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Abstract

With the current trend toward centralised storage, storage area networks
are becoming a critical part of commercial computer networks. In this paper
we present a formal definition of the storage area network design problem.
We summarise an approach from Hewlett-Packard Laboratories for solving
this problem that considers all possible network components and uses mixed-
integer programming to select a design. We also summarise a preprocessing
method that significantly reduces the size of this formulation. We then present
a new formulation that uses generic components instead of including all pos-
sible components. We modify the preprocessing method to provide an cost
function for the generic components. The size of our generic formulation is
a significant reduction from the size of the Hewlett-Packard formulation. We
compare the two formulations using a small example storage area network
design problem.

Key words: Integer programming; network design; storage area networks

1 Introduction

Institutions that handle large amounts of data use storage area networks (SANs)
to improve data management. SANs consist of links, hubs and switches (standard
components in many computer networks) and allow data to flow between the hosts

∗Initial research performed as an employee of Hewlett-Packard Laboratories, Palo Alto, Cali-
fornia, USA.
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that use the data (client machines and/or servers) and the storage devices for the
data. Figure 1 shows an example of a SAN.

The SAN design problem (SANDP) requires a configuration of links, hubs and
switches to simultaneously support the bandwidth requirements for a set of data
flows. Each flow starts at a host, moves through the SAN, and finishes at a device.
The path that a flow follows must provide enough bandwidth capacity to support
the flow’s bandwidth requirement. The design of the SAN is restricted by the num-
ber of ports and bandwidth capacity of the hosts, devices, links, hubs and switches.
The objective of the SANDP is to minimise the cost of the SAN design.

1.1 Background

There are many problems in the network design literature that share common fea-
tures with the SANDP. If each flow must follow a unique path, then the SANDP
extends the non-bifurcated network loading problem ([13], [14], [3], [17], [1]), which
is NP–hard. If we allow the flows to be split along multiple paths, the SANDP
simplifies to the multicommodity network design problem ([19], [5], [16], [4], [8], [2]),
which is also NP–hard, even in the single commodity case ([12]). The SANDP also
combines elements of degree-constrained network design ([10], [12], [9]) with node
costs ([14]) and node capacities ([11], [23]).

A number of survey papers have been written on the related problem of hub location
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([18], [7], [22]). This problem involves the connection of a group of nodes via a
network of switches and links, resulting in two subnetworks: the “backbone” and
the “tributary”. In the SANDP the backbone is a “mesh” of hubs and switches
with each tributary being a “star” of links to the hosts and/or devices. Reliability
can be incorporated by considering “dual homing” which creates two disjoint paths
for each flow. The only work on the mesh/star topology in hub location literature
uses heuristics [14, 6] to design the networks. Gavish [14] also uses a Lagrangian
relaxation of a classical network design formulation to provide lower bounds for the
design cost. However, his formulation does not include many aspects considered in
the SANDP including degree limits for nodes and bandwidth capacities on nodes
and links.

In Gross and Yellen’s comprehensive survey of the graph theory literature [15], Mir-
chandi and Simchi-Levi [20] discuss communication network design models including
capacitated network design with varying bandwidth capacities along links. However,
their models also don’t include degree limits for nodes and bandwidth capacities on
nodes.

The only previous research on the SANDP [24, 21] uses a classical network design
mixed-integer programming (MIP) approach. Ward et al. [24] refer to a MIP model
without presenting a formulation. O’Sullivan et al. [21] present a preprocessing
method for significantly reducing the size of Ward et al.’s formulation. The for-
mulation includes all possible links, multi-hubs (see section 3 for a description of
multi-hubs) and switches with binary variables to determine if each component is
used or not. The preprocessing method finds the cheapest multi-hub for each combi-
nation of number of ports and bandwidth capacity that may be needed in the SAN
(for more detail see section 4). This reduces the size of the formulation because all
other multi-hubs are removed from consideration.

We present a new MIP formulation that considers generic links, multi-hubs and
switches. We extend O’Sullivan et al.’s preprocessing method to provide a costing
mechanism for these generic components. The size of our new formulation is signif-
icantly smaller than that of Ward et al. (even after applying preprocessing to their
formulation).

1.2 Summary

In this paper we present a new formulation for the SANDP that puts generic com-
ponents into the network and uses MIP to determine their properties. We modify
an existing preprocessing method to find the optimal component type for any pos-
sible set of component properties. Our preprocessing method returns 3 “technology
tables” (one for switch types, one for “multi-hub” types and one for link types) that
may be used to identify the optimal component type once the component properties
have been established. We show how these tables induce (optimal) piecewise-linear
cost functions on component properties and embed the technology tables and cost
functions within the new generic MIP formulation. When solving the generic MIP
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formulation, we focus on finding the best properties for each generic component and
the MIP then determines the appropriate component type.

Section 2 contains our description of the SANDP, including the notation used through-
out this paper. We summarise the “Hewlett-Packard” MIP formulation [24] for SAN
design in section 3. In section 4 we summarise our preprocessing method (slightly
modified from that in [21]) for generating technology tables and show how to use the
technology tables to significantly reduce the size of the Hewlett-Packard MIP formu-
lation. We model the technology table using mathematical programming in section
5 and embed this model within our generic MIP formulation for the SANDP in sec-
tion 6. Finally, we give some preliminary results comparing the two formulations in
section 7.

