.00% 5.71 0.07

4 890962 59156 892759 12352070 0.40% 5.80 -0.20

5 890637 387078 900267 8456020 1.40% 5.84 -1.07

Wellington CBD FibCost1,1, new FiDO = 945839
1 920216 13703 920216 9840 0.00% 2.71 0.00

2 895370 14219 895036 75993 0.00% 5.34 0.04

3 891815 18110 891223 310120 0.00% 5.71 0.07

4 890962 59328 892759 12352070 0.40% 5.80 -0.20

5 890637 82984 900267 8456020 1.40% 5.84 -1.07

Wellington CBD FibCost1,12, new FiDO = 1108452
1 1082256 1422 1082143 5374 0.00% 2.36 0.01

2 1049211 1657 1048242 22380 0.00% 5.34 0.09

3 1039160 4109 1039126 110430 0.00% 6.25 0.00

4 1038096 22453 1041268 6085940 0.34% 6.35 -0.30

5 1037774 259313 1038831 9531690 0.17% 6.38 -0.10

Wellington CBD FibCost12,0, old FiDO = 1256389, new FiDO = 1341087
1 1214719 1828 1214618 6682 0.00% 3.32 0.01

2 1188281 1938 1188138 24080 0.00% 5.42 0.01

3 1179657 4656 1179416 243020 0.00% 6.11 0.02

4 1179403 17578 1179244 6916200 0.00% 6.13 0.01

5 1179403 97062 1185260 11626380 0.62% 6.13 -0.49

Table 4: Comparing IP and DP for Wellington
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Figure 6: Improvement using DP compared to solution time for Wellington CBD



The running times for IP are interesting for the Auckland CBD with tubifications

FibCost1,0 and FibCost1,1. As the limit on the number of covers increases, the

running times decrease. This behaviour is unexpected and is not observed in the

other cases. Auckland is the larger network, and these two cases have no reduction

due to tubification (as explained earlier in this section). We think that the loss

in flexibility caused by tubifying fibres makes the other Auckland cases harder to

solve, even as the limit on the number of covers increases. The topology of the

Wellington network makes it hard to solve, even with the flexibility from tubifications

FibCost1,0 and FibCost1,1. For these cases, it may be that the running times

start to decrease as the cover limit gets even higher. This may also be true for

the Auckland CBD with tubifications FibCost1,12 and FibCost12,0, but memory

limitations on our computers do not allow us to determine this.

6 Conclusions

The Cover Optimisation problem is a generalised set covering problem with addi-

tional side constraints, complicated by a mixture of fixed and variable costs. We

developed two approaches for solving this problem, one using a DP formulation and

the other using a similar IP formulation.

The DP formulation performed better than the existing heuristic in FiDO, indi-

cating the savings that can be made when solving the Cover Optimisation problem.

Also, our comparison with IP shows how close to optimal the DP solutions are. In

fact, when IP did not achieve optimality (because of early termination), DP gives a

cheaper network covering. Furthermore, the computational performance of the DP

model was significantly better than IP in most cases, a feature that became more

pronounced as the problem size increased. For this reason we conclude that DP is a

practical approach for obtaining near-optimal solutions for the Cover Optimisation

problem in reasonable time.
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