2 The SAN Design Problem

The SANDP requires the construction of a minimum-cost network consisting of links,
hubs and switches to support a given flow of data between the hosts and devices.
First, we briefly discuss each of the SAN entities:

• hosts are machines that generate requests for data such as web servers or
individual client machines. Hosts have a limited number of ports and each
port has a limited bandwidth capacity for data flow;

• devices are machines that store data such as disk drives, disk arrays or tape
drives. Devices also have a limited number of ports with each port having a
limited bandwidth capacity for data flow;

• links are cables that transport data. The bandwidth capacity for the data
flow through a links depends on the type of cable used. Some examples of
cabling technology are SCSI, ethernet and fibre channel. Current SANs often
utilise fibre channel cables because of their large bandwidth capacity;

• hubs allow for multiple machines (hosts, devices and/or switches) to share
data. Data flows into a hub via a link from a machine port, visits all other
ports connected to the hub (to determine where it should leave) and then exits
via the appropriate port. Since the data must visit every connected port, the
bandwidth capacity for data flowing through the hub is restricted not only
by the hubs, but also by all incident links and the (external) ports connected
to those links. Therefore, there is no need to connect any machine to a hub
more than once (since no extra bandwidth capacity is provided). Note that
connecting two hubs together only provides extra connectivity (i.e., ports), not
extra bandwidth capacity;

• switches act as a set of ports with the ability to route flow from one port
to another. The only limitation is the number of ports and the bandwidth
capacity of each port;

4



• flows are a demand for enough bandwidth capacity to allow data to flow
between a specific host and specific device.

To construct a SAN we must select links, hubs and switches from the sets of possible
link, hub and switch types, then decide how to configure the chosen components to
provide the required connectivity and bandwidth capacity between the hosts and
devices.

2.1 Definitions

Let H be the set of hosts and D be the set of devices. For each h ∈ H define η(h)
as the number of available ports on h and β(h) as the bandwidth capacity of those
ports (similarly define η(d) and β(d) for d ∈ D). Let F be the set of flows and for
each f ∈ F define the required bandwidth capacity β(f) for data to flow between
the source host θ(f) and destination device δ(f).

Let L,H and S be the set of available link, hub and switch types respectively. The
parameters of the link, hub and switch types are as follows:

• each link type t ∈ L costs γ(t) and has a given bandwidth capacity β(t);

• each hub type t ∈ H costs γ(t), has a given number of ports η(t) costing π(t)
each, and bandwidth capacity β(t);

• each switch type t ∈ S costs γ(t), has a given number of ports η(t) costing
π(t), and port bandwidth capacity β(t).

These definitions will be used throughout the remainder of this paper.

3 The Hewlett-Packard MIP Formulation

Ward et al. give an MIP formulation for solving the SANDP [24, 21]. Their classical
network design formulation adds all “possible” components and then selects the
optimal network using MIP. However, modelling the behaviour of the hub-to-hub
connections presents a challenge. One could group interconnected hubs together
into a set, use binary variables to represent membership in a particular set, and give
each set the appropriate behaviour. However, the number of possible sets grows
exponentially with the number of hubs. Instead, it is easier to generate possible
multi-hub types M (that is, one or more hubs connected by links), ban connections
between multi-hubs and add all possible multi-hubs. Figure 2 shows the multi-hub
(highlighted) from the example SAN (see figure 1) with the internal link and external

links indicated. The internal link is modelled implicitly with its bandwidth capacity
(along with the bandwidth capacities of the hubs) determining the bandwith capacity
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Figure 2: Example Multi-hub

of the multi-hub. The external links are modelled explicitly and their bandwidth
capacities limit flow through the multi-hub, see (6).

Each multi-hub type t ∈ M costs γ(t), has a given number of ports η(t) costing
π(t) each, and bandwidth capacity β(t) (note that a multi-hub’s port bandwidth
capacity is the same as its bandwidth capacity). By examining the SANDP link
types, hub types and flows we can determine a priori lower and upper bounds on
η(t) and β(t) for any multi-hub t ∈ M in an optimal SAN design. We can then
enumerate all possible combinations of hub types that provide a multi-hub type with
properties within these bounds. For each combination we use the cheapest link type
that supports the bandwidth capacity. Thus, given L, H and F we can determine
the set of possible multi-hub types M.

Heuristics developed by Hewlett-Packard Laboratories [24] can provide upper bounds
on the cost of a SAN fabric design for any specific problem. This gives a bound
on the number of possible components (links, multi-hubs and/or switches) in an
optimal SAN. We may also infer upper bounds on the number of links, multi-hubs
and switches by examining the SANDP input.

The Hewlett-Packard formulation uses these bounds to add all possible links L,
multi-hubs M and switches S into the network. Each link l, multi-hub m and switch
s has a given link type τ(l), multi-hub type τ(m) and switch type τ(s) respectively.
For brevity we refer to the set of multi-hubs and switches as nodes N ≡ M ∪ S.
Each link has a start point ϕ(l) ∈ H ∪ N and an end point ω(l) ∈ N ∪ D. Two
multi-hubs may not be linked, so either ϕ(l) or ω(l) must lie outside M . Also, we
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don’t allow links to “reflect” each other, so there is no pair of links l and l′ with
ϕ(l) = ω(l′) and ω(l) = ϕ(l′).

3.1 Decision Variables

Given the set of candidate links L and nodes N , we need to decide which ones to
keep. We also need to decide which links will take a flow from its host to its device.
Define

un = 1 if we keep node n vl = 1 if we keep link l

= 0 otherwise = 0 otherwise

afl = 1 if link l caries flow f forwards bfl = 1 if link l caries flow f backwards

= 0 otherwise = 0 otherwise

Note that links from hosts (to devices) will only carry flow originating at that host
(terminating at that device), so we fix afl = bfl = 0 if l starts from a different host,
that is ϕ(l) ∈ H \ {θ(f)} (ends at a different device, that is ω(l) ∈ D \ {δ(f)}),
and remove these variables from the problem. Also, in the SANDP we only consider
flow moving from the hosts to the devices (although in reality data moves both ways
along a flow’s path), so flow cannot go into hosts or leave devices. Therefore, we can
set bfl = 0 for any link l leaving a host or entering a device (ϕ(l) ∈ H or ω(l) ∈ D).
These variables are also removed from the problem.

3.2 Objective Function

Each node has the properties (number of available ports, port cost, bandwidth or
port bandwidth, cost) of its (multi-hub or switch) type and each link also has the
properties (cost, bandwidth) of its type. For brevity, we omit the type from our
notation, i.e., γ(l) ≡ γ(τ(l)) and β(n) ≡ β(τ(n)). The total cost of the SAN design
is the cost of including the nodes and links

Z =
∑

n∈N

γ(n)un +
∑

l∈L

(π(ϕ(l)) + γ(l) + π(ω(l)))
︸ ︷︷ ︸

cost of link and incident ports

vl (1)

In [21] the port cost of multi-hubs is assumed to be 0, but we do not make that
assumption here. We show how to deal with non-zero multi-hub port costs when
building the technology table (see section 4).

3.3 Flow Constraints

The flow constraints ensure that flow is routed through the SAN in an appropriate
manner. Each flow f should only travel along a link l in one direction (otherwise
bandwidth would be wasted without moving the flow anywhere)

afl + bfl ≤ 1, f ∈ F, l ∈ L (2)
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Flows first leave their host, then move through nodes in the network until entering
the appropriate device (these constraints are similar to flow consevrvation constraints
in network flow formulations)

∑

afl

l∈L

ϕ(l)=h(f)

= 1, f ∈ F

∑

afl

l∈L

ϕ(l)=n

+
∑

bfl

l∈L

ω(l)=n
︸ ︷︷ ︸

flow going out of n

=
∑

afl

l∈L

ω(l)=n

+
∑

bfl

l∈L

ϕ(l)=n
︸ ︷︷ ︸

flow going into n

, f ∈ F, n ∈ N

∑

afl

l∈L

ω(l)=d(f)

= 1, f ∈ F

(3)

3.4 Component Constraints

Component constraints ensure that components in the SAN obey their specific prop-
erties. Hosts, devices and nodes can only connect to as many links as they have
available port slots

∑

vl

l∈L

ϕ(l)=c

+
∑

vl

l∈L

ω(l)=c

≤ η(c), c ∈ H ∪ D

∑

vl

l∈L

ϕ(l)=n

+
∑

vl

l∈L

ω(l)=n

≤ η(n)un, n ∈ N
(4)

The total bandwidth of flows through a multi-hub is restricted by the multi-hub,
its ports and all links and ports directly connected to it. We model the multi-hub
bandwidth restriction

∑

f∈F

β(f)
(∑

afl

l∈L

ϕ(l)=m

+
∑

bfl

)

l∈L

ω(l)=m
︸ ︷︷ ︸

flow out of m

≤ β(m)um, m ∈ M. (5)

By defining the actual link bandwidth capacity

β̂(l) = min{β(l), β(ϕ(l)), β(ω(l))}

we can restrict flow (through the multi-hub m) to be less than the bandwidth ca-
pacity of each incident link l and its ports ϕ(l) and ω(l) (including the port on
m)
∑

f∈F

β(f)
(∑

afk

k∈L

ϕ(k)=m

+
∑

bfk

)

k∈L

ω(k)=m

≤ β̂(l)+β(m)(1−vl), l ∈ L,ϕ(l) = m or ω(l) = m. (6)
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The bandwidth of flows through a switch is only restricted by the bandwidth capacity
of its ports, which is dealt with by the link bandwidth constraints (7).

The total bandwidth of flows through a link is restricted by the actual link bandwidth
capacity.

∑

f∈F

β(f) (afl + bfl) ≤ β̂(l), l ∈ L (7)

3.5 Example

To demonstrate the Hewlett-Packard MIP formulation (and compare it to our new
generic formulation) we will use a small SANDP example. This example problem
has 5 hosts and 5 devices with 25 flows between the hosts and devices. The hosts
and devices all have 2 port slots available and a port bandwidth capacity of 100
MB/s. The cost of using a port slot on any host is $600, while there is no cost for
port slots on the devices. The bandwidth requirements for the flows are given in
Table 1.

Table 1: Flow requirements for example SANDP

Name Host Device Requirement
(MB/s)

Name Host Device Requirement
(MB/s)

Flow1 Host3 Device1 17 Flow14 Host3 Device4 37
Flow2 Host2 Device2 49 Flow15 Host3 Device5 71
Flow3 Host5 Device3 16 Flow16 Host5 Device4 36
Flow4 Host4 Device4 21 Flow17 Host3 Device3 9
Flow5 Host3 Device5 12 Flow18 Host1 Device4 8
Flow6 Host1 Device1 36 Flow19 Host5 Device1 52
Flow7 Host2 Device2 34 Flow20 Host2 Device2 6
Flow8 Host5 Device3 49 Flow21 Host5 Device1 19
Flow9 Host4 Device4 59 Flow22 Host1 Device3 15
Flow10 Host4 Device5 70 Flow23 Host1 Device2 77
Flow11 Host4 Device1 4 Flow24 Host2 Device5 3
Flow12 Host4 Device2 7 Flow25 Host1 Device5 8
Flow13 Host2 Device3 83

There are 5 link types, 4 hub types and 3 switch types available to build the SAN.
Table 2 contains the properties of these component types.

Even though this is a small problem compared with those encountered in industry
(where the number of hosts and devices can reach around 100), the size of the
Hewlett-Packard MIP formulation is very large. We know any multi-hub must have
at least 3 ports (or we could use a single link) and its minimum bandwidth capacity
will be the minimum bandwidth capacity of the links and hubs (in our example this
is 30 MB/s). The maximum bandwidth capacity of a multi-hub is the maximum
bandwidth capacity of the links because we must carry flow into the multi-hub
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Table 2: Example component types for SAN design

Name Cost Port Cost Bandwidth
Capacity

Ports
Available

Port Bandwidth
Capacity

($) ($) (MB/s) (MB/s)
Link1 60 – 30 – –
Link2 100 – 50 – –
Link3 120 – 60 – –
Link4 140 – 70 – –
Link5 150 – 100 – –
Hub1 6000 0 50 16 –
Hub2 10000 0 75 10 –
Hub3 11000 0 50 20 –
Hub4 15000 0 100 16 –
Switch1 24000 1000 – 16 100
Switch2 36000 1000 – 32 100
Switch3 30000 500 – 32 75

using some link (in our example this is 100 MB/s). Using this maximum bandwidth
capacity we can find the most flows that may be routed through a single multi-hub
by solving a knapsack problem (in our example at most 10 flows can be routed
through a multi-hub with 100 MB/s bandwidth capacity). Since each flow needs
one port to enter a multi-hub and one port to leave the multi-hub the maximum
number of ports needed for any multi-hub is twice the maximum number of flows
that can be routed through a multi-hub (in our example 2 × 10 = 20 ports). Thus
we find lower and upper bounds on the number of ports (3 and 20, respectively) and
the bandwidth capacity (30 and 100 MB/s, respectively) of any multi-hub. Table 3
shows all possible multi-hub types for our example SANDP (as well as the available
switch types).

For our example SANDP, we estimated an upper bound on the optimal SAN design
cost by first creating a design that uses the switch type with the most ports and
highest port bandwidth capacity (we use the Switch2 switch type for our example).
We need at most one port in and one port out for every flow (since switches route
flows internally), so we need at most 50 switch ports for our example. This requires
2 Switch2 switches. Solving with these switches available gives a design that costs
$56,300 (and uses only 1 Switch2 switch). Using this as an upper bound we add
all possible multi-hub and switch types with links of all available types to connect
them (remember links are banned between multi-hubs and there is no need for more
than one link between a multi-hub and a host, device or switch). Table 3 gives the
number of each node type we included in our candidate node set N .
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Table 3: Multi-hubs and switches for example SANDP

Name Cost Port
Cost

Bandwidth
Capacity

Ports
Available

Port Bandwidth
Capacity

Number
Included

($) ($) (MB/s) (MB/s)
H1 6000 0 50 16 – 9
H2 10000 0 75 10 – 5
H3 11000 0 50 20 – 5
H4 15000 0 100 16 – 3
H1-H1-L1 12060 0 30 30 – 4
H1-H2-L1 16060 0 30 24 – 3
H1-H3-L1 17060 0 30 34 – 3
H1-H4-L1 21060 0 30 30 – 2
H2-H2-L1 20060 0 30 18 – 2
H2-H3-L1 21060 0 30 28 – 2
H2-H4-L1 25060 0 30 24 – 2
H3-H3-L1 22060 0 30 38 – 2
H3-H4-L1 26060 0 30 34 – 2
H4-H4-L1 30060 0 30 30 – 1
H1-H1-L2 12100 0 50 30 – 4
H1-H2-L2 16100 0 50 24 – 3
H1-H3-L2 17100 0 50 34 – 3
H1-H4-L2 21100 0 50 30 – 2
H2-H2-L2 20100 0 50 18 – 2
H2-H3-L2 21100 0 50 28 – 2
H2-H4-L2 25100 0 50 24 – 2
H3-H3-L2 22100 0 50 38 – 2
H3-H4-L2 26100 0 50 34 – 2
H4-H4-L2 30100 0 50 30 – 1
H1-H1-L3 12120 0 50 30 – 4
H1-H2-L3 16120 0 50 24 – 3
H1-H3-L3 17120 0 50 34 – 3
H1-H4-L3 21120 0 50 30 – 2
H2-H2-L3 20120 0 60 18 – 2
H2-H3-L3 21120 0 50 28 – 2
H2-H4-L3 25120 0 60 24 – 2
H3-H3-L3 22120 0 50 38 – 2
H3-H4-L3 26120 0 50 34 – 2
H4-H4-L3 30120 0 60 30 – 1
H1-H1-L4 12140 0 50 30 – 4
H1-H2-L4 16140 0 50 24 – 3
H1-H3-L4 17140 0 50 34 – 3
H1-H4-L4 21140 0 50 30 – 2
H2-H2-L4 20140 0 70 18 – 2
H2-H3-L4 21140 0 50 28 – 2
continued on next page
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Table 3: Multi-hubs and switches for example SANDP

continued from previous page

Name Cost Port
Cost

Bandwidth
Capacity

Ports
Available

Port Bandwidth
Capacity

Number
Included

($) ($) (MB/s) (MB/s)
H2-H4-L4 25140 0 70 24 – 2
H3-H3-L4 22140 0 50 38 – 2
H3-H4-L4 26140 0 50 34 – 2
H4-H4-L4 30140 0 70 30 – 1
H1-H1-L5 12150 0 50 30 – 4
H1-H2-L5 16150 0 50 24 – 3
H1-H3-L5 17150 0 50 34 – 3
H1-H4-L5 21150 0 50 30 – 2
H2-H2-L5 20150 0 75 18 – 2
H2-H3-L5 21150 0 50 28 – 2
H2-H4-L5 25150 0 75 24 – 2
H3-H3-L5 22150 0 50 38 – 2
H3-H4-L5 26150 0 50 34 – 2
H4-H4-L5 30150 0 100 30 – 1
Switch1 24000 1000 – 16 100 2
Switch2 36000 1000 – 32 100 1
Switch3 30000 500 – 32 75 1

The MIP formulation with these node and link sets contains for this example problem
contains 212941 (≈ 2e5) variables and 143753 (≈ 1.5e5)constraints. Analysing the
number of variables and constraints in more detail shows that there are: 141 variables
for node existence; 11300 for link existence; 201500 for flow across links; 119000
constraints for restricting flow forward and back across a link (2); 3575 for conserving
flow around the network (3); 151 for defining connections to hosts, devices and nodes
(4); 137 for restricting flow by hub bandwidth capacity (5); 9590 for restricting flow
by link connections to hubs (6); and 11300 for restricting flow by link bandwidth
capacity (7). This problem takes just over 41

2
hours to solve in CPLEX 9.0.0 (AMPL

Version 20021031 running on a Compaq nx9110 with 890 MB RAM) giving an
optimal design cost of $44,330.

In section 4 we show how to use a preprocessing method to eliminate sub-optimal link
types, multi-hub types and switch types from consideration. By eliminating these
extraneous component types we can considerably reduce the size of the Hewlett-
Packard MIP formulation. We demonstrate this size reduction using our example at
the end of section 4.
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4 Generating Technology Tables

In this section we discuss a priori generation of technology tables for the components
of a SAN. These tables give the optimal component (link, multi-hub or switch)
type to use for all possible combinations of component properties. We use these
technology tables to reduce the size of the Hewlett-Packard MIP formulation (by
only including link, multi-hub and switch types from the tables). We also use the
tables to define the piecewise cost functions for the generic components in our new
MIP formulation (see section 6).

The cost of a component consists of two parts: a fixed cost for purchasing the
component; and a linear cost for using the component properties. Our preprocessing
method creates technology tables of optimal component types for given component
properties. For links, the only relevant property is the bandwidth capacity, so we
can create a table that gives the least cost link type for each specified bandwidth.
Table 4 shows the appropriate link technology table for our example problem (given
in section 3).

Table 4: Example technology table for link types

Bandwidth 1–30 31–50 51–60 61–70 71–100
Capacity (MB/s)
Link Type Link1 Link2 Link3 Link4 Link5
(Cost in $) (60) (100) (120) (140) (150)

For multi-hubs, we need to connect hosts, device and switches while supplying a
specified bandwidth capacity. We can increase the number of possible connections
by adding another hub, although this does not increase the bandwidth (due to the
hub technology limitations discussed in section 3). The relevant properties are the
number of connections and bandwidth capacity the hub supports. O’Sullivan et
al. [21] use a knapsack formulation to calculate an upper bound on the number of
connections needed for a given bandwidth capacity when the flow requirements are
known. Using this bound they calculate the entire table sequentially using small
integer programming formulations. However, they assume no cost per connection,
which is not true in general. Here, we modified their method to include the costs
of the connections (even though they are small compared to the cost of a hub).
Each entry in the table corresponds to the least cost multi-hub configuration that
supplies the required number of connections and bandwidth capacity. The multi-hub
technology table for the example problem is given in Table 5.

Finally, we can create a similar table for switches. However, since connected switches
don’t affect each other, we only need to create a table for single switch types. The
relevant properties for switches are the number of ports on the switch and the
bandwidth capacity of the switch ports. Table 6 shows the switch technology table
for the example problem.
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Table 5: Example technology table for hub types

Multi-Hub Bandwidth Capacity (MB/s)
Configurations 1–30 31–50 51–60 61–70 71–75 76–100

C
on

n
ec

ti
on

s

3–10 Hub1 Hub1 Hub2 Hub2 Hub2 Hub4
Link1 Link2 Link3 Link4 Link5 Link5

11–16 Hub1 Hub1 Hub4 Hub4 Hub4 Hub4
Link1 Link2 Link3 Link4 Link5 Link5

17–18 Hub3 Hub3 2 Hub2 2 Hub2 2 Hub2 2 Hub4
Link1 Link2 Link3 Link4 Link5 Link5

19–20 Hub3 Hub3 Hub2 Hub2 Hub2 2 Hub4
Link1 Link2 Hub4 Hub4 Hub4 Link5

Link3 Link4 Link5

Table 6: Example technology table for switch types

Switch Bandwidth Capacity (MB/s)
Types 1–75 76–100

3–11 Switch1 Switch1
Ports 12–16 Switch3 Switch1

17–32 Switch3 Switch2

The technology tables presented here give us the optimal components to use for any
(necessary) combination of component properties. From these tables we see that the
only multi-hubs we need to consider from Table 3 are: H1, H2, H3, H4, H2-H2-L3,
H2-H2-L4, H2-H2-L5, H2-H4-L3, H2-H4-L4, H2-H4-L5, H4-H4-L5 (Table 3 gives the
number of each of these multi-hub types to consider and we still need to include all
links and switches). Table 7 gives a comparison of the size of the Hewlett-Packard
MIP formulation for the example problem with and without preprocessing to remove
extraneous components. When using preprocessing the size of the problem is reduced
by between 25% and 40%. This problem solves in just over 65 minutes in CPLEX
9.0.0 (AMPL Version 20021031 running on a Compaq nx8220 with 512MB RAM)
to give the optimal design cost of $44330.

The tables in this section not only describe the best technology available for par-
ticular component properties, but they also define a piecewise linear cost function
depending on the properties of the components. For links, the cost function is
a step function, depending on bandwidth capacity. For multi-hubs, the function
moves stepwise in terms of bandwidth capacity, but piecewise linear (possibly dis-
continuous) in terms of the number of connections. This is similar for switches,
with a step function in terms of the port bandwidth capacity and a piecewise linear
function in terms of the number of ports on the switch. In section 5 we describe
how to model these piecewise cost functions within an MIP formulation, allowing
for “generic” components to be included in the formulation.
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Table 7: Comparison of MIP formulation size

Preprocessing? Decrease

No Yes (% to 1dp)
Variables 212941 78199 36.7
Node Existence 141 39 27.7
Link Existence 11300 4160 36.8
Flow Across Links 201500 74000 36.7
Constraints 143753 50219 34.9
Restricting Flow to One Direction (2) 119000 42500 35.7
Flow Conservation (3) 3575 1025 28.7
Define Connections (4) 151 49 32.5
Hub Bandwidth Capacity (5) 137 35 25.5
Link Connections to Hub (6) 9590 2450 25.5
Link Bandwidth Capacity (7) 11300 4160 36.8

5 Modelling the Cost Function

Once we have generated technology tables for the components (see section 4), we can
form the induced piecewise linear cost functions for the different component types.
In this section we describe how to determine these functions from the technology
tables and show how to model these functions within an MIP formulation.

Each linear section of a component cost function has a corresponding section in the
function domain. Consider the three different component types, and the correspond-
ing number of properties:

• links have 1 component property (bandwidth capacity), so the sections are
continuous line segments;

• multi-hubs have 2 component properties (number of connections, bandwidth
capacity), so the sections are rectangles;

• switches also have 2 components (number of ports, port bandwidth capacity),
so the sections are rectangles.

For our example, the component cost functions for links, multi-hubs and switches
(corresponding to the respective technology tables – calculated in section 4) are
shown in figure 3. Note that the cost of the multi-hubs includes the cost of all incident
links. In the generic MIP formulation (see section 6) multi-hubs are modelled with
all their incident links included, however in the Hewlett-Packard formulation (see
section 3) only incident links within the multi-hub are included (links incident to
hosts, devices or switches are modelled separately). The technology table from
section 4 is valid for both formulation because a single link type is used for each
bandwidth capacity range.
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Figure 3: Piecewise linear functions for links, multi-hubs and switches

16



Now that the cost functions are well-defined for the links, multi-hubs and switches,
we can formulate variables and constraints to implement them. First, we define a
binary variable for each section (line segment or rectangle) in the function domain.
This is 1 if the component has properties corresponding to that section of the domain,
or 0 otherwise. Of course, every component must either exist and fall into exactly
one section of the cost function domain, or not exist at all (in which case every
variable is 0).

For example, we can define

zli = 1 if link l has the properties of section i;

= 0 otherwise

(see figure 4) which means
4∑

i=1

zli ≤ 1 (8)

0 20 40 60 80 100
50

60

70

80

90

100

110

120

130

140

150

160

Bandwidth Capacity (MB/s)

Link Cost ($)

zl1

zl2

zl3

zl4

β(1)

β(1) β(2) β(3)

β(2) β(3) β(4)

β(4)

Figure 4: Defining variables for links

We also need to make sure that a component that is priced using a given section
of the cost function domain has properties that lie within the restrictions of the
properties of that section. The usual master-slave constraints for each of the com-
ponent properties implement these restrictions. Returning to our example, we need
to bound the bandwidth βl of a link l depending on the section it belongs to (see
figure 4)

4∑

i=1

β(i)zli ≤ βl, βl ≤

4∑

i=1

β(i)zli for each link l (9)
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For switches, we need to bound both the number of ports ηs and the port bandwidth
βs of each switch s depending on the section it belongs to (see figure 5)
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Figure 5: Defining variables for nodes (switches)

∑

i∈ sections

η(i)zsi ≤ ηs, ηs ≤
∑

i∈ sections

η(i)zsi

∑

i∈ sections

β(i)zsi ≤ βs, βs ≤
∑

i∈ sections

β(i)zsi

for each switch s (10)

We add these master-slave constraints to our new MIP formulation for the SANDP.
This allows us to model generic components, the properties of which are determined
in the solution process, rather than adding individual components (and deciding
which components to include in the network).

One last consideration needs to be included in our MIP formulation, the contribution
of the components to the objective function. We are given a fixed cost for each
section of the component cost function domain. There may also be a variable cost
for each of the different component properties. For SAN design, there is a fixed cost
for each of the different link types used in each section, γ(i) for section i, but no
variable cost on the bandwidth capacity. For the hubs (switches) there is a fixed
cost, no variable cost for the bandwidth (port bandwidth, respectively) capacity,
but there is a variable cost on the number of connections (ports, respectively),
π(i) for section i. However, we are deciding how many connections (ports) the
component has, so this could introduce a non-linearity in determining the cost of
the connections (ports, respectively), i.e., π(i)zmiηm. We can remove this non-
linearity by introducing new decision variables νmi (νsi), representing the number
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of connections (ports, respectively) of section i used by the multi-hub m (switch s,
respectively). Two constraints make sure that these numbers agree with the actual
number of connections and the section to which the multi-hub belongs.

∑

i∈ sections

νmi = ηm

νmi ≤ η(i)zmi, i ∈ sections
for each multi-hub m (11)

There are similar constraints for switches and the number of ports of each section.

The contribution to the objective function is now given by
∑

l∈ links,i∈ link sections γ(i)zli +
∑

m∈ multi-hubs,i∈ multi-hub sections (γ(i)zmi + π(i)νmi)
∑

s∈ switches,i∈ switch sections (γ(i)zsi + π(i)νsi)

In section 6 we present our new MIP formulation that solves the SANDP using
generic components. Rather than deciding what type each of these components
is, we use the master-slave constraints described in this section to focus on the
properties of the components. We also model the cost of these components using
the variables and constraints discussed here.

6 The Generic MIP Formulation

In this section we describe the generic (MIP) formulation for solving the SANDP.
There are two major concepts within this formulation:

• All components to the network are generic, that is their type is not already
determined;

• Multi-hubs are treated as a configuration of hubs with all incident links in-
cluded (so the multi-hub includes any links attached to hosts, devices or
switches).

Both these modifications are included to reduce the size of the formulation. By
allowing the properties of network components to change, we reduce the number of
variables determining inclusion in the network at the expense of introducing variables
to define the components. For a problem of the scale encountered in industry this
results in a significant reduction in the size of the model. By including all incident
links within a multi-hub component, we can also reduce the number of variables
required to model the connections of the component. Other constraints ensure that
the generic components are “well-behaved”, that is, the properties of the component
agree with their type, technological restictions are obeyed and flow through the
network is conserved and not split. However, as shown later in this section the size of
the MIP formulation is signifcantly reduced even for the (relatively) simple example
considered in sections 3 and 4. In this section we present the generic formulation
followed by a summary of its application to this example.
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6.1 Component Definition Constraints

Remember we do not include specific components in our model, rather we include
a number of generic components and determine their properties. We assume that
there are a priori bounds on the number of components. Let

L be the set of possible (generic) links indexed by 1, 2, . . . , |L|,
M be the set of possible (generic) multi-hubs indexed by 1, 2, . . . , |M |,
S be the set of possible (generic) switches indexed by 1, 2, . . . , |S|,

and the number of sections (in the cost functions’ domains) be denoted Γ(L), Γ(M)
and Γ(S) for links, multi-hubs and switches, respectively.

We define

uc = 1 if component c exists in the network for c ∈ L ∪ M ∪ S

= 0 otherwise
zci = 1 if component c belongs to section i for c ∈ L, 1 ≤ i ≤ Γ(L)

= 0 otherwise c ∈ M, 1 ≤ i ≤ Γ(M)
c ∈ S, 1 ≤ i ≤ Γ(S)

and restrict a component to belong to exactly one section of the component prop-
erties’ cost function domain if it exists in the network, cf. (8)

Γ(L)
∑

i=1

zli = ul, l ∈ L,

Γ(M)
∑

i=1

zmi = um,m ∈ M,

Γ(S)
∑

i=1

zsi = us, s ∈ S, (12)

Recall that links have one property (bandwidth capacity), multi-hubs have two prop-
erties (number of connections and bandwidth capacity) and switches have two prop-
erties (number of ports and port bandwidth capacity). We define variables for the
component properties, cf. (9) and (10)

βl = the bandwidth of link l ∈ L

ηm = the number of connections on multi-hub m ∈ M

βm = the bandwidth of multi-hub m ∈ M

ηs = the number of ports on switch s ∈ S

βs = the port bandwidth of switch s ∈ S

that allow us to add in the master-slave constraints to restrict components to the
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appropriate sections (of the cost function domain)

Γ(L)
∑

i=1

β(L, i)zli ≤ βl, βl ≤

Γ(L)
∑

i=1

β(L, i)zli for l ∈ L

Γ(M)
∑

i=1

η(M, i)zmi ≤ ηm, ηm ≤

Γ(M)
∑

i=1

η(M, i)zmi

for m ∈ MΓ(M)
∑

i=1

β(M, i)zmi ≤ βm, βm ≤

Γ(M)
∑

i=1

β(M, i)zmi

Γ(S)
∑

i=1

η(S, i)zsi ≤ ηs, ηs ≤

Γ(S)
∑

i=1

η(S, i)zsi

for s ∈ SΓ(S)
∑

i=1

β(S, i)zsi ≤ βs, βs ≤

Γ(S)
∑

i=1

β(S, i)zsi

(13)

Note that we added an extra parameter for β, β, η and η to denote which type of
component (link, multi-hub or switch) the bounds refer to.

We must also define

νmi = connections of section i on multi-hub m for m ∈ M, 1 ≤ i ≤ Γ(M)
νsi = ports of section i on switch s for s ∈ S, 1 ≤ i ≤ Γ(S)

and use the constraints

νmi≤ β(M, i)zmi, 1 ≤ i ≤ Γ(M)

Γ(M)
∑

i=1

νmi = ηm for m ∈ M

νsi≤ β(S, i)zsi, 1 ≤ i ≤ Γ(S)

Γ(S)
∑

i=1

νsi = ηs for s ∈ S

(14)

to properly cost the generic multi-hubs and switches.

6.2 Component Ordering and Anti-symmetry Constraints

We can better control the network composition by defining

nL = the number of links used in the network,

nM = the number of multi-hubs used in the network,

nS = the number of switches used in the network,

and limiting the number of components (links, multi-hubs and switches)

∑

l∈L

ul = nL,
∑

m∈M

um = nM ,
∑

s∈S

us = nS (15)
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We can then remove most of the symmetry in the network design problem by ordering
the components

ul ≥ ul+1, l ∈ {1, 2, . . . , |L| − 1},
um ≥ um+1, m ∈ {1, 2, . . . , |M | − 1},
us ≥ us+1, s ∈ {1, 2, . . . , |S| − 1},

(16)

and enforcing anti-symmetry constraints on the component properties

βl ≥ βl+1 for l ∈ {1, 2, . . . , |L| − 1}
ηm ≥ ηm+1 βm ≥ βm+1 − Ω(ηm − ηm+1) for m ∈ {1, 2, . . . , |M | − 1}
ηs ≥ ηs+1 βs ≥ βs+1 − Ω(ηs − ηs+1) for s ∈ {1, 2, . . . , |S| − 1}

(17)

where Ω is a big-M quantity.

6.3 Defining Flow Paths

We define Φ as the maximum number of connections (links or multi-hubs) on the
path for any flow f ∈ F and nf as the number of connections on the path for flow
f ∈ F . Now we define which connections are being used and which links, hubs
and/or switches make up a flow’s path

wfj = 1 if f goes along connection j for f ∈ F, 1 ≤ j ≤ Φ
= 0 otherwise

vfjc = 1 if f goes along link/multi-hub c on connection j for f ∈ F, 1 ≤ j ≤ Φ,

= 0 otherwise c ∈ L ∪ M

vfjs = 1 if f goes through switch s after connection j for f ∈ F, 1 ≤ j ≤ Φ − 1,
= 0 otherwise s ∈ S

and add constraints to control the number of connections on a path as well as
ordering the connections

Φ∑

j=1

wfj = nf for f ∈ F (18)

wfj ≥ wfj+1 for f ∈ F, 1 ≤ j ≤ Φ − 1 (19)

and ensure that there is at most one link/multi-hub for each connection and at most
one switch at the end of each connection (except the last one)

∑

c∈L∪M

vfjc = wfj for f ∈ F, 1 ≤ j ≤ Φ

∑

s∈S

vfjs = wfj+1 for f ∈ F, 1 ≤ j ≤ Φ − 1
(20)

Finally, the design will not be optimal if a flow visits a link, hub, or switch more
than once, so we restrict this appropriately

Φ∑

j=1

vfjc ≤ uc, f ∈ F, c ∈ L ∪ M,

Φ−1∑

j=1

vfjs ≤ us, f ∈ F, s ∈ S (21)
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To ensure that a flow leaves its host we add the following constraint

∑

c∈L∪M

vf1c = 1, f ∈ F (22)

If we want more than one path for a particular flow we can increase the right-hand
side of constraint (22). Constraints (21) will then ensure that the paths are disjoint,
ensuring diverse protection reliability.

6.4 Connecting the Network

Using the path information we can determine how the network is connected. We
define

xck = 1 if host/switch/device c connects to link/multi-hub k

= 0 otherwise

and make sure that the first connection in a flow’s path starts at the host and the
last (active) connection ends at the device

xθ(f)k ≥ vf1k for f ∈ F, k ∈ L ∪ M

xδ(f)k ≥ vfjk − wfj+1, 1 ≤ j ≤ Φ − 1
xδ(f)k ≥ vfΦk

(23)

Also, make sure that a switch on a path is connected to the links/hubs on the path

xsk ≥ vfjk + vfjs − 1 for s ∈ S, k ∈ L ∪ M, f ∈ F, 1 ≤ j ≤ Φ − 1
xsk ≥ vfj+1k + vfjs − 1

(24)

6.5 Technological Constraints

We need to ensure that the properties of the hosts, devices and components are not
being exceeded. We define the number of ports ηc on host/device c ∈ H ∪ Ds and
the degree constraints

∑

c∈H∪S∪D

xcl = 2ul, l ∈ L
∑

c∈H∪S∪D

xcm = ηm,m ∈ M

∑

k∈L∪M

xck = ηc ≤ η(c), c ∈ H ∪ D
∑

k∈L∪M

xsk = ηs, s ∈ S
(25)

ensure that hosts, devices, links, multi-hubs and switches only have the number of
ports available.

We also make sure that links and multi-hubs obey their bandwidth capacity restric-
tions ∑

f∈F,1≤j≤NF

vfjkβ(f) ≤ βk, k ∈ L ∪ M (26)
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and the port bandwidth capacity of the hosts, devices and/or switches connected to
them

βk ≤ β(c) + Ω (1 − xck) , c ∈ H ∪ D, k ∈ L ∪ M

βk ≤ βs + Ω (1 − xsk) , s ∈ S, k ∈ L ∪ M
(27)

where Ω is another big-M quantity.

6.6 Example

If we apply our generic MIP formulation to the example from section 3, we can
estimate upper bounds on the number of links, multi-hubs and switches. From
section 3 we know there will be at most 2 switches and 9 multi-hubs. Since links only
exist between host, device and switch ports there will be at most ⌊10+10+2×32

2
⌋ = 42

links. Therefore, the new formulation has 5433 variables and 18161 constraints. This
represents a decrease of 93.1% in the number of variables and 63.8% in the number
of constraints from the Hewlett-Packard MIP formulation with our preprocessing
method. Unfortunately, the generic formulation is more difficult to solve in CPLEX
9.0.0 than the Hewlett-Packard formulation. After solving for almost 16 hours in
CPLEX 9.0.0 (AMPL Version 20021031 running on a Compaq nx8220 with 512MB
RAM), no feasible solution had been found.

By examining the structure of the two formulations along with the CPLEX output,
we can deduce why the generic formulation is difficult to solve. The Hewlett-Packard
formulation has 78199 variables and 50219 constraints (after preprocessing). This
is a classical network design formulation where the binary variables represent the
inclusion and use of preconfigured components in the SAN, the constraints ensure the
components behave “properly”. Our generic formulation has 5433 variables (5103
binary and 330 integer) and 18161 constraints. The variables define the components
of the network and the constraints ensure the components not only behave properly,
but also that they are “built” properly. The linear programming subproblems in the
branch-and-bound tree are highly degenerate, possibly as a result of the structure of
our generic formulation (more constraints than variables). We expect that solving
the dual problem at each branch-and-bound node and using nested Wolfe iterations
will signifcantly reduce solution time. Unfortunately, neither of these procedures are
currently available in CPLEX 9.0.0.

7 Conclusions and Extensions

This paper presents two MIP formulations for the SANDP. The first formulation
(from Hewlett-Packard Laboratories) makes available all possible components for
building a SAN. MIP then decides which of these components to use in the design.
As the input (number of hosts and devices, number and bandwidth requirements for
flows, number of hub, switch and link types) grows, the number of possibilities in-
creases exponentially. Even a small example problem requires hundreds of thousands
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of constraints and variables. We summarise a preprocessing method that prunes the
possibile network components to leave only those components that would appear in
an optimal design. This preprocessing reduces the size of the problem by over 25%
and allows CPLEX to solve in a reasonable time (again on a typical PC).

We also present a second formulation that uses generic components and allows MIP
to determine the properties of those components. Our new formulation significantly
reduces the size of the first formulation with preprocessing (by over 90% in the
number of variables and 60% in the number of constraints). While the number of
generic components increases as the input grows, the growth is manageable and this
formulation may be used for much larger SANDPs. Unfortunately, the new formu-
lation is highly degenerate, so solving using CPLEX is currently difficult. However,
by solving the dual subproblem throughout the branch-and-bound tree and using
nested Wolfe iterations we expect to solve the generic formulation for large commer-
ical problems in reasonable time. CPLEX does not currently provide these features,
so our future research will focus on implementing a branch-and-bound method that
solves the dual subproblem at each node and uses nested Wolfe iterations to deal
with degeneracy.
